Pulmonary Function and Associated Prognostic Factors in Children After COVID-19: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- Pre-existing chronic lung disease (e.g., bronchopulmonary dysplasia, lung hypoplasia, lung cysts, or congenital heart disease).
- Documented decreased lung function prior to COVID-19 infection, assessed by medical records or parental reports of persistent respiratory symptoms or abnormal spirometry before SARS-CoV-2 infection (when available).
- Underlying disease known to affect long-term lung function (e.g., severe persistent asthma diagnosed according to GINA criteria, confirmed by medical records from pediatric pulmonologists or relevant specialists).
2.3. Respiratory Evaluation
2.3.1. Clinical Classification of COVID-19
- Asymptomatic: Positive test without clinical symptoms.
- Mild: Presence of mild respiratory symptoms without hypoxemia.
- Moderate: Pneumonia without hypoxemia or with mild hypoxemia not requiring oxygen therapy.
- Severe: Pneumonia with severe respiratory distress or hypoxemia requiring oxygen therapy.
- Critical: Requiring intensive care, mechanical ventilation, or organ support.
2.3.2. Spirometry
- Normal: FEV1 and FVC ≥ 80% predicted.
- Obstructive: FEV1 < 80% predicted with FEV1/FVC ratio reduced.
- Restrictive: FVC < 80% predicted with preserved or elevated FEV1/FVC ratio.
- Mixed: both FEV1 and FVC < 80% predicted with reduced FEV1/FVC ratio.
2.4. Statistical Analysis
2.5. Ethical Approval
3. Results
3.1. Pulmonary Function
3.2. Persistent Symptoms
3.3. Prognostic Factors for Long-Term Respiratory Function
4. Discussion
4.1. Pulmonary Function
4.2. Persistent Symptoms
4.3. Prognostic Factors for Long-Term Respiratory Function
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 2 February 2023).
- DeBiasi, R.L.; Song, X.; Delaney, M.; Bell, M.; Smith, K.; Pershad, J.; Ansusinha, E.; Hahn, A.; Hamdy, R.; Harik, N.; et al. Severe coronavirus disease-2019 in children and young adults in the Washington, DC, Metropolitan Region. J. Pediatr. 2020, 223, 199–203. [Google Scholar] [CrossRef]
- Liguoro, I.; Pilotto, C.; Bonanni, M.; Ferrari, M.E.; Pusiol, A.; Nocerino, A.; Vidal, E.; Cogo, P. SARS-COV-2 infection in children and newborns: A systematic review. Eur. J. Pediatr. 2020, 179, 1029–1046. [Google Scholar] [CrossRef]
- Borch, L.; Holm, M.; Knudsen, M.; Ellermann-Eriksen, S.; Hagstroem, S. Long COVID symptoms and duration in SARS-CoV-2 positive children—A nationwide cohort study. Eur. J. Pediatr. 2022, 181, 1597–1607. [Google Scholar] [CrossRef]
- Satuan Tugas Penanganan COVID-19. Peta Sebaran COVID-19. Available online: https://pusatkrisis.kemkes.go.id/covid-19-id/ (accessed on 2 February 2023).
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 among children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef]
- Wurzel, D.; McMinn, A.; Hoq, M.; Blyth, C.C.; Burgner, D.; Tosif, S.; Buttery, J.; Carr, J.; E Clark, J.; Cheng, A.C.; et al. Prospective characterisation of SARS-CoV-2 infections among children presenting to tertiary paediatric hospitals across Australia in 2020: A national cohort study. BMJ Open 2021, 11, e054510. [Google Scholar] [CrossRef]
- Onay, Z.R.; Oksay, S.C.; Tortop, D.M.; Bilgin, G.; Ayhan, Y.; Durankus, F.; Girit, S. Impact of Long COVID on Lung Function in Children. Medeni. Med. J. 2024, 39, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Bottino, I.; Patria, M.F.; Milani, G.P.; Agostoni, C.; Marchisio, P.; Lelii, M.; Alberzoni, M.; Dell’ERa, L.; Castellazzi, M.L.; Senatore, L.; et al. Can Asymptomatic or Non-Severe SARS-CoV-2 Infection Cause Medium-Term Pulmonary Sequelae in Children? Front. Pediatr. 2021, 9, 621019. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, G.K.; Beken, B.; Doğan, S.; Akar, H.H. Pulmonary function tests in the follow-up of children with COVID-19. Eur. J. Pediatr. 2022, 181, 2839–2847. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.M.; Al Khathlan, N.; Alharbi, A.F.; Alghamdi, T.; AlDuilej, S.; Alghamdi, M.; Alfudhaili, M.; Alsunni, A.; Yar, T.; Latif, R.; et al. The Long-Term Impact of COVID-19 Pneumonia on the Pulmonary Function of Survivors. Int. J. Gen. Med. 2021, 14, 3271–3280. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Dobkin, S.C.L.; Collaco, J.M.; McGrath-Morrow, S.A. Protracted respiratory findings in children post-SARS-CoV-2 infection. Pediatr. Pulmonol. 2021, 56, 3682–3687. [Google Scholar] [CrossRef]
- Bakhtiari, E.; Moazzen, N. Pulmonary function in children post-SARS-CoV-2 infection: A systematic review and meta-analysis. BMC Pediatr. 2024, 24, 87. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.D.; Theurer, W.M. A stepwise approach to the interpretation of pulmonary function tests. Am. Fam. Physician 2014, 89, 359–366. [Google Scholar]
- Bidarkar, N.; Aahuja, D.R. Development of chronic lung disease: Restrictive versus obstructive lung disease in post COVID-19 patients. Int. J. Pharm. Clin. 2024, 16, 175–178. [Google Scholar]
- Yim, J.; Lim, H.H.; Kwon, Y. COVID-19 and pulmonary fibrosis: Therapeutics in clinical trials, repurposing, and potential development. Arch. Pharmacal Res. 2021, 44, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Lelijveld, N.; Kerac, M.; Seal, A.; Chimwezi, E.; Wells, J.C.; Heyderman, R.S.; Nyirenda, M.J.; Stocks, J.; Kirkby, J. Long-term effects of severe acute malnutrition on lung function in Malawian children: A cohort study. Eur. Respir. J. 2017, 49, 1601301. [Google Scholar] [CrossRef] [PubMed]
- Tharumakunarajah, R.; Lee, A.; Hawcutt, D.B.; Harman, N.L.; Sinha, I.P. The impact of malnutrition on the developing lung and long-term lung health: A narrative review of global literature. Pulm. Ther. 2024, 10, 155–170. [Google Scholar] [CrossRef]
- Sharanya, P.; Mishra, D.; Agarwal, A.; Keerthana, D. Spirometry in children at six months after SARS-CoV-2 infection: A single-center study. Indian Pediatr. 2023, 60, 1008–1012. [Google Scholar] [CrossRef]
- Toepfner, N.; Brinkmann, F.; Augustin, S.; Stojanov, S.; Behrends, U. Long COVID in pediatrics—Epidemiology, diagnosis, and management. Eur. J. Pediatr. 2024, 183, 1543–1553. [Google Scholar] [CrossRef]
- Buonsenso, D.; Munblit, D.; De Rose, C.; Sinatti, D.; Ricchiuto, A.; Carfi, A.; Valentini, P. Preliminary evidence on long COVID in children. Acta Paediatr. 2021, 110, 2208–2211. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; del Valle, N.C.A.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. Long-COVID in children and adolescents: A systematic review and meta-analyses. Sci. Rep. 2022, 12, 9950. [Google Scholar] [CrossRef]
- Knoke, L.; Schlegtendal, A.; Maier, C.; Eitner, L.; Lücke, T.; Brinkmann, F. Pulmonary function and long-term respiratory symptoms in children and adolescents after COVID-19. Front. Pediatr. 2022, 10, 851008. [Google Scholar] [CrossRef] [PubMed]
- Manglani, R.; Fenster, M.; Henson, T.; Jain, A.; Schluger, N. Clinical characteristics, imaging, and lung function among patients with persistent dyspnea of COVID-19: A retrospective observational cohort study. Monaldi Arch. Chest Dis. 2024, 95, 2733. [Google Scholar] [CrossRef]
- Bode, S.F.N.; Haendly, M.; Fabricius, D.; Mayer, B.; Zernickel, M.; Haddad, A.D.M.; Frieh, P.; Elling, R.; Renk, H.; Stich, M.; et al. Pulmonary function and persistent clinical symptoms in children and their parents 12 months after mild SARS-CoV-2 infection. Front. Pediatr. 2022, 10, 894331. [Google Scholar] [CrossRef]
- Jat, R.K. Spirometry in children. Prim. Care Respir. J. 2013, 22, 221–229. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef] [PubMed]
- Angurana, S.K.; Sudeep, K.C.; Prasad, S. Ventilator-induced lung injury in children. J. Pediatr. Crit. Care 2023, 10, 107–114. [Google Scholar] [CrossRef]
- Li, H.H.; Wang, C.W.; Chang, C.H.; Huang, C.C.; Hsu, H.S.; Chiu, L. Relationship between mechanical ventilation and histological fibrosis in patients with acute respiratory distress syndrome undergoing open lung biopsy. J. Pers. Med. 2022, 12, 474. [Google Scholar] [CrossRef]


| Subjects Characteristics (n = 100) | N | % |
|---|---|---|
| Gender | ||
| Male | 47 | 47 |
| Female | 53 | 53 |
| Age (years) | ||
| 5–<12 | 48 | 48 |
| ≥12–18 | 52 | 52 |
| Type of comorbidity | ||
| Obesity | 27 | 27 |
| Undernourishment | 19 | 19 |
| Chronic kidney disease | 16 | 16 |
| Hematology disorder | 6 | 6 |
| Allergy | 4 | 4 |
| Immunology disorder | 3 | 3 |
| Endocrine Disorder | 2 | 2 |
| Tuberculosis | 2 | 2 |
| Asthma | 3 | 3 |
| Neurological Disorder | 2 | 2 |
| Others | 7 | 7 |
| Number of comorbidities | ||
| None | 23 | 23 |
| 1 comorbidity | 56 | 56 |
| ≥2 comorbidities | 20 | 20 |
| Clinical classification of COVID-19 | ||
| Asymptomatic | 4 | 4 |
| Mild | 73 | 73 |
| Moderate | 16 | 16 |
| Severe | 3 | 3 |
| Critical | 4 | 4 |
| History of ventilator support | ||
| No | 96 | 96 |
| Yes | 4 | 4 |
| Length of stay | ||
| Not hospitalized | 78 | 78 |
| <48 h | 3 | 3 |
| ≥48 h | 19 | 19 |
| Time interval from recovery to spirometry | ||
| 6–12 months | 6 | 6 |
| >12–36 months | 65 | 65 |
| >36 months | 29 | 29 |
| Variable | Spirometry Result, n (%) | RR (95% CI) | ||
|---|---|---|---|---|
| Abnormal | Normal | p | ||
| Clinical classification of COVID-19 | ||||
| Moderate–severe–critical | 17 (73.9) | 6 (26.1) | 0.002 | 1.96 (1.35–2.86) |
| Asymptomatic–mild | 29 (37.7) | 48 (62.3) | ||
| Gender | ||||
| Male | 20 (42.6) | 27 (57.4) | 0.515 | 0.86 (0.56–1.33) |
| Female | 26 (49.1) | 27 (50.9) | ||
| Age (years old) | ||||
| ≥12–18 | 26 (50) | 26 (50) | 0.404 | 1.20 (0.78–1.85) |
| 5–<12 | 20 (41.7) | 28 (58.3) | ||
| Obesity | ||||
| Yes | 9 (33.3) | 18 (66.7) | 0.122 | 0.66 (0.37–1.17) |
| No | 37 (50.7) | 36 (49.3) | ||
| Undernourished | ||||
| Yes | 14 (73.7) | 5 (26.3) | 0.007 | 1.86 (1.27–2.73) |
| No | 32 (39.5) | 49 (60.5) | ||
| Chronic kidney disease | ||||
| Yes | 10 (62.5) | 6 (37.5) | 0.148 | 1.46 (0.93–2.23) |
| No | 36 (42.9) | 48 (57.1) | ||
| Hematology disorder | ||||
| Yes | 4 (66.7) | 2 (33.7) | 0.410 * | 1.49 (0.81–2.74) |
| No | 42 (44.7) | 52 (55.3) | ||
| Allergy | ||||
| Yes | 1 (25.0) | 3 (75) | 0.622 * | 0.53 (0.09–2.95) |
| No | 45 (46.9) | 51 (53.1) | ||
| Immunology disorder | ||||
| Yes | 1 (33.3) | 2 (66.7) | 1.00 * | 0.72 (0.14–3.61) |
| No | 45 (46.4) | 52 (53.6) | ||
| Endocrine disorder | ||||
| Yes | 1 (50.0) | 1 (50.0) | 1.00 * | 1.09 (2.68–4.42) |
| No | 45 (45.9) | 53 (54.1) | ||
| Tuberculosis | ||||
| Yes | 2 (100) | 0 (0) | 0.209 * | 2.27 (1.79–2.77) |
| No | 44 (44.9) | 54 (55.1) | ||
| Asthma | ||||
| Yes | 1 (33.3) | 2 (66.7) | 1.00 * | 0.72 (0.14–3.61) |
| No | 45 (46.4) | 52 (53.6) | ||
| Neurological disorder | ||||
| Yes | 2 (100) | 0 (0) | 0.209 * | 2.23 (1.79–2.77) |
| No | 44 (44.9) | 54 (55.1) | ||
| Others | ||||
| Yes | 3 (42.9) | 4 (57.1) | 1.00 * | 0.93 (0.38–2.24) |
| No | 43 (46.2) | 50 (53.8) | ||
| Comorbid | ||||
| Yes | 35 (45.5) | 42 (54.5) | 0.841 | 0.95 (0.58–1.55) |
| No | 11 (47.8) | 12 (52.2) | ||
| History of ventilator support | ||||
| Yes | 3 (75) | 1 (25) | 0.331 * | 1.67 (0.91–3.07) |
| No | 43 (44.8) | 53 (55.2) | ||
| History of hospitalization | ||||
| Yes | 14 (63.6) | 8 (36.4) | 0.060 | 1.55 (1.02–2.34) |
| No | 32 (41) | 46 (59) | ||
| Time interval from recovery to spirometry (months) | ||||
| ≤12 | 3 (50.0) | 3 (50.0) | 1.00 * | 1.1 (0.47–2.56) |
| >12 | 43 (43.2) | 51 (50.8) | ||
| Variable | p | aOR * (CI ** 95%) |
|---|---|---|
| Undernourished state | 0.002 | 5.64 (1.89–16.85) |
| Clinical classification of COVD-19 | 0.006 | 5.18 (1.59–16.89) |
| Obesity | 0.58 | 0.73 (0.24–2.22) |
| Chronic kidney disease | 0.31 | 1.87 (0.55–6.38) |
| History of hospitalization | 0.53 | 1.45 (0.45–4.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Septiana, M.; Kaswandani, N.; Yuniar, I.; Iskandar, A.T.P.; Puspitasari, H.A.; Satari, H.I. Pulmonary Function and Associated Prognostic Factors in Children After COVID-19: A Retrospective Cohort Study. Medicina 2025, 61, 2136. https://doi.org/10.3390/medicina61122136
Septiana M, Kaswandani N, Yuniar I, Iskandar ATP, Puspitasari HA, Satari HI. Pulmonary Function and Associated Prognostic Factors in Children After COVID-19: A Retrospective Cohort Study. Medicina. 2025; 61(12):2136. https://doi.org/10.3390/medicina61122136
Chicago/Turabian StyleSeptiana, Mega, Nastiti Kaswandani, Irene Yuniar, Adhi Teguh Perma Iskandar, Henny Adriani Puspitasari, and Hindra Irawan Satari. 2025. "Pulmonary Function and Associated Prognostic Factors in Children After COVID-19: A Retrospective Cohort Study" Medicina 61, no. 12: 2136. https://doi.org/10.3390/medicina61122136
APA StyleSeptiana, M., Kaswandani, N., Yuniar, I., Iskandar, A. T. P., Puspitasari, H. A., & Satari, H. I. (2025). Pulmonary Function and Associated Prognostic Factors in Children After COVID-19: A Retrospective Cohort Study. Medicina, 61(12), 2136. https://doi.org/10.3390/medicina61122136

