Dietary Phytonutrients in Fibromyalgia: Integrating Mechanisms, Biomarkers, and Clinical Evidence—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Study Selection
2.2. Study Quality and Risk of Bias Appraisal
3. The Pathophysiology of Fibromyalgia: An Overview
4. Effects of Phytonutrients on Mechanisms Related to FM
4.1. Antioxidant Effects
4.2. Anti-Inflammatory Effects
4.3. Microbiota Regulatory Effects
| Bacterial Taxa | Change/Relationship in FM (vs. Controls) | Ref. |
|---|---|---|
| Clostridium | ↑ levels in FM patients | [32] |
| Bacteroides (overall) | ↑ levels in FM patients | [32] |
| Ruminococcus | ↑ levels in FM patients | [32] |
| Coprococcus (overall) | ↑ levels in FM patients | [32] |
| Bifidobacterium | ↓ levels in FM patients | [32,94] |
| Lactobacillus | ↓ levels in FM patients | [32,95] |
| Eubacterium | ↓ levels in FM patients | [32] |
| Lachnospiraceae | ↓ levels in FM patients | [32] |
| Firmicutes | ↓ levels in FM patients | [32] |
| Flavonifractor plautii | ↑ levels in FM patients | [33] |
| Parabacteroides merdae | ↑ levels in FM patients | [33] |
| Faecalibacterium prausnitzii | ↓ levels in FM patients; confirmed decrease in systematic review | [33,92,93,94] |
| Bacteroides uniformis | ↓ levels in FM patients | [33,34] |
| Prevotella copri | ↓ levels in FM patients | [33,34] |
| Blautia faecis | ↓ levels in FM patients | [33] |
| Ruminococcaceae | ↓ levels in FM patients (systematic review) | [94] |
| Bifidobacteriaceae | ↓ levels in FM patients (systematic review) | [94] |
| Eggerthella | Higher levels may increase FM risk | [40,95] |
| Coprococcus 2 | Higher levels may increase FM risk | [95] |
| Family XIII UCG-001 | Higher levels may reduce FM risk | [95] |
| Olsenella | Higher levels may reduce FM risk | [95] |
| Butyricicoccus | Higher levels may protect against FM | [40] |
| Coprococcus 1 | Higher levels may protect against FM | [40] |
| Ruminococcaceae UCG-005 | Higher levels may increase FM risk | [40] |
| Bacteroidetes | Altered composition associated with FM | [35] |
| Parabacteroides (overall) | Associated with FM in New Zealand women | [35] |
| Clostridium scindens | Increased in women with FM | [34,35] |
| Enterocloster bolteae | Increased in women with FM | [34,35] |
| Streptococcus sp. LPB022 | Associated with FM in New Zealand women | [35] |
| Bacteroides thetaiotaomicron | ↓ levels in women with FM | [34] |
4.4. Effects on SIRT1
5. Diet Models High in Phytonutrient Content and FM
6. Conclusions
7. Limitations
8. Research Gaps and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jurado-Priego, L.N.; Cueto-Ureña, C.; Ramírez-Expósito, M.J.; Martínez-Martos, J.M. Fibromyalgia: A Review of the Pathophysiological Mechanisms and Multidisciplinary Treatment Strategies. Biomedicines 2024, 12, 1543. [Google Scholar] [CrossRef] [PubMed]
- Walitt, B.; Nahin, R.L.; Katz, R.S.; Bergman, M.J.; Wolfe, F. The prevalence and characteristics of fibromyalgia in the 2012 national health interview survey. PLoS ONE 2015, 10, e0138024. [Google Scholar] [CrossRef] [PubMed]
- Assavarittirong, C.; Samborski, W.; Grygiel-Górniak, B. Oxidative Stress in Fibromyalgia: From Pathology to Treatment. Oxidative Med. Cell. Longev. 2022, 2022, 1582432. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Cristiani, C.M.; Ilari, S.; Passacatini, L.C.; Malafoglia, V.; Viglietto, G.; Maiuolo, J.; Oppedisano, F.; Palma, E.; Tomino, C.; et al. Fibromyalgia and Irritable Bowel Syndrome Interaction: A Possible Role for Gut Microbiota and Gut-Brain Axis. Biomedicines 2023, 11, 1701. [Google Scholar] [CrossRef]
- Goudman, L.; Demuyser, T.; Pilitsis, J.G.; Billot, M.; Roulaud, M.; Rigoard, P.; Moens, M. Gut dysbiosis in patients with chronic pain: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1342833. [Google Scholar] [CrossRef]
- Pak, R.; Cho, M.; Pride, K.; Abd-Elsayed, A. The Gut Microbiota and Chronic Pain. Curr. Pain Headache Rep. 2024, 28, 259–269. [Google Scholar] [CrossRef]
- Aboutaleb, A.S.; Allam, A.; Zaky, H.S.; Harras, M.F.; Farag, F.S.A.-A.; Abdel-Sattar, S.A.; El-Said, N.T.; Ahmed, H.I.; El-Mordy, F.M.A. Novel insights into the molecular mechanisms underlying anti-nociceptive effect of myricitrin against reserpine-induced fibromyalgia model in rats: Implication of SIRT1 and miRNAs. J. Ethnopharmacol. 2024, 335, 118623. [Google Scholar] [CrossRef]
- Chang, H.-C.; Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 2014, 25, 138–145. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, S.; Zhao, D.; Zhang, X.; Xia, C.; Wang, T.; Zhang, M.; Liu, T.; Huang, W.; Wu, B. SIRT1 inhibits apoptosis in in vivo and in vitro models of spinal cord injury via microRNA-494. Int. J. Mol. Med. 2019, 43, 1758–1768. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, W.; Mao, Z.; Gao, F.; Guo, R.; Wei, X.; Liu, X.; Wei, X. Activation of liver x receptors prevents the spinal LTP induced by skin/muscle retraction in the thigh via SIRT1/NF-Κb pathway. Neurochem. Int. 2019, 128, 106–114. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y.; Ding, X.; Shi, N.; Cai, Y.; Pan, Z.Z. SIRT1 Decreases Emotional Pain Vulnerability with Associated CaMKIIα Deacetylation in Central Amygdala. J. Neurosci. 2020, 40, 2332–2342. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef]
- Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. Int. Rev. J. 2019, 10 (Suppl. S4), S404–S421. [Google Scholar] [CrossRef]
- Jiménez, M.d.C.F.-F. Role of a Whole Plant Foods Diet in Breast Cancer Prevention and Survival. J. Am. Nutr. Assoc. 2025, 44, 422–438. [Google Scholar] [CrossRef]
- Gupta, C.; Prakash, D. Phytonutrients as therapeutic agents. J. Complement. Integr. Med. 2014, 11, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F.S.Ş.; Eren, G.; Orhan, I.E. Flavonoids as Sirtuin Modulators. Curr. Top. Med. Chem. 2022, 22, 790–805. [Google Scholar] [CrossRef]
- Liu, X.; Alharbi, A.; Gibson, R.; Rodriguez-Mateos, A. (Poly)phenol-gut microbiota interactions and their impact on human health. Curr. Opin. Clin. Nutr. Metab. Care 2025, 28, 316–322. [Google Scholar] [CrossRef]
- Lowry, E.; Marley, J.; McVeigh, J.G.; McSorley, E.; Allsopp, P.; Kerr, D. Dietary Interventions in the Management of Fibromyalgia: A Systematic Review and Best-Evidence Synthesis. Nutrients 2020, 12, 2664. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 26, 5. [Google Scholar] [CrossRef]
- Meyer, H.P.; Med, M. Myofascial pain syndrome and its suggested role in the pathogenesis and treatment of fibromyalgia syndrome. Curr. Pain Headache Rep. 2002, 6, 274–283. [Google Scholar] [CrossRef]
- Bradley, L.A. Pathophysiology of Fibromyalgia. Am. J. Med. 2009, 122 (Suppl. S12), S22–S30. [Google Scholar] [CrossRef] [PubMed]
- Yunus, M.B.; Khan, M.A.; Rawlings, K.K.; Green, J.R.; Olson, J.M.; Shah, S. Genetic linkage analysis of multicase families with fibromyalgia syndrome. J. Rheumatol. 1999, 26, 408–412. [Google Scholar]
- dos Santos, J.M.; Lacerda, A.C.R.; Ribeiro, V.G.C.; Figueiredo, P.H.S.; Fonseca, S.F.; Lage, V.K.d.S.; Costa, H.S.; Lima, V.P.; Sañudo, B.; Bernardo-Filho, M.; et al. Oxidative Stress Biomarkers and Quality of Life Are Contributing Factors of Muscle Pain and Lean Body Mass in Patients with Fibromyalgia. Biology 2022, 11, 935. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Vilarino, G.T.; Sieczkowska, S.M.; Coimbra, D.R.; de Azevedo Klumb Steffens, R.; Vietta, G.G. Acute effects of physical exercises on the inflammatory markers of patients with fibromyalgia syndrome: A systematic review. J. Neuroimmunol. 2018, 316, 40–49. [Google Scholar] [CrossRef]
- O’mAhony, L.F.; Srivastava, A.; Mehta, P.; Ciurtin, C. Is fibromyalgia associated with a unique cytokine profile? A systematic review and meta-analysis. Rheumatology 2021, 60, 2602–2614. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Nijs, J.; Hermans, L.; Goubert, D.; Calders, P. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: Peripheral and central mechanisms as therapeutic targets? Expert Opin. Ther. Targets 2013, 17, 1081–1089. [Google Scholar] [CrossRef]
- Bennett, R.M.; Friend, R.; Jones, K.D.; Ward, R.; Han, B.K.; Ross, R.L. The revised fibromyalgia impact questionnaire (FIQR): Validation and psychometric properties. Arthritis Res. Ther. 2009, 11, 415–435. [Google Scholar] [CrossRef]
- Shukla, V.; Das, S.K.; Mahdi, A.A.; Agarwal, S.; Khandpur, S. Nitric oxide, lipid peroxidation products, and antioxidants in primary fibromyalgia and correlation with disease severity. J. Med. Biochem. 2019, 39, 165–170. [Google Scholar] [CrossRef]
- Shtrozberg, S.; Bazzichi, L.; Sarzi-Puttini, P.; Aloush, V.; Ablin, J.N. Is the gut microbiome of importance in fibromyalgia? A critical review of emerging evidence. Clin. Exp. Rheumatol. 2025, 43, 990–998. [Google Scholar] [CrossRef]
- Palma-Ordóñez, J.F.; Moreno-Fernández, A.M.; Ramírez-Tejero, J.A.; Durán-González, E.; Martínez-Lara, A.; Cotán, D. Implication of intestinal microbiota in the etiopathogenesis of fibromyalgia: A systematic review. Int. J. Rheum. Dis. 2024, 27, e15021. [Google Scholar] [CrossRef]
- Minerbi, A.; Gonzalez, E.; Brereton, N.J.; Anjarkouchian, A.; Dewar, K.; Fitzcharles, M.-A.; Chevalier, S.; Shir, Y. Altered microbiome composition in individuals with fibromyalgia. PAIN 2019, 160, 2589–2602. [Google Scholar] [CrossRef]
- Minerbi, A.; Gonzalez, E.; Brereton, N.; Fitzcharles, M.-A.; Chevalier, S.; Shir, Y. Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. PAIN 2022, 164, e66–e76. [Google Scholar] [CrossRef]
- Erdrich, S.; Gelissen, I.C.; Toma, R.; Vuyisich, M.; Harnett, J.E. Fecal Microbiome in Women with Fibromyalgia: Functional Composition and Symptom Correlations. ACR Open Rheumatol. 2025, 7, e70115. [Google Scholar] [CrossRef]
- Nahar, L.; Xiao, J.; Sarker, S.D. Introduction of Phytonutrients. In Handbook of Dietary Phytochemicals; Springer: Singapore, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Tufail, T.; Fatima, S.; Ain, H.B.U.; Ikram, A.; Noreen, S.; Rebezov, M.; Al-Farga, A.; Saleh, R.; Shariati, M.A. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS Omega 2025, 10, 12724–12755. [Google Scholar] [CrossRef] [PubMed]
- Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress—Implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar] [CrossRef]
- Niu, M.; Li, J.; Zhuang, X.; Yangyang, C.; Chen, Y.; Zhang, Y.; Maes, M. Unraveling the role of gut microbiota and plasma metabolites in fibromyalgia: Insights from Mendelian randomization and dietary interventions. Mol. Pain 2025, 21, 17448069251332140. [Google Scholar] [CrossRef] [PubMed]
- Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front. Pharmacol. 2020, 11, 1225. [Google Scholar] [CrossRef] [PubMed]
- Wiciński, M.; Erdmann, J.; Nowacka, A.; Kuźmiński, O.; Michalak, K.; Janowski, K.; Ohla, J.; Biernaciak, A.; Szambelan, M.; Zabrzyński, J. Natural Phytochemicals as SIRT Activators—Focus on Potential Biochemical Mechanisms. Nutrients 2023, 15, 3578. [Google Scholar] [CrossRef]
- Cappellini, F.; Marinelli, A.; Toccaceli, M.; Tonelli, C.; Petroni, K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. Front. Plant Sci. 2021, 12, 748049. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Kamal, R.M.; Razis, A.F.A.; Sukri, N.S.M.; Perimal, E.K.; Ahmad, H.; Patrick, R.; Djedaini-Pilard, F.; Mazzon, E.; Rigaud, S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. Molecules 2022, 27, 624. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Khor, T.; Lee, J.; Cheung, K.; Shu, L.; Chen, C.; Kong, A.-N. Pharmacogenetics, Pharmacogenomics and Epigenetics of Nrf2-regulated Xenobioticmetabolizing Enzymes and Transporters by Dietary Phytochemical and Cancer Chemoprevention. Curr. Drug Metab. 2013, 14, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Jabczyk, M.; Nowak, J.; Hudzik, B.; Zubelewicz-Szkodzińska, B. Curcumin in metabolic health and disease. Nutrients 2021, 13, 4440. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Haghshenas, N.; Hernández-Ruiz, Á.; Shidfar, F. Consumption of sesame seeds and sesame products has favorable effects on blood glucose levels but not on insulin resistance: A systematic review and meta-analysis of controlled clinical trials. Phytotherapy Res. 2022, 36, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.K.; Sengupta, S.; Arya, R.; Kumar, S.; Kim, J.J.; Chaurasia, R. Dietary Polyphenols as Potential Therapeutic Agents in Type 2 Diabetes Management: Advances and Opportunities. Adv. Nutr. Int. Rev. J. 2025, 16, 100346. [Google Scholar] [CrossRef]
- Feng, R.C.; Dong, Y.H.; Hong, X.L.; Su, Y.; Wu, X.V. Effects of anthocyanin-rich supplementation on cognition of the cognitively healthy middle-aged and older adults: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2023, 81, 287–303. [Google Scholar] [CrossRef]
- Yeh, T.-S.; Blacker, D.; Willett, W.C. Dietary Factors and Cognitive Function: With a Focus on Subjective Cognitive Decline. Curr. Nutr. Rep. 2025, 14, 62. [Google Scholar] [CrossRef]
- Zaa, C.A.; Marcelo, Á.J.; An, Z.; Medina-Franco, J.L.; Velasco-Velázquez, M.A. Anthocyanins: Molecular Aspects on Their Neuroprotective Activity. Biomolecules 2023, 13, 1598. [Google Scholar] [CrossRef]
- Zhang, L.; Muscat, J.E.; Chinchilli, V.M.; Kris-Etherton, P.M.; Al-Shaar, L.; Richie, J.P. Consumption of Berries and Flavonoids in Relation to Mortality in NHANES, 1999–2014. J. Nutr. 2024, 154, 734–743. [Google Scholar] [CrossRef]
- Cazorla, S.d.l.C.; Blanco, S.; Rus, A.; Molina-Ortega, F.J.; Ocaña, E.; Hernández, R.; Visioli, F.; del Moral, M.L. Nutraceutical Supplementation as a Potential Non-Drug Treatment for Fibromyalgia: Effects on Lipid Profile, Oxidative Status, and Quality of Life. Int. J. Mol. Sci. 2024, 25, 9935. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, I.P.; Mantle, D. Targeted Treatment of Age-Related Fibromyalgia with Supplemental Coenzyme Q10. Adv. Exp. Med. Biol. 2021, 1286, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Fatima, G.; Mahdi, F. Deciphering the role of oxidative and antioxidative parameters and toxic metal ion content in women with Fibromyalgia Syndrome. Free. Radic. Biol. Med. 2017, 112, 23–24. [Google Scholar] [CrossRef]
- Martins, C.C.; Reis, A.S.; da Motta, K.P.; Blödorn, E.B.; Domingues, W.; Sacramento, M.D.; Roehrs, J.A.; Alves, D.; Campos, V.F.; Mesko, M.F.; et al. 4-amino-3-(phenylselanyl) benzenesulfonamide attenuates intermittent cold stress-induced fibromyalgia in mice: Targeting to the Nrf2-NFκB axis. Biochem. Pharmacol. 2025, 232, 116651. [Google Scholar] [CrossRef] [PubMed]
- Akkuş, S.; Nazıroğlu, M.; Eriş, S.; Yalman, K.; Yılmaz, N.; Yener, M. Levels of lipid peroxidation, nitric oxide, and antioxidant vitamins in plasma of patients with fibromyalgia. Cell Biochem. Funct. 2009, 27, 181–185. [Google Scholar] [CrossRef]
- Islam, A.; Alam, A.; Ahmed, S.; Rakib, A.; Uddin, G.; Islam, M.N.; Etu, F.S.; Masud, I.U.; Uddin, S.M.N. The Relationship Between Lipid Peroxidation, Serum Antioxidant Vitamin, Inflammatory Biomarker, Trace Elements, and Macro-Minerals with Bangladeshi Fibromyalgia Patients: A Case-Control Study. Health Sci. Rep. 2025, 8, e71222. [Google Scholar] [CrossRef]
- Uslu, E.Y.; Uslu, M.F.; Yıldız, S.; Tabara, M.F. Evaluating Oxidative Stress in Fibromyalgia: Diagnostic Utility and Its Relationship with Clinical and Psychological Parameters. Medicina 2025, 61, 1248. [Google Scholar] [CrossRef]
- Atamer, Y.; Sarac, S.; Asık, H.K.; Sahbaz, T. Serum paraoxonase activities, nitric oxide, and malondialdehyde levels are altered in patients with primary fibromyalgia syndrome. Ir. J. Med Sci. 2023, 192, 2541–2547. [Google Scholar] [CrossRef]
- Ho, T.; Ryan, M.; Holle, J. Redox reactions in chronic pain: Mechanisms and relevance in fibromyalgia. Front. Pain Res. 2025, 6, 1593908. [Google Scholar] [CrossRef]
- Maes, M.; Leunis, J.-C. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome. Neuroendocrinol. Lett. 2014, 35, 577–585. [Google Scholar]
- Nazıroğlu, M.; Akkuş, S.; Soyupek, F.; Yalman, K.; Çelik, Ö.; Eriş, S.; Uslusoy, G.A. Vitamins C and E treatment combined with exercise modulates oxidative stress markers in blood of patients with fibromyalgia: A controlled clinical pilot study. Stress 2010, 13, 498–505. [Google Scholar] [CrossRef]
- Gilron, I.M.; Robb, S.R.; Tu, D.; Holden, R.; Towheed, T.F.; Ziegler, D.M.; Wang, L.M.; Milev, R.F.; Gray, C.C. Double-blind, randomized, placebo-controlled crossover trial of alpha-lipoic acid for the treatment of fibromyalgia pain: The IMPALA trial. PAIN 2020, 162, 561–568. [Google Scholar] [CrossRef]
- Klein, C.P.; Cintra, M.R.; Binda, N.; Diniz, D.M.; Gomez, M.V.; Souto, A.A.; de Souza, A.H. Coadministration of Resveratrol and Rice Oil Mitigates Nociception and Oxidative State in a Mouse Fibromyalgia-Like Model. Pain Res. Treat. 2016, 2016, 3191638. [Google Scholar] [CrossRef]
- Alqudah, A.; Qnais, E.; Bsieso, Y.; Gammoh, O.; Aljabali, A.A.A.; Shilbayeh, S.A.R. Neuroprotective and Antidepressant Effects of Isorhamnetin: Mechanistic Evaluations in a Reserpine-Induced Mouse Model of Pain and Depression. Mol. Neurobiol. 2025, 62, 15798–15812. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.; Barakat, L.A.; El-Tanbouly, G.S.; Khalil, R.M. Unveiling the therapeutic potential of anthocyanins in reserpine-induced fibromyalgia: A multi-dimensional study on behavioral, molecular, and pathological changes. Int. Immunopharmacol. 2025, 160, 114965. [Google Scholar] [CrossRef] [PubMed]
- Elkholy, N.S.; Shafaa, M.W.; Mohammed, H.S. Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166150. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Shi, L.; Si, H.; Hu, Z.; Zou, L.; Li, L.; Xu, X.; Schmalzing, G.; Nie, H.; Li, G.; et al. Gallic Acid Improves Comorbid Chronic Pain and Depression Behaviors by Inhibiting P2X7 Receptor-Mediated Ferroptosis in the Spinal Cord of Rats. ACS Chem. Neurosci. 2023, 14, 667–676. [Google Scholar] [CrossRef]
- Yao, X.; Li, L.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp Ther Med. 2020, 19, 1343–1355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernández-Araque, A.; Verde, Z.; Torres-Ortega, C.; Sainz-Gil, M.; Velasco-Gonzalez, V.; González-Bernal, J.J.; Mielgo-Ayuso, J. Effects of Antioxidants on Pain Perception in Patients with Fibromyalgia—A Systematic Review. J. Clin. Med. 2022, 11, 2462. [Google Scholar] [CrossRef]
- Chen, C.; Smith, M.T. The NLRP3 inflammasome: Role in the pathobiology of chronic pain. Inflammopharmacology 2023, 31, 1589–1603. [Google Scholar] [CrossRef]
- Chen, R.; Yin, C.; Fang, J.; Liu, B. The NLRP3 inflammasome: An emerging therapeutic target for chronic pain. J. Neuroinflammation 2021, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Cordero, M.D.; Alcocer-Gómez, E.; Culic, O.; Carrión, A.M.; de Miguel, M.; Díaz-Parrado, E.; Pérez-Villegas, E.M.; Bullón, P.; Battino, M.; Sánchez-Alcazar, J.A. NLRP3 Inflammasome Is Activated in Fibromyalgia: The Effect of Coenzyme Q10. Antioxidants Redox Signal. 2014, 20, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-T.; Du, X.-M.; Ma, X.-J.; Zong, Y.; Chen, J.-K.; Yu, C.-L.; Liu, Y.-G.; Chen, Y.-C.; Zhao, L.-J.; Lu, G.-C. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome. J. Neuroinflammation 2016, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tao, X.; Wang, K.; Song, Y.; Zhang, B.; Yang, L.; Wang, Z. Astaxanthin alleviates fibromyalgia pain and depression via NLRP3 inflammasome inhibition. Biomed. Pharmacother. 2024, 176, 116856. [Google Scholar] [CrossRef] [PubMed]
- Arora, V.; Kuhad, A.; Tiwari, V.; Chopra, K. Curcumin ameliorates reserpine-induced pain–depression dyad: Behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 2011, 36, 1570–1581. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.Y.; Silva-Islas, C.A.; Maldonado, P.D.; Pedraza-Chaverri, J.; Carballo-Villalobos, A.I. Antinociceptive effect of garlic, garlic preparations and derivative compounds. Eur. J. Pain 2022, 26, 947–964. [Google Scholar] [CrossRef]
- Takeda, M.; Sashide, Y.; Toyota, R.; Ito, H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024, 29, 3957. [Google Scholar] [CrossRef]
- la Paz, S.M.-D.; Garcia-Gimenez, M.D.; Quilez, A.M.; De la Puerta, R.; Fernandez-Arche, A. Ginger rhizome enhances the anti-inflammatory and anti-nociceptive effects of paracetamol in an experimental mouse model of fibromyalgia. Inflammopharmacology 2018, 26, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Singh, N.; Bhatti, M.S.; Bhatti, R. Optimization of extraction conditions of Angelica archangelica extract and activity evaluation in experimental fibromyalgia. J. Food Sci. 2020, 85, 3700–3710. [Google Scholar] [CrossRef]
- Khodir, S.A.; Sweed, E.M.; El-Haroun, H.; Abd-Elhamid, T.H.; El Derbaly, S.A.; Mahmoud, A.R.; Motawea, S.M. Honokiol ameliorates reserpine-induced fibromyalgia through antioxidant, anti-inflammatory, neurotrophic, and anti-apoptotic mechanisms. Sci. Rep. 2025, 15, 25983. [Google Scholar] [CrossRef]
- Ghoneim, F.M.; Abo-Elkhair, S.M.; Elsamanoudy, A.Z.; Shabaan, D.A. Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin. Cells 2021, 11, 48. [Google Scholar] [CrossRef]
- la Paz, S.M.-D.; García-Giménez, M.D.; Ángel-Martín, M.; Marín-Aguilar, F.; Fernández-Arche, A. Dietary supplementation evening primrose oil improve symptoms of fibromyalgia syndrome. J. Funct. Foods 2013, 5, 1279–1287. [Google Scholar] [CrossRef]
- Silva, A.R.; Bernardo, A.; de Mesquita, M.F.; Vaz-Patto, J.; Moreira, P.; Silva, M.L.; Padrão, P. An anti-inflammatory and low fermentable oligo, di, and monosaccharides and polyols diet improved patient reported outcomes in fibromyalgia: A randomized controlled trial. Front. Nutr. 2022, 9, 856216. [Google Scholar] [CrossRef]
- Baris, E.; Topaloglu, I.; Akalin, E.; Hamurtekin, E.; Kabaran, S.; Gelal, A.; Ucku, R.; Arici, M.A. Serum choline, leptin and interleukin-6 levels in fibromyalgia syndrome-induced pain: A case–control study. BMC Musculoskelet. Disord. 2025, 26, 97. [Google Scholar] [CrossRef] [PubMed]
- Saija, C.; Bertuccio, M.P.; Scoglio, A.; Macaione, V.; Cacciola, F.; Micalizzi, G.; Caccamo, D.; Muscoli, C.; Currò, M. Role of Vitamin D Status and Alterations in Gut Microbiota Metabolism in Fibromyalgia-Associated Chronic Inflammatory Pain. Biomedicines 2025, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Haddad, M.; Haddad, R.; Kesten, I.; Hoffman, T.; Laan, R.; Westfall, S.; Defaye, M.; Abdullah, N.S.; Wong, C.; et al. The gut microbiota promotes pain in fibromyalgia. Neuron 2025, 113, 2161–2175.e13. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Q.; Chen, Y.; Ren, H.; Zhang, Q.; Yang, H.; Zhang, W.; Ding, T.; Wang, S.; Zhang, Y.; et al. Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies. Int. Immunopharmacol. 2023, 115, 109685. [Google Scholar] [CrossRef]
- Miquel, S.; Martin, R.; Lashermes, A.; Gillet, M.; Meleine, M.; Gelot, A.; Eschalier, A.; Ardid, D.; Bermudez-Humaran, L.G.; Sokol, H.; et al. Anti-nociceptive effect of Faecalibacterium prausnitzii in non-inflammatory IBS-like models. Sci. Rep. 2016, 6, 19399. [Google Scholar] [CrossRef]
- Sitkin, S.; Pokrotnieks, J. Clinical Potential of Anti-inflammatory Effects of Faecalibacterium prausnitzii and Butyrate in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 25, e40–e41. [Google Scholar] [CrossRef]
- Leong, P.-Y.; Shi, L.-H. Gut Microbiota in Adults with Chronic Widespread Pain: A Systematic Review. Diseases 2025, 13, 299. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, D.; Zhang, M.; Teng, Y.; Huang, Y. Causal association between gut microbiota and fibromyalgia: A Mendelian randomization study. Front. Microbiol. 2023, 14, 1305361. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Wallace, D.; Hallegua, D.; Chow, E.; Kong, Y.; Park, S.; Lin, H.C. A link between irritable bowel syndrome and fibromyalgia may be related to findings on lactulose breath testing. Ann. Rheum. Dis. 2004, 63, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Leunis, J.-C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: Effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuroendocrinol. Lett. 2008, 29, 902–910. [Google Scholar]
- Baldi, S.; Pagliai, G.; Dinu, M.; Di Gloria, L.; Nannini, G.; Curini, L.; Pallecchi, M.; Russo, E.; Niccolai, E.; Danza, G.; et al. Effect of ancient Khorasan wheat on gut microbiota, inflammation, and short-chain fatty acid production in patients with fibromyalgia. World J. Gastroenterol. 2022, 28, 1965–1980. [Google Scholar] [CrossRef]
- Aslan Çİn, N.N.; Açik, M.; Tertemİz, O.F.; Aktan, Ç.; Akçali, D.T.; Çakiroğlu, F.P.; Özçelİk, A.Ö. Effect of prebiotic and probiotic supplementation on reduced pain in patients with fibromyalgia syn-drome: A double-blind, placebo-controlled randomized clinical trial. Psychol. Health Med. 2024, 29, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Cardona, D.; Roman, P.; Cañadas, F.; Sánchez-Labraca, N. The Effect of Multiprobiotics on Memory and Attention in Fibromyalgia: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 3543. [Google Scholar] [CrossRef]
- Calandre, E.P.; Hidalgo-Tallon, J.; Molina-Barea, R.; Rico-Villademoros, F.; Molina-Hidalgo, C.; Garcia-Leiva, J.M.; Carrillo-Izquierdo, M.D.; Slim, M. The Probiotic VSL#3® Does Not Seem to Be Efficacious for the Treatment of Gastrointestinal Symptomatology of Patients with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pharmaceuticals 2021, 14, 1063. [Google Scholar] [CrossRef]
- Royo, F.; Tames, H.; Bordanaba-Florit, G.; Cabrera, D.; Azparren-Angulo, M.; Garcia-Vallicrosa, C.; Margolles, A.; Ruiz, L.; Ruas-Madiedo, P.; Falcon-Perez, J.M. Orally Administered Bifidobacterium adolescentis Diminishes Serum Glutamate Concentration in Mice. Microbiol. Spectr. 2023, 11, e0506322. [Google Scholar] [CrossRef]
- Fang, H.; Hou, Q.; Zhang, W.; Su, Z.; Zhang, J.; Li, J.; Lin, J.; Wang, Z.; Yu, X.; Yang, Y.; et al. Fecal Microbiota Transplantation Improves Clinical Symptoms of Fibromyalgia: An Open-Label, Randomized, Nonplacebo-Controlled Study. J. Pain 2024, 25, 104535. [Google Scholar] [CrossRef]
- Ilari, S.; Nucera, S.; Passacatini, L.C.; Caminiti, R.; Mazza, V.; Macrì, R.; Serra, M.; Scarano, F.; Malafoglia, V.; Palma, E.; et al. SIRT1: A likely key for future therapeutic strategies for pain management. Pharmacol. Res. 2025, 213, 107670. [Google Scholar] [CrossRef]
- Zaky, H.S.; El-Said, N.T.; Aboutaleb, A.S.; Allam, A.; Mansour, M.; Ahmed, H.I.; Abdel-Sattar, S.A. Mito-TEMPO Mitigates Fibromyalgia Induced by Reserpine in Rats: Orchestration Between SIRT1, Mitochondrial Dynamics, Endoplasmic Reticulum and miRNA-320. Neurochem. Res. 2025, 50, 172. [Google Scholar] [CrossRef]
- Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 253–295. [Google Scholar] [CrossRef]
- O’CAllaghan, C.; Vassilopoulos, A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 2017, 16, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Waldman, M.; Cohen, K.; Yadin, D.; Nudelman, V.; Gorfil, D.; Laniado-Schwartzman, M.; Kornwoski, R.; Aravot, D.; Abraham, N.G.; Arad, M.; et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’. Cardiovasc. Diabetol. 2018, 17, 111. [Google Scholar] [CrossRef]
- Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 2005, 434, 113–118. [Google Scholar] [CrossRef]
- Wong, A.; Woodcock, E.A. FoxO Proteins and Cardiac Pathology. Adv. Exp. Med. Biol. 2009, 665, 78–89. [Google Scholar] [CrossRef]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef]
- Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; et al. Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science 2004, 303, 2011–2015. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; Pang, X.; Yang, J.; Yu, H.; Zhang, Y.; Zhou, H.; Zhao, J. MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs. Toxicol. Lett. 2017, 277, 115–122. [Google Scholar] [CrossRef]
- Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 2013, 25, 1939–1948. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; El-Tawil, O.S.; Bungǎu, S.G.; Abdel-Daim, M.M.; Atanasov, A.G. Antioxidants: Scientific Literature Landscape Analysis. Oxidative Med. Cell. Longev. 2019, 2019, 8278454. [Google Scholar] [CrossRef]
- Ren, Z.; He, H.; Zuo, Z.; Xu, Z.; Wei, Z.; Deng, J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell. Mol. Biol. Lett. 2019, 24, 36. [Google Scholar] [CrossRef]
- García-Martínez, B.I.; Ruiz-Ramos, M.; Pedraza-Chaverri, J.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Resveratrol on Markers of Oxidative Stress and Sirtuin 1 in Elderly Adults with Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 7422. [Google Scholar] [CrossRef]
- Liou, C.-J.; Wei, C.-H.; Chen, Y.-L.; Cheng, C.-Y.; Wang, C.-L.; Huang, W.-C. Fisetin Protects Against Hepatic Steatosis Through Regulation of the Sirt1/AMPK and Fatty Acid β-Oxidation Signaling Pathway in High-Fat Diet-Induced Obese Mice. Cell. Physiol. Biochem. 2018, 49, 1870–1884. [Google Scholar] [CrossRef]
- Maleki, M.H.; Javazm, S.A.; Dastghaib, S.; Panji, A.; Far, M.H.; Mahmoodi, H.; Siri, M.; Shafiee, S.M. The effect of quercetin on adipogenesis, lipolysis, and apoptosis in 3T3-L1 adipocytes: The role of SIRT1 pathways. Obes. Sci. Pract. 2024, 10, e752. [Google Scholar] [CrossRef]
- Singh, A.; Yadawa, A.K.; Rizvi, S.I. Curcumin protects against aging-related stress and dysfunction through autophagy activation in rat brain. Mol. Biol. Rep. 2024, 51, 694. [Google Scholar] [CrossRef]
- Kadayifci, F.Z.; Bradley, M.J.; Onat, A.M.; Shi, H.N.; Zheng, S. Review of nutritional approaches to fibromyalgia. Nutr. Rev. 2022, 80, 2260–2274. [Google Scholar] [CrossRef]
- Maddox, E.K.; Massoni, S.C.; Hoffart, C.M.; Takata, Y. Dietary Effects on Pain Symptoms in Patients with Fibromyalgia Syndrome: Systematic Review and Future Directions. Nutrients 2023, 15, 716. [Google Scholar] [CrossRef] [PubMed]
- Pérez, I.M.M.; Pérez, S.E.M. Assessment of ultra-processed food consumption and pro-inflammatory dietary load in adults diagnosed with fibromyalgia syndrome: A case–control study. Nutr. Health 2025, 02601060251369916. [Google Scholar] [CrossRef]
- Adıgüzel, K.T.; Köroğlu, Ö.; Yaşar, E.; Tan, A.K.; Samur, G. The relationship between dietary total antioxidant capacity, clinical parameters, and oxidative stress in fibromyalgia syndrome: A novel point of view. Turk. J. Phys. Med. Rehabil. 2022, 68, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Badaeva, A.; Danilov, A.; Kosareva, A.; Lepshina, M.; Novikov, V.; Vorobyeva, Y.; Danilov, A. Neuronutritional Approach to Fibromyalgia Management: A Narrative Review. Pain Ther. 2024, 13, 1047–1061. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Wu, Z.; Wang, M.; Tian, M. Curcumin alleviates pain and improves cognitive impairment in a rat model of cobra venom-induced trigeminal neuralgia. J. Pain Res. 2018, 11, 1095–1104. [Google Scholar] [CrossRef]
- Pagliai, G.; Giangrandi, I.; Dinu, M.; Sofi, F.; Colombini, B. Nutritional Interventions in the Management of Fibromyalgia Syndrome. Nutrients 2020, 12, 2525. [Google Scholar] [CrossRef]
- Mauro-Martín, I.S.; Collado-Yurrita, L.; Sanz-Rojo, S.; Lopez-Oliva, S.; Conty, R.; Puga, A.M.; Garicano-Vilar, E. Short-Time Strategy for Fibromyalgia Treatment Based on Olive Nutraceutical and Inflammatory Gut-Brain Axis Control Diet (IGUBAC) Diet®. Curr. Top. Nutraceutical Res. 2018, 17, 23–32. [Google Scholar] [CrossRef]
- Casini, I.; Ladisa, V.; Clemente, L.; Delussi, M.; Rostanzo, E.; Peparini, S.; Aloisi, A.M.; de Tommaso, M. A Personalized Mediterranean Diet Improves Pain and Quality of Life in Patients with Fibromyalgia. Pain Ther. 2024, 13, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.E.; Jayakrishnan, S.; Froio, F.; Ahmed, D.; Haq, H.; Schnurer, S.; Messina, M.V.; Barillà, B.; Saturnino, A.; Vomero, M.; et al. Mediterranean diet and its low-antigenic and anti-inflammatory properties on fibromyalgia: A systematic review. Clin. Exp. Rheumatol. 2025, 43, 970–977. [Google Scholar] [CrossRef]

| Component | Description |
|---|---|
| Databases | PubMed, Web of Science, Scopus, ScienceDirect |
| Time period | 1 January 2005–16 October 2025 |
| Languages | Full text in English or Turkish |
| Study types included | Human studies and animal models |
| Study types excluded | In vitro studies, editorials, reviews without primary data, grey literature, preprints |
| Population/condition | Fibromyalgia or fibromyalgia-related pain models |
| Intervention/exposure | Phytonutrient-rich diets or isolated phytonutrients (polyphenols, carotenoids, etc.) |
| Mechanisms of interest | Oxidative stress, inflammation, gut microbiota, SIRT1 signalling |
| Example keywords/strings | “fibromyalgia AND polyphenols”, “fibromyalgia AND Mediterranean diet”, “SIRT1 AND pain”, etc. |
| Study Focus | Population/Model | Study Design | Main Findings | Reference |
|---|---|---|---|---|
| Fasting plasma vitamins (A, E, C, β-carotene) & oxidative markers (LP, NO) | FM patients vs. healthy controls | Case–control | FM vs. age-matched controls: ↓plasma vitamins A & E, ↑lipid peroxidation (LP); ↔ vitamin C, β-carotene, NO— consistent with altered fat-soluble antioxidant status and oxidative damage; case–control, single time point, small n → limited causality | [59] |
| Vitamin C + E (VCE) ± Exercise (EX) | FM patients | Controlled clinical pilot study | Lipid peroxidation ↓, vitamins A/E ↑, GSH ↑, erythrocyte GPx ↑, β-carotene ↔; no improvement in FM symptoms | [65] |
| Anti-IO&NS nutraceuticals (NAIOS) | ME/CFS patients | Prospective care-as-usual, pre–post observational | Marked reductions in IgM autoimmunity to OSEs and NO-adducts; greater falls in OSE-IgM correlated with lower FM and Fatigue scores | [64] |
| Resveratrol and rice oil supplementation | Reserpine-induced mice model of FM | Animal study | Reduced pain behaviors, lowered CSF reactive species, antidepressant-like effects, efficacy comparable to pregabalin | [67] |
| Oxidant–antioxidant balance (TAC, SOD, CAT, GPx) | FM patients vs. healthy controls | Case–control | TAC, SOD, CAT, GPx levels reduced in FM; increased oxidative stress inversely correlated with FIQR | [30,57] |
| Lutein and β-carotene nanodispersions | Reserpine-induced rat model of FM | Animal study | ↓ MDA, H2O2, NO; ↑ GSH → restored oxidative balance | [70] |
| Alpha-lipoic acid (ALA) supplementation | FM patients | Randomised, placebo-controlled, crossover trial | No significant effect on pain, FIQ, sleep, or mood; subgroup benefit in males only | [66] |
| Oxidative stress and muscle performance | FM patients | Observational | High TBARS and low SOD levels were associated with increased muscle pain, reduced lean mass, and poorer quality of life | [25] |
| Micronutrient and plant-based supplementation | FM patients | Systematic review | C vitamin, CoQ10, ferric carboxymaltose, Nigella sativa, L-carnitine, Sun Chlorella™ → associated with pain reduction | [73] |
| PON-1 activity and MDA levels | FM patients vs. healthy controls (Turkish) | Case–control | Reduced PON-1 activity and elevated MDA correlated with higher pain, FIQ, and depression scores | [62] |
| Gallic acid administration | CCI + CUMS pain–depression model (rats) | Animal study | Regulated P2X7–ROS signaling; reduced iron accumulation and mitochondrial damage; inhibited microglial ferroptosis | [71] |
| Serum MDA, CRP, and micronutrient levels | FM patients vs. healthy controls (Bangladesh) | Case–control | Higher MDA and CRP; lower vitamin C, calcium, magnesium, zinc, and copper in FM → associated with oxidative stress and micronutrient imbalance | [60] |
| Oxidative stress markers (TAC, TOC, MDA, OSI) | FM patients vs. healthy controls (Turkish) | Case–control | Elevated oxidative stress parameters (TAC, TOC, MDA, and OSI levels); no significant correlation with symptom severity or psychological scores | [61] |
| NRF2 and NFκB modulation in fibromyalgia | Intermittent cold stress (ICS)-induced FM mice model | Animal study | 4-APSB (1 mg/kg) reduced nociceptive and depressive-like behaviors; normalized TBARS; downregulated Nrf2 and NFκB expression; restored Na+/K+-ATPase activity and redox balance in central nervous system, indicating antioxidant and antinociceptive potential | [58] |
| Isorhamnetin administration | Reserpine-induced rat model of FM | Animal study | ↑ GSH, ↓ TBARS, ↓ TNF-α & IL-1β; ↑ serotonin, ↑ norepinephrine ↓ glutamate → reduced pain and depression-like behaviors, improved cognition | [68] |
| Anthocyanin supplementation (200 mg/kg) | Reserpine-induced rat model of FM | Animal study | ↑ Serotonin, ↑ miR-145-5p, ↑ miR-451a ↓ H2O2, ↓ TNF-α & caspase-3 → improvement in pain, depression, and cognitive impairment | [69] |
| Study Focus | Sample/Model | Study Design | Key Findings | Reference |
|---|---|---|---|---|
| Curcumin intervention | Reserpine-induced rat model of pain–depression dyad | Animal study | At 100–300 mg/kg (i.p.), dose-dependently improved nociceptive threshold and reduced depressive behavior; restored dopamine, norepinephrine, and serotonin levels; decreased substance P, nitrodative stress, inflammatory cytokines (TNF-α, IL-1β), NF-κB, and caspase-3 in cortex and hippocampus | [79] |
| The effects of dietary evening primrose oil (EPO) on chronic pain and inflammatory status | Mice exposed to intermittent cold stress (ICS) | Animal study | EPO supplementation reduced mechanical and thermal allodynia and hyperalgesia, improved anxiety- and depression-like behaviors, and decreased NO, PGE2, TXB2, and IL-1β levels in macrophages | [86] |
| Dried ginger, and/or paracetamol intervention | ICS-induced mouse model of fibromyalgia | Animal study | ↓mechanical/thermal allodynia; ↓mechanical hyperalgesia; ↑performance in anxiety/depression-like assays; macrophages: ↓NO, ↓PGE2, ↓TXB2, ↓IL-1β; ginger + paracetamol > paracetamol alone—consistent with an antinociceptive/anti-inflammatory axis | [82] |
| Angelica archangelica root extract (optimized methanolic) in FM | Reserpine-induced mice model of FM | Animal study | At 200–400 mg/kg, improved pain (higher paw-withdrawal threshold), motor ability, locomotion, and cognition; reduced serum TNF-α and IL-1β; attenuated oxidative stress in brain/muscle (lower TBARS, higher GSH); dose-dependent effects | [83] |
| Cytokine profiles in FM (TNF-α, IL-6, IL-8, IL-10) | FM patients | Systematic review | FM associated with elevated pro-inflammatory cytokines (TNF-α, IL-6, IL-8) and altered anti-inflammatory IL-10; supporting role of chronic low-grade inflammation in symptom expression | [27] |
| Fisetin intervention | Reserpine-induced rat model of FM | Animal study | FM associated with excessive autophagy, endothelial/vascular injury, and apoptosis; gene pattern: ↓eNOS/Bcl-2, ↑caspase-3/LC3/BECN1/CHOP/TNF-α; fisetin partly reverses these—supporting an oxidative-stress–autophagy–apoptosis axis | [85] |
| Anti-inflammatory and low-FODMAP diet | FM patients (RCT) | Randomised controlled trial | Significant improvement in pain (VAS, BPI), fatigue (FSS), GI symptoms, sleep (PSQI), and quality of life (FIQR, SF-36); no significant changes in hs-CRP or ESR | [87] |
| NLRP3 inflammasome inhibition by astaxanthin | Reserpine-induced mice model of FM | Animal study | Astaxanthin downregulated NLRP3 expression; suppressed pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), improved the level of IL-10, mechanical and thermal hyperalgesia, sleep disturbances, and depressive-like symptoms | [78] |
| Honokiol treatment | Reserpine-induced rat model of FM | Animal study | ↓ TNF-α, ↓ PGE2, ↓ MDA, ↑ IL-10, ↑ SOD; suppressed inflammation- and apoptosis-related gene expression; reduced pain, depression, and anxiety | [84] |
| Choline intake and IL-6 levels | FM women vs. healthy controls | Case–control | Lower serum choline and leptin; higher IL-6; positive correlation between IL-6 and pain scores → suggesting role of dietary choline deficiency in inflammation | [88] |
| Vitamin D and SCFA levels in inflammation | FM women | Observational | Low vitamin D and SCFA (especially acetate) associated with elevated pro-inflammatory cytokines and more severe pain → vitamin D and SCFA support may confer anti-inflammatory benefits | [89] |
| Study Focus | Sample/Model | Study Design | Key Findings | Reference |
|---|---|---|---|---|
| NAIOS + “leaky-gut” diet targeting LPS-related immune activation | CFS patients | Prospective pre–post (uncontrolled) | Significant declines in IgM to LPS from Hafnia alvei, Pseudomonas aeruginosa, Morgenella morganii, Pseudomonas putida, Citrobacter koseri, Klebsiella pneumoniae; peak IgM, peak IgA, and combined peaks fell. Up to 24/41 showed clinical improvement/remission; greater antibody reductions predicted lower FF scores | [97] |
| Specific taxa differences | FM patients vs. controls | Observational | ↑ Flavonifractor plautii, Parabacteroides merdae; ↓ Faecalibacterium prausnitzii, Bacteroides uniformis, Prevotella copri, Blautia faecis; ↓ F. prausnitzii linked to impaired barrier and inflammation | [33] |
| Multi-strain probiotic (4 strains) | FM patients | Pilot Randomised controlled trial | Improved attention performance; no significant change in memory | [100] |
| VSL#3® probiotic (8 strains) | FM with GI symptoms | Randomised controlled trial | No significant difference vs. placebo in abdominal pain/bloating; responders maintained improvement longer | [101] |
| Kamut® (Khorasan wheat) intervention | FM patients | Randomised, double-blind, crossover | ↑ Actinobacteria, Candidatus Saccharibacteria, ↑ butyrate; ↓ Enterococcaceae; improved fatigue, pain, and sleep quality | [98] |
| Mendelian randomization | Genetic datasets (n = 119 genera) | MR analysis | Eggerthella, Coprococcus2, Lactobacillus → ↑ FM risk; FamilyXIIIUCG001, Olsenella → ↓ risk | [95] |
| Bile acid–related microbiota changes | FM women | Observational | ↓ B. uniformis, B. thetaiotaomicron, P. copri; ↑ C. scindens, E. bolteae; ↓ serum α-muricholic acid correlated with pain and fatigue severity | [34] |
| Microbiota composition in FM | FM patients vs. healthy controls | Observational | ↑ Clostridium, Bacteroides, Ruminococcus, Coprococcus; ↓ Bifidobacterium, Lactobacillus, Eubacterium, Lachnospiraceae, Firmicutes; associated with altered metabolites (↑ LPS, bile acids, glutamate; ↓ SCFA, serotonin, tryptophan, GABA) | [32] |
| Probiotic vs. prebiotic supplementation | FM women | Randomised controlled trial | Probiotic (L. acidophilus, L. rhamnosus, B. longum, S. boulardii): improved pain, sleep, depression, anxiety; Prebiotic (inulin): improved pain, sleep only | [99] |
| FMT in FM patients | FM patients | Clinical study | After 2 months: ↓ pain, anxiety, depression, sleep disturbance; after 6 months: ↑ serotonin, GABA; ↓ glutamate; suggesting neuromodulatory benefits | [103] |
| Systematic review of gut taxa | FM patients | Systematic review | Decreased F. prausnitzii, Ruminococcaceae, Bifidobacteriaceae; low butyrate production may contribute to inflammation and central sensitization | [94] |
| Metabolomic–microbiota associations | FM patients | Observational | >80 plasma metabolites linked to FM (e.g., caffeine, α-linolenic acid metabolism); diet–microbiota–metabolite interactions suggest benefit of tailored diets (↑ omega-3, ↓ caffeine, ↓ oxalate) | [40] |
| Microbiota diversity and symptoms | FM women (New Zealand) | Observational | Specific taxa (Bacteroidetes, Parabacteroides, Clostridium scindens, Enterocloster bolteae, Streptococcus sp.) associated with pain, fatigue, cognition, sleep, GI symptoms; higher diversity paradoxically linked to more fatigue | [35] |
| Fecal microbiota transplantation (FMT) | Germ-free mice transplanted with FM microbiota | Animal model | FM-derived microbiota induced persistent pain hypersensitivity | [90] |
| Study Focus | Sample/Model | Study Design | Key Findings | Reference |
|---|---|---|---|---|
| Myrisitrin (polyphenol) | Reserpine-induced rat model of FM | Experimental intervention | ↑ SIRT1, ↑ Nrf2, ↑ HO-1; ↓ NLRP3, ↓ IL-1β, ↓ NF-κB; balanced BAX/Bcl-2 ratio → antioxidant, anti-inflammatory, anti-apoptotic effects | [7] |
| Bergamot Polyphenolic Fraction (BPF) | Hyperalgesia and inflammation rat model | Nutraceutical; polyphenol mix | Preserved SIRT1 activity; ↓ MDA, ↓ 8-OHdG, ↓ nitrosative stress; ↓ allodynia and hyperalgesia | [104] |
| Mitochondria-targeted antioxidant molecule | Reserpine-induced rat model of FM | Pharmacological compound | ↑ SIRT1-mediated SOD and CAT activity; ↓ TNF-α, ↓ NF-κB, ↓ apoptosis (↓ BAX, ↑ Bcl-2); improved motor and mood function | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahraman, T.; Ayaz, A. Dietary Phytonutrients in Fibromyalgia: Integrating Mechanisms, Biomarkers, and Clinical Evidence—A Narrative Review. Medicina 2025, 61, 2211. https://doi.org/10.3390/medicina61122211
Kahraman T, Ayaz A. Dietary Phytonutrients in Fibromyalgia: Integrating Mechanisms, Biomarkers, and Clinical Evidence—A Narrative Review. Medicina. 2025; 61(12):2211. https://doi.org/10.3390/medicina61122211
Chicago/Turabian StyleKahraman, Tuba, and Aylin Ayaz. 2025. "Dietary Phytonutrients in Fibromyalgia: Integrating Mechanisms, Biomarkers, and Clinical Evidence—A Narrative Review" Medicina 61, no. 12: 2211. https://doi.org/10.3390/medicina61122211
APA StyleKahraman, T., & Ayaz, A. (2025). Dietary Phytonutrients in Fibromyalgia: Integrating Mechanisms, Biomarkers, and Clinical Evidence—A Narrative Review. Medicina, 61(12), 2211. https://doi.org/10.3390/medicina61122211

