Vascular Calcification in Chronic Kidney Disease and Hemodialysis: Pathophysiological Mechanisms and Emerging Biomarkers
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
- Addressed vascular or valvular calcification in the context of chronic kidney disease
- Explored relevant biomarkers, pathophysiological mechanisms, or therapeutic strategies
- Employed human or animal models, clinical or experimental designs, or provided systematic evidence reviews
- Conference abstracts, letters, editorials, and commentaries without primary data
- Articles not directly focused on CKD-related calcification
- Non-English publications and grey literature
2.3. Study Selection Process
2.4. Assessment of Study Quality and Relevance
- Recent publications (within the last 10 years)
- Published in high-impact peer-reviewed journals
- Clearly described methodology and clinically relevant conclusions
- We prioritized inclusion of systematic reviews, randomized controlled trials, and well-designed observational studies, supplemented by mechanistic research from experimental models when appropriate.
2.5. Ethics
3. Results
3.1. CKD Progression and Hemodialysis-Related Cardiovascular Risk
3.2. Pathogenic Pathways Linking Mineral Dysregulation to Vascular and Valvular Calcification in CKD
3.2.1. VSMC Phenotypic Transition and Matrix Mineralization
3.2.2. Inflammation, Oxidative Stress, and Antioxidant Deficiency
3.2.3. Bone–Vascular Crosstalk and Endocrine Dysregulation
3.2.4. CKD-MBD and PTH-Mediated Mineral Dysregulation
3.3. Biomarkers of Vascular Calcification in CKD
3.3.1. Vitamin K Deficiency and VKDP Dysregulation in CKD
3.3.2. Matrix Gla Protein (MGP): A Gatekeeper of Calcification
3.3.3. Osteocalcin: Marker of Bone-Vascular Crosstalk
3.3.4. dp-ucMGP: Surrogate or Specific Marker?
3.3.5. iPTH: Marker and Modulator
3.3.6. Biomarkers in Risk Stratification and Prognosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMP | Bone Morphogenetic Protein |
| CAC | Coronary Artery Calcification |
| CKD | Chronic Kidney Disease |
| CKD–MBD | Chronic Kidney Disease–Mineral and Bone Disorder |
| cOC | Carboxylated Osteocalcin |
| CVD | Cardiovascular Disease |
| dp-ucMGP | Dephosphorylated-Uncarboxylated Matrix Gla Protein |
| ECM | Extracellular Matrix |
| eGFR | Estimated Glomerular Filtration Rate |
| ESRD | End-Stage Renal Disease |
| FG23 | Fibroblast Growth Factor 23 |
| FXII | Coagulation Factor XII |
| GFR | Glomerular Filtration Rate |
| HD | Hemodialysis |
| HDL | High-Density Lipoprotein |
| iPTH | Intact Parathyroid Hormone |
| MGP | Matrix Gla Protein |
| MMP | Matrix Metalloproteinase |
| MVs | Matrix Vesicles |
| OC | Osteocalcin |
| PTH | Parathyroid Hormone |
| ROS | Reactive Oxygen Species |
| SHPT | Secondary Hyperparathyroidism |
| TMAO | Trimethylamine-N-oxide |
| TNF-α | Tumor Necrosis Factor Alpha |
| ucOC | Undercarboxylated Osteocalcin |
| VC | Vascular Calcification |
| VKDPs | Vitamin K–Dependent Proteins |
| VSMCs | Vascular Smooth Muscle Cells |
References
- Writing Group for the CKD Prognosis Consortium; Grams, M.E.; Coresh, J.; Matsushita, K.; Ballew, S.H.; Sang, Y.; Surapaneni, A.; Alencar de Pinho, N.; Anderson, A.; Appel, L.J.; et al. Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes: An Individual-Participant Data Meta-Analysis. JAMA 2023, 330, 1266–1277. [Google Scholar] [CrossRef]
- Chronic Kidney Disease Prognosis Consortium; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of Estimated Glomerular Filtration Rate and Albuminuria with All-Cause and Cardiovascular Mortality in General Population Cohorts: A Collaborative Meta-Analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef]
- Skinner, S.C.; Derebail, V.K.; Poulton, C.J.; Bunch, D.O.; Roy-Chaudhury, P.; Key, N.S. Hemodialysis-Related Complement and Contact Pathway Activation and Cardiovascular Risk: A Narrative Review. Kidney Med. 2021, 3, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Ahmadmehrabi, S.; Tang, W.H.W. Hemodialysis-Induced Cardiovascular Disease. Semin. Dial. 2018, 31, 258–267. [Google Scholar] [CrossRef]
- Kato, T.; Torii, S.; Nakamura, N.; Aihara, K.; Terabe, Y.; Iida, O.; Tokuda, T.; Nakama, T.; Kawahara, Y.; Miyamoto, J.; et al. Pathological Analysis of Medial and Intimal Calcification in Lower Extremity Artery Disease. JACC Adv. 2023, 2, 100656. [Google Scholar] [CrossRef]
- London, G.M.; Guerin, A.P.; Marchais, S.J.; Metivier, F.; Pannier, B.; Adda, H. Arterial Media Calcification in End-Stage Renal Disease: Impact on All-Cause and Cardiovascular Mortality. Nephrol. Dial. Transplant. 2003, 18, 1731–1740. [Google Scholar] [CrossRef]
- Boima, V.; Agyekum, A.B.; Ganatra, K.; Agyekum, F.; Kwakyi, E.; Inusah, J.; Ametefe, E.N.; Adu, D. Advances in kidney disease: Pathogenesis and therapeutic targets. Front. Med. 2025, 12, 1526090. [Google Scholar] [CrossRef]
- Moe, S.M.; Drüeke, T.; Lameire, N.; Eknoyan, G. Chronic Kidney Disease–Mineral-Bone Disorder: A New Paradigm. Adv. Chronic Kidney Dis. 2007, 14, 3–12. [Google Scholar] [CrossRef]
- Gutiérrez, O.M. Fibroblast Growth Factor 23 and Disordered Vitamin D Metabolism in Chronic Kidney Disease: Updating the “Trade-Off” Hypothesis. Clin. J. Am. Soc. Nephrol. 2010, 5, 1710–1716. [Google Scholar] [CrossRef]
- Nakano, C.; Hamano, T.; Fujii, N.; Matsui, I.; Tomida, K.; Mikami, S.; Inoue, K.; Obi, Y.; Okada, N.; Tsubakihara, Y.; et al. Combined Use of Vitamin D Status and FGF23 for Risk Stratification of Renal Outcome. Clin. J. Am. Soc. Nephrol. 2012, 7, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Janda, K.; Krzanowski, M.; Gajda, M.; Dumnicka, P.; Fedak, D.; Lis, G.J.; Jaśkowski, P.; Pietrzycka, A.; Litwin, J.A.; Sułowicz, W. Cardiovascular Risk in Chronic Kidney Disease Patients: Intima-Media Thickness Predicts the Incidence and Severity of Histologically Assessed Medial Calcification in Radial Arteries. BMC Nephrol. 2015, 16, 78. [Google Scholar] [CrossRef] [PubMed]
- Düsing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular Pathologies in Chronic Kidney Disease: Pathophysiological Mechanisms and Novel Therapeutic Approaches. J. Mol. Med. 2021, 99, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Krishnasamy, R.; Viecelli, A.K. Vitamin K in CKD: A Game-Changer or Bystander. Kidney Int. Rep. 2023, 8, 1711–1713. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Galassi, A.; Ciceri, P.; Messa, P.; Nigwekar, S. Vitamin K in Chronic Kidney Disease. Nutrients 2019, 11, 168. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Poppelaars, F.; Faria, B.; Gaya da Costa, M.; Franssen, C.F.M.; van Son, W.J.; Berger, S.P.; Daha, M.R.; Seelen, M.A. The complement system in dialysis: A forgotten story? Front. Immunol. 2018, 9, 71. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Front. Pharmacol. 2022, 13, 800050. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular Disease in Dialysis Patients. Nephrol. Dial. Transplant. 2018, 33 (Suppl. 3), iii28–iii34. [Google Scholar] [CrossRef]
- Fitzpatrick, J.; Sozio, S.M.; Jaar, B.G.; Estrella, M.M.; Segev, D.L.; Parekh, R.S.; McAdams-DeMarco, M.A. Frailty, Body Composition and the Risk of Mortality in Incident Hemodialysis Patients: The Predictors of Arrhythmic and Cardiovascular Risk in End Stage Renal Disease Study. Nephrol. Dial. Transplant. 2019, 34, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Liu, M.; Li, H.; Luo, Z.; Zhong, X.; Huang, J.; Liu, R.; He, F.; Fu, J. Mortality and Associated Risk Factors in Dialysis Patients with Cardiovascular Disease. Kidney Blood Press. Res. 2016, 41, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.A. Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification. Trends Cardiovasc. Med. 2015, 25, 267–274. [Google Scholar] [CrossRef]
- Goettsch, C.; Hutcheson, J.D.; Aikawa, M.; Iwata, H.; Pham, T.; Nykjaer, A.; Kjolby, M.; Rogers, M.; Michel, T.; Shibasaki, M.; et al. Sortilin Mediates Vascular Calcification via Its Recruitment into Extracellular Vesicles. J. Clin. Investig. 2016, 126, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, S.N.; Yuan, S.T.; Lei, X.; Sun, X.; Xing, L.; Li, H.J.; He, C.X.; Qin, W.; Zhao, D.; et al. Multiple Functions of Autophagy in Vascular Calcification. Cell Biosci. 2021, 11, 159. [Google Scholar] [CrossRef]
- Zeng, Z.L.; Yuan, Q.; Zu, X.; Liu, J. Insights into the Role of Mitochondria in Vascular Calcification. Front. Cardiovasc. Med. 2022, 9, 879752. [Google Scholar] [CrossRef]
- Dube, P.; DeRiso, A.; Patel, M.; Battepati, D.; Khatib-Shahidi, B.; Sharma, H.; Gupta, R.; Malhotra, D.; Dworkin, L.; Haller, S. Vascular Calcification in Chronic Kidney Disease: Diversity in the Vessel Wall. Biomedicines 2021, 9, 404. [Google Scholar] [CrossRef]
- Li, T.; Yu, H.; Zhang, D.; Feng, T.; Miao, M.; Li, J.; Liu, X. Matrix Vesicles as a Therapeutic Target for Vascular Calcification. Front. Cell Dev. Biol. 2022, 10, 825622. [Google Scholar] [CrossRef]
- Van den Branden, A.; Verhulst, A.; D’Haese, P.C. New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022, 12, 327. [Google Scholar] [CrossRef]
- Villa-Bellosta, R. Vascular Calcification: A Passive Process That Requires Active Inhibition. Biology 2024, 13, 111. [Google Scholar] [CrossRef]
- Wu, M.; Rementer, C.; Giachelli, C.M. Vascular Calcification: An Update on Mechanisms and Challenges in Treatment. Calcif. Tissue Int. 2013, 93, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II Stimulates NADH and NADPH Oxidase Activity in Cultured Vascular Smooth Muscle Cells. Circ. Res. 1994, 74, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.C.A.; Montezano, A.C.; Burger, D.; Touyz, R.M. Angiotensin II, NADPH Oxidase, and Redox Signaling in the Vasculature. Antioxid. Redox Signal. 2013, 19, 1110–1120. [Google Scholar] [CrossRef]
- Nakamura, Y.; Inagaki, M.; Kenmotsu, S.; Yamadera, S.; Ohsawa, I.; Gotoh, H.; Goto, Y.; Sato, N.; Oguchi, T.; Tsuji, M.; et al. Significance of Cu/Zn-Superoxide Dismutase Levels in Hemodialysis Patients: A Mini Review. Mod. Res. Inflamm. 2017, 6, 22–29. [Google Scholar] [CrossRef]
- Krueger, K.; Shen, J.; Maier, A.; Tepel, M.; Scholze, A. Lower Superoxide Dismutase 2 (SOD2) Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy. Oxidative Med. Cell. Longev. 2016, 2016, 7423249. [Google Scholar] [CrossRef]
- Tan, R.J.; Zhou, D.; Xiao, L.; Zhou, L.; Li, Y.; Bastacky, S.I.; Oury, T.D.; Liu, Y. Extracellular Superoxide Dismutase Protects against Proteinuric Kidney Disease. J. Am. Soc. Nephrol. 2015, 26, 2447–2459. [Google Scholar] [CrossRef]
- Viegas, C.; Araújo, N.; Marreiros, C.; Simes, D. The Interplay between Mineral Metabolism, Vascular Calcification and Inflammation in Chronic Kidney Disease: Challenging Old Concepts with New Facts. Aging 2019, 11, 10246–10261. [Google Scholar] [CrossRef]
- Williams, M.J.; White, S.C.; Joseph, Z.; Hruska, K.A. Chronic Kidney Disease-Mineral Bone Disorder: The Role of Osteocytic Proteins, the Bone–Vascular Paradox, and Therapeutic Targets. Front. Physiol. 2023, 14, 1120308. [Google Scholar] [CrossRef]
- Cancilla, B.; Davies, A.; Cauchi, J.A.; Risbridger, G.P.; Bertram, J.F. Fibroblast Growth Factor Receptors and Their Ligands in the Adult Rat Kidney. Kidney Int. 2001, 60, 147–155. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Goetz, R.; Fu, L.; Jayaraman, S.; Hu, M.C.; Moe, O.W.; Liang, G.; Li, X.; Mohammadi, M. α-Klotho Is a Non-Enzymatic Molecular Scaffold for FGF23 Hormone Signalling. Nature 2018, 553, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Meng, L.; Wang, X.; Zhang, Y.; Zhang, C. The Non-Traditional Cardiovascular Culprits in Chronic Kidney Disease: Mineral Imbalance and Uremic Toxin Accumulation. Int. J. Mol. Sci. 2025, 26, 7938. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, N.C.; Cobo, G.; Dai, L.; Lindholm, B.; Stenvinkel, P. Role of Uremic Toxins in Early Vascular Ageing and Calcification. Toxins 2021, 13, 26. [Google Scholar] [CrossRef]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The Uremic Toxicity of Indoxyl Sulfate and p-Cresyl Sulfate: A Systematic Review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, R.; Musa, T.H.; Mgbechidinma, C.L. Exploring global calcimimetics research trends: A systematic and thematic review of Web of Science and Scopus databases from 1997 to 2024. Front. Nephrol. 2025, 5, 1617466. [Google Scholar] [CrossRef]
- Ketteler, M.; Evenepoel, P.; Holden, R.M.; Isakova, T. Chronic kidney disease–mineral and bone disorder: Conclusions from a KDIGO Controversies Conference. Kidney Int. 2025, 107, 405–423. [Google Scholar] [CrossRef]
- Yang, H.; Luo, H.; Tang, X.; Zeng, X.; Yu, Y.; Ma, L.; Fu, P. Prognostic value of FGF23 among patients with end-stage renal disease: A systematic review and meta-analysis. Biomark. Med. 2016, 10, 547–556. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.; Shin, N.; Na, K.Y.; Kim, Y.L.; Kim, D.; Chang, J.H.; Song, Y.R.; Hwang, Y.H.; Kim, Y.S.; et al. Cinacalcet lowering of serum fibroblast growth factor-23 concentration may be independent from serum Ca, P, PTH and dose of active vitamin D in peritoneal dialysis patients: A randomized controlled study. BMC Nephrol. 2013, 14, 112. [Google Scholar] [CrossRef]
- Srisuwarn, P.; Eastell, R.; Salam, S. Clinical Utility of Bone Turnover Markers in Chronic Kidney Disease. J. Bone Metab. 2024, 31, 213–228. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD) foreword. Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar]
- Sprague, S.M.; Bellorin-Font, E.; Jorgetti, V.; Carvalho, A.B.; Malluche, H.H.; Ferreira, A.; D’Haese, P.C.; Drüeke, T.B.; Du, H.; Manley, T.; et al. Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am. J. Kidney Dis. 2016, 67, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Souberbielle, J.C.; Boutten, A.; Carlier, M.C.; Chevenne, D.; Coumaros, G.; Lawson-Body, E.; Massart, C.; Monge, M.; Myara, J.; Parent, X.; et al. Inter-method variability in PTH measurement: Implication for the care of CKD patients. Kidney Int. 2006, 70, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Strugnell, S.A.; Csomor, P.; Ashfaq, A.; Bishop, C.W. Evaluation of therapies for secondary hyperparathyroidism associated with vitamin D insufficiency in chronic kidney disease. Kidney Dis. 2023, 9, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.W.; Ashfaq, A.; Strugnell, S.A.; Choe, J.; Patel, N.; Norris, K.C.; Sprague, S.M. Sustained Reduction of Elevated Intact Parathyroid Hormone Concentrations with Extended-Release Calcifediol Slows Chronic Kidney Disease Progression in Secondary Hyperparathyroidism Patients. Am. J. Nephrol. 2024, 1–10. [Google Scholar] [CrossRef]
- Kaesler, N.; Kaushik, S.; Frisch, J.; Ziegler, S.; Grommes, J.; Gombert, A.; Roma, L.P.; Kuppe, C.; Jankowski, J.; Floege, J.; et al. Vitamin K preserves gamma-glutamyl carboxylase activity against carbamylations in uremia: Implications for vascular calcification and adjunct therapies. Acta Physiol. 2025, 241, e70040. [Google Scholar] [CrossRef]
- Rennenberg, R.J.; Kessels, A.G.; Schurgers, L.J.; van Engelshoven, J.M.; de Leeuw, P.W.; Kroon, A.A. Vascular calcifications as a marker of increased cardiovascular risk: A meta-analysis. Vasc. Health Risk Manag. 2009, 5, 185–197. [Google Scholar] [CrossRef]
- Lomashvili, K.A.; Wang, X.; Wallin, R.; O’Neill, W.C. Matrix Gla protein metabolism in vascular smooth muscle and role in uremic vascular calcification. J. Biol. Chem. 2011, 286, 28715–28722. [Google Scholar] [CrossRef]
- Cranenburg, E.C.; Vermeer, C.; Koos, R.; Boumans, M.L.; Hackeng, T.M.; Bouwman, F.G.; Kwaijtaal, M.; Brandenburg, V.M.; Ketteler, M.; Schurgers, L.J. The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification. J. Vasc. Res. 2008, 45, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Plasma desphospho-uncarboxylated Matrix Gla Protein as a marker of kidney damage and cardiovascular risk in advanced stage of chronic kidney disease. Kidney Blood Press. Res. 2016, 41, 231–239. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Guo, Y.; Liu, X. Bone–organ axis: An expanding universe. Front. Endocrinol. 2025, 16, 1574370. [Google Scholar] [CrossRef]
- Cohen-Hagai, K.; Kuchuk, E.; Matalon, S.T.; Benchetrit, S.; Zitman-Gal, T. Exosomes derived from dialysis patients’ serum enhance endothelial–mesenchymal transition and calcification in endothelial cells. Kidney360 2025, 6, 351–360. [Google Scholar] [CrossRef]
- Palamar, M.; Grosu, I.; Schiller, A.; Petrica, L.; Bodea, M.; Sircuta, A.; Rusan, C.; Tanasescu, D.M. Vitamin K status of patients undergoing hemodialysis: Insights from a cross-sectional study. Appl. Sci. 2023, 13, 10938. [Google Scholar] [CrossRef]
- Wang, Z.; Gui, Z.; Zhang, L.; Wang, Z. Advances in the mechanisms of vascular calcification in chronic kidney disease. J. Cell. Physiol. 2025, 240, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Hosain, O.; Clinkenbeard, E.L. Adiposity and mineral balance in chronic kidney disease. Curr. Osteoporos. Rep. 2024, 22, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Roijers, R.B.; Debernardi, N.; Cleutjens, J.P.; Schurgers, L.J.; Mutsaers, P.H.; van der Vusse, G.J. Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am. J. Pathol. 2011, 178, 2879–2887. [Google Scholar] [CrossRef]
- Chatrou, M.L.; Cleutjens, J.P.; van der Vusse, G.J.; Roijers, R.B.; Mutsaers, P.H.; Schurgers, L.J. Intra-section analysis of human coronary arteries reveals a potential role for micro-calcifications in macrophage recruitment in the early stage of atherosclerosis. PLoS ONE 2015, 10, e0142335. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Spronk, H.M.; Soute, B.A.; Schiffers, P.M.; DeMey, J.G.; Vermeer, C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 2007, 109, 2823–2831. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Duni, A.; Vaios, V.; Kitsos, A.; Liakopoulos, V.; Dounousi, E. Vitamin K supplementation for prevention of vascular calcification in chronic kidney disease patients: Are we there yet? Nutrients 2022, 14, 925. [Google Scholar] [CrossRef]
- Nyvad, J.; Christensen, K.L.; Andersen, G.; Reinhard, M.; Nørgaard, B.L.; Madsen, J.S.; Nielsen, S.; Thomsen, M.B.; Jensen, J.M.; Peters, C.D.; et al. PIVKA-II but not dp-ucMGP is associated with aortic calcification in chronic kidney disease. BMC Nephrol. 2024, 25, 426. [Google Scholar] [CrossRef]
- Fitzpatrick, J.; Kim, E.D.; Sozio, S.M.; Jaar, B.G.; Estrella, M.M.; Monroy-Trujillo, J.M.; Parekh, R.S. Calcification biomarkers, subclinical vascular disease, and mortality among multiethnic dialysis patients. Kidney Int. Rep. 2020, 5, 1729–1737. [Google Scholar] [CrossRef]
- Andrian, T.; Stefan, A.; Nistor, I.; Covic, A. Vitamin K supplementation impact in dialysis patients: A systematic review and meta-analysis of randomized trials. Clin Kidney J. 2023, 16, 2738–2749. [Google Scholar] [CrossRef]
- Morena-Carrere, M.; Jaussent, I.; Chenine, L.; Dupuy, A.M.; Bargnoux, A.S.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; Cristol, J.P. Severe coronary artery calcifications in chronic kidney disease patients, coupled with inflammation and bone mineral disease derangement, promote major adverse cardiovascular events through vascular remodeling. Kidney Blood Press. Res. 2025, 50, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.T. Parathyroid hormone: Past and present. J. Endocrinol. 2005, 187, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Kim, J.; Ireland, E.; Chazot, C.; Drueke, T.; de Francisco, A.; Kronenberg, F.; Marcelli, D.; Passlick-Deetjen, J.; Schernthaner, G.; et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol. Dial. Transplant. 2011, 26, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Tentori, F.; Blayney, M.J.; Albert, J.M.; Gillespie, B.W.; Kerr, P.G.; Bommer, J.; Young, E.W.; Akizawa, T.; Akiba, T.; Pisoni, R.L.; et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2008, 52, 519–530. [Google Scholar] [CrossRef]
- Pontoriero, G.; Cozzolino, M.; Locatelli, F.; Brancaccio, D. CKD patients: The dilemma of serum PTH levels. Nephron Clin. Pract. 2010, 116, c263–c268. [Google Scholar] [CrossRef]
- Mohamed, O.N.; Mohamed, M.I.; Kamel, S.F.; Dardeer, A.M.; Shehata, S.; Mohammed, H.M.; Kamel, A.K.; Ismail, D.E.; Abbas, N.I.; Abdelsamie, M.A.; et al. Serum midkine level and its association with subclinical coronary artery calcification and carotid atherosclerosis in chronic kidney disease. BMC Nephrol. 2025, 26, 185. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, H.W.; Oh, S.W.; Yang, H.N.; Kim, M.G.; Jo, S.K.; Cho, W.Y.; Kim, H.K. Low iPTH can predict vascular and coronary calcifications in patients undergoing peritoneal dialysis. Nephron Clin. Pract. 2011, 117, c113–c119. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.C.; Cha, J.J.; Kim, H.W.; Yang, H.N.; Kim, M.G.; Jo, S.K.; Cho, W.Y.; Kim, H.K. A low intact PTH is associated with simple vascular calcifications in hemodialysis patients. Korean J. Nephrol. 2011, 30, 260–268. [Google Scholar]
- Yuldasheva, N.K.; Adilova, N.S.; Kudratova, N.A.; Axmedova, F.S.; Artikova, D.M.; Mirhaydarova, F.S. Secondary hyperparathyroidism in chronic kidney disease: Mechanism of development. Cent. Asian J. Med. Nat. Sci. 2025, 6, 68–79. [Google Scholar]
- Evenepoel, P.; Bover, J.; Torres, P.U. Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int. 2016, 90, 1184–1190. [Google Scholar] [CrossRef]
- Schunk, S.J.; Zimmermann, P. Cardiovascular risk and its presentation in chronic kidney disease. J. Clin. Med. 2025, 14, 4567. [Google Scholar] [CrossRef]
- Andreucci, M.; Provenzano, M.; Faga, T.; Michael, A.; Patella, G.; Mastroroberto, P.; Serraino, G.F.; Bracale, U.M.; Ielapi, N.; Serra, R. Aortic Aneurysms, Chronic Kidney Disease and Metalloproteinases. Biomolecules 2021, 11, 194. [Google Scholar] [CrossRef]
- Bolat, S.; Fidancı, V.; Elçik, D.; Kavraz Tomar, Ö.; Murat, S.N. Platelet activating factor acetylhydrolase is associated with cardiac valvular calcification in dialysis patients. Turk. J. Biochem. 2024, 49, 207–215. [Google Scholar] [CrossRef]




| Mechanism | Key Molecules | Pathway/Effect |
|---|---|---|
| Osteogenic reprogramming [24,28] | Runx2, Osterix, BMP2, Msx2 | Induces VSMC transition into osteoblast-like phenotype |
| Epigenetic regulation [30] | miR-125b, miR-30b/c, miR-34a, DNA methylation | Modulate transcriptional control of osteogenic genes |
| Extracellular vesicles [25] | Annexins, TNAP, Sortilin | Nucleation of hydroxyapatite in MVs and apoptotic bodies |
| Apoptosis [26] | ROS, mitochondrial dysfunction | Release of apoptotic bodies, trigger calcification sites |
| Autophagy [27] | mTOR, lysosomal enzymes | Protective at baseline; dysregulation promotes calcification |
| Redox imbalance [24] | NADPH oxidase, GPx3, SOD, Catalase | Oxidative stress promotes NF-κB and osteogenic signaling |
| Inflammatory pathways [28] | IL-6, TNF-α, NF-κB | Cytokines enhance VSMC osteogenesis and ECM remodeling |
| Matrix remodeling [31,32] | MMP-2, MMP-9, Elastase, ALP | Degradation of ECM permits mineral deposition |
| Signaling pathways [28] | Wnt/β-catenin, Notch, TGF-β/SMAD | Activate calcification genes and matrix deposition |
| Mineral homeostasis [29] | PiT-1, PiT-2, Pyrophosphate, TNAP | Phosphate influx and PPi degradation accelerate calcification |
| Bone–vascular axis [29] | FGF23, Klotho, Sclerostin | Endocrine misregulation links bone and vascular calcification |
| Toxin-activated pathways [29] | Indoxyl sulfate, p-cresyl sulfate, AhR | Promote oxidative, inflammatory, and osteogenic pathways |
| Inhibitor deficiency [29,31,32] | Fetuin-A, MGP, PPi | Loss of inhibitors removes restraint on mineral growth |
| Dimension | Description | Implication in CKD |
|---|---|---|
| Primary source [60,61] | Produced by osteoblasts; secreted in carboxylated and undercarboxylated forms | Reflects bone formation status and vitamin K availability |
| Bone matrix role [60] | cOC binds calcium and hydroxyapatite for bone mineralization | Marker of effective skeletal function |
| Endocrine function [60,64] | ucOC regulates glucose metabolism, insulin sensitivity, and energy homeostasis | May influence vascular health indirectly via metabolic effects |
| Local vascular expression [63] | Detected in vascular smooth muscle cells undergoing osteogenic transformation | Supports concept of active, cell-driven vascular calcification |
| Elevated in CKD [62,64] | Total OC levels increased due to high bone turnover and reduced renal clearance | Useful as a marker of CKD–MBD and skeletal pathology |
| Association with VC [62,63,64] | Higher OC levels correlate with arterial stiffness, CAC, valvular calcification, and CV mortality in dialysis patients | OC may serve as both marker and modulator of vascular pathology |
| Assay Variability [64] | Total vs. cOC vs. ucOC measured inconsistently across studies | Limits interpretability and cross-study comparison |
| Confounding factors [64] | OC elevation may reflect bone turnover, not necessarily direct vascular damage | Interpretation must consider CKD–MBD context |
| Complementary markers [60,63] | MGP, bone-specific ALP, PTH | OC improves risk stratification when integrated in biomarker panels |
| Clinical utility [64] | Prognostic value debated; remains investigational | Promising, but needs assay standardization and outcome validation |
| Domain | Key Findings | Clinical Implications |
|---|---|---|
| Molecular identity [58] | Inactive MGP form lacking γ-carboxylation and phosphorylation | Reflects vitamin K deficiency; lacks calcification-inhibiting activity |
| Tissue localization [65,66] | Accumulates in vascular lesions and atheroma | Associated with areas of active calcification |
| Association with VC [65,70] | Correlates with VC severity and CKD progression | Tracks calcification burden in cross-sectional studies |
| Responsiveness to therapy [67,72] | Decreases with vitamin K supplementation | Useful for monitoring therapeutic effects in interventional trials |
| Diagnostic specificity [69,71] | Elevated by systemic vitamin K deficiency and renal clearance factors | May not reflect localized vascular pathology alone |
| Risk model utility [72] | Enhances CAC prediction when used with GDF-15 | Valuable as part of multimarker predictive panels |
| Assay limitations [69] | Non-standardized methods (ELISA vs. CLIA); inter-assay variability | Limits comparability across studies and hinders clinical translation |
| Biomarker | Biological Role | Clinical Associations | Limitations | Strength of Evidence | Readiness Level |
|---|---|---|---|---|---|
| dp-ucMGP | Inactive form of MGP; reflects vitamin K deficiency and impaired calcification inhibition [58,65] | Correlates with CAC, arterial stiffness, VC severity in CKD [65,66,67,68] | Affected by renal clearance, assay type, systemic vitamin K status; specificity limited [68,69,70,71] | Modifiable by vitamin K; enhances CAC prediction in models with GDF-15 [72] | Promising, not yet validated for standalone use |
| Osteocalcin (OC) | Secreted by osteoblasts; ucOC involved in vascular remodeling and metabolic regulation [60,61] | Linked to arterial stiffness, CAC, and CV mortality in some studies [62,63,64] | Assay variability (total, ucOC, cOC); influenced by bone turnover more than VC [64] | Biologically plausible, but prognostic value debated and heterogeneous across cohorts [62,63,64] | Experimental/Promising, requires standardization |
| iPTH | Regulates calcium-phosphate balance and bone turnover [73,74,75] | Extremes associated with VC, SHPT, CV risk in dialysis [77,78,79] | Not specific to VC; high assay variability; therapeutic targets unclear [81] | Supported by clinical use and observational studies; targeted by calcimimetics and vitamin D analogues [80] | Established, but best used in multimarker context |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palamar, M.; Grosu Radulescu, I.D.; Tanasescu, M.D.; Sircuta, A.; Bob, F. Vascular Calcification in Chronic Kidney Disease and Hemodialysis: Pathophysiological Mechanisms and Emerging Biomarkers. Medicina 2025, 61, 2169. https://doi.org/10.3390/medicina61122169
Palamar M, Grosu Radulescu ID, Tanasescu MD, Sircuta A, Bob F. Vascular Calcification in Chronic Kidney Disease and Hemodialysis: Pathophysiological Mechanisms and Emerging Biomarkers. Medicina. 2025; 61(12):2169. https://doi.org/10.3390/medicina61122169
Chicago/Turabian StylePalamar, Marcel, Iulia Dana Grosu Radulescu, Maria Daniela Tanasescu, Alexandru Sircuta, and Flaviu Bob. 2025. "Vascular Calcification in Chronic Kidney Disease and Hemodialysis: Pathophysiological Mechanisms and Emerging Biomarkers" Medicina 61, no. 12: 2169. https://doi.org/10.3390/medicina61122169
APA StylePalamar, M., Grosu Radulescu, I. D., Tanasescu, M. D., Sircuta, A., & Bob, F. (2025). Vascular Calcification in Chronic Kidney Disease and Hemodialysis: Pathophysiological Mechanisms and Emerging Biomarkers. Medicina, 61(12), 2169. https://doi.org/10.3390/medicina61122169

