Recent Change in Anhedonia, Major Depression and Low-Grade Inflammation: Dangerous Liaisons? A Study Based on a Cohort Referred for Polysomnography
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Medical and Psychiatric Assessment
2.3. Statistics
3. Results
3.1. Descriptive and Univariate Analyses (Table 1 and Table 2)
| Variables | Categories | % | Subjects Without Recent Change in Anhedonia | Subjects with Recent Change in Anhedonia | p-Value Chi2 | Cramer’s V |
|---|---|---|---|---|---|---|
| Gender | Female (n = 281) | 56.7% | 52.9% | 62.3% | 0.037 | 0.094 |
| Male (n = 215) | 43.3% | 47.1% | 37.7% | |||
| Age (years) | <50 (n = 330) | 66.5% | 70.0% | 61.3% | 0.044 | 0.091 |
| ≥50 (n = 166) | 33.5% | 30.0% | 38.7% | |||
| BMI (kg/m2) | <25 (n = 145) | 29.2% | 31.0% | 26.6% | 0.380 | 0.062 |
| ≥25 and <30 (n = 164) | 33.1% | 33.7% | 32.2% | |||
| ≥30 (n = 187) | 37.7% | 35.3% | 41.2% | |||
| Antidepressant therapy | No (n=352) | 71.0% | 80.5% | 56.8% | <0.001 | 0.256 |
| Yes (n=144) | 29.0% | 19.5% | 43.2% | |||
| Benzodiazepine receptor agonists | No (n = 427) | 86.1% | 88.2% | 82.9% | 0.095 | 0.075 |
| Yes (n = 69) | 13.9% | 11.8% | 17.1% | |||
| Other psychotropic medications | No (n = 391) | 78.8% | 84.9% | 69.9% | <0.001 | 0.180 |
| Yes (n = 105) | 21.2% | 15.1% | 30.1% | |||
| Smoking | No (n = 405) | 81.7% | 82.8% | 79.9% | 0.409 | 0.037 |
| Yes (n = 91) | 18.3% | 17.2% | 20.1% | |||
| Alcohol | No (n = 268) | 54.0% | 50.8% | 58.8% | 0.082 | 0.078 |
| Yes (n = 228) | 46.0% | 49.2% | 41.2% | |||
| Caffeine | No (n = 72) | 14.5% | 16.5% | 11.6% | 0.126 | 0.069 |
| Yes (n = 424) | 85.5% | 83.5% | 88.4% | |||
| Type 2 diabetes | No (n = 420) | 84.7% | 89.9% | 76.9% | <0.001 | 0.177 |
| Yes (n = 76) | 15.3% | 10.1% | 23.1% | |||
| Dyslipidemia | No (n = 263) | 53.0% | 54.6% | 50.8% | 0.407 | 0.037 |
| Yes (n = 233) | 47.0% | 45.4% | 49.2% | |||
| Hypertension | No (n = 308) | 62.1% | 64.0% | 59.3% | 0.293 | 0.047 |
| Yes (n = 188) | 37.9% | 36.0% | 40.7% | |||
| Cardiovascular comorbidities | No (n = 449) | 90.5% | 92.3% | 87.9% | 0.108 | 0.072 |
| Yes (n = 47) | 9.5% | 7.7% | 12.1% | |||
| OSAS | No (n = 209) | 42.1% | 42.8% | 41.2% | 0.404 | 0.061 |
| Mild (n = 126) | 25.4% | 26.9% | 23.1% | |||
| Moderate to severe (n = 161) | 32.5% | 30.3% | 35.7% | |||
| Insomnia disorder | No (n = 136) | 27.4% | 31.0% | 22.1% | 0.030 | 0.097 |
| Yes (n = 360) | 72.6% | 69.0% | 77.9% | |||
| Sleep movement disorders | No (n = 414) | 83.5% | 82.8% | 84.4% | 0.788 | 0.031 |
| Moderate to severe PLMs alone (n = 32) | 6.5% | 7.1% | 5.5% | |||
| RLS alone or combined with PLMs (n = 50) | 10.0% | 10.1% | 10.1% | |||
| ESS | <16 (n = 403) | 81.3% | 85.2% | 75.4% | 0.006 | 0.123 |
| ≥16 (n = 93) | 18.7% | 14.8% | 24.6% | |||
| Anxiety | No (n = 198) | 39.9% | 47.8% | 28.1% | <0.001 | 0.297 |
| Trait anxiety alone (n = 56) | 11.3% | 9.8% | 13.6% | |||
| State anxiety alone (n = 81) | 16.3% | 20.2% | 10.6% | |||
| Trait + state anxiety (n = 161) | 32.5% | 22.2% | 47.7% | |||
| BDI reduced to 18 items | <15 (n = 173) | 34.9% | 44.1% | 21.1% | <0.001 | 0.237 |
| ≥15 (n = 323) | 65.1% | 55.9% | 78.9% | |||
| MDD duration (months) | <6 (n = 308) | 62.1% | 70.4% | 49.8% | <0.001 | 0.208 |
| ≥6 (n = 188) | 37.9% | 29.6% | 50.2% | |||
| LGI | No (n = 346) | 69.8% | 74.8% | 62.3% | 0.003 | 0.133 |
| Yes (n = 150) | 30.2% | 25.2% | 37.7% | |||
| Recent change in anhedonia | No (n = 297) | 59.9% | ||||
| Yes (n = 199) | 40.1% | |||||
| Median (P25–P75) | Wilcoxon test | Effect size r | ||||
| Age (years) | 43 (33–52) | 42 (32–51) | 45 (34–53) | 0.040 | −0.092 | |
| BMI (kg/m2) | 27.9 (24.6–33.2) | 27.4 (24.2–32.6) | 28.7 (24.8–33.5) | 0.110 | −0.072 | |
| ESS | 11 (7–14) | 10 (8–14) | 11 (6–15) | 0.562 | −0.003 | |
| ISI | 17 (14–20) | 17 (13–20) | 18 (15–21) | 0.015 | −0.110 | |
| Spielberger Trait Anxiety Inventory | 58 (51–65) | 55 (50–61) | 62 (56–69) | <0.001 | −0.355 | |
| Spielberger State Anxiety Inventory | 59 (51–68) | 57 (50–65) | 62 (52–74) | <0.001 | −0.209 | |
| BDI | 19 (16–27) | 17 (14–21) | 27 (20–35) | <0.001 | −0.564 | |
| BDI reduced to 18 items | 17 (13–23) | 15 (12–19) | 22 (15–29) | <0.001 | −0.405 | |
| BDI–anhedonia | 3 (2–4) | 2 (1–3) | 5 (4–6) | <0.001 | −0.858 |
| Variables | Categories | OR (CI 95%) | p-Value |
|---|---|---|---|
| Gender | Female | 1 | 0.038 |
| Male | 0.68 (0.47 to 0.98) | ||
| Age (years) | <50 | 1 | 0.044 |
| ≥50 | 1.48 (1.01 to 2.15) | ||
| BMI (kg/m2) | <25 | 1 | 0.381 |
| ≥25 and <30 | 1.11 (0.70 to 1.76) | ||
| ≥30 | 1.36 (0.87 to 2.11) | ||
| Antidepressant therapy | No | 1 | <0.001 |
| Yes | 3.14 (2.10 to 4.68) | ||
| Benzodiazepine receptor agonists | No | 1 | 0.096 |
| Yes | 1.54 (0.93 to 2.57) | ||
| Other psychotropic medications | No | 1 | <0.001 |
| Yes | 2.42 (1.56 to 3.75) | ||
| Smoking | No | 1 | 0.409 |
| Yes | 1.21 (0.77 to 1.92) | ||
| Alcohol | No | 1 | 0.082 |
| Yes | 0.72 (0.50 to 1.04) | ||
| Caffeine | No | 1 | 0.128 |
| Yes | 1.51 (0.89 to 2.57) | ||
| Type 2 diabetes | No | 1 | <0.001 |
| Yes | 2.68 (1.62 to 4.42) | ||
| Dyslipidemia | No | 1 | 0.407 |
| Yes | 1.16 (0.81 to 1.67) | ||
| Hypertension | No | 1 | 0.293 |
| Yes | 1.22 (0.84 to 1.76) | ||
| Cardiovascular comorbidities | No | 1 | 0.110 |
| Yes | 1.63 (0.89 to 2.98) | ||
| OSAS | No | 1 | 0.405 |
| Mild | 0.89 (0.56 to 1.41) | ||
| Moderate to severe | 1.22 (0.81 to 1.85) | ||
| Insomnia disorder | No | 1 | 0.031 |
| Yes | 1.58 (1.04 to 2.40) | ||
| Sleep movement disorders | No | 1 | 0.789 |
| Moderate to severe PLMs alone | 0.77 (0.36 to 1.63) | ||
| RLS alone or combined with PLMs | 0.98 (0.54 to 1.78) | ||
| ESS | <16 | 1 | 0.007 |
| ≥16 | 1.88 (1.19 to 2.96) | ||
| Anxiety | No | 1 | <0.001 |
| Trait anxiety alone | 2.36 (1.28 to 4.34) | ||
| State anxiety alone | 0.89 (0.49 to 1.59) | ||
| Trait + state anxiety | 3.65 (2.35 to 5.67) | ||
| BDI reduced to 18 items | <15 | 1 | <0.001 |
| ≥15 | 2.95 (1.96 to 4.45) | ||
| MDD duration (months) | <6 (n = 308) | 1 | <0.001 |
| ≥6 (n = 188) | 2.40 (1.65 to 3.48) | ||
| LGI | No | 1 | 0.003 |
| Yes | 1.79 (1.21 to 2.64) |
3.2. Multivariate Analyses (Table 3)
| Variable | Model | Category | OR | Category | OR | p-Value |
|---|---|---|---|---|---|---|
| Low-grade Inflammation | 1 | No | 1.00 | Yes | 1.73 (1.15–2.62) | 0.009 |
| 2 | 1.00 | 1.65 (1.08–2.50) | 0.019 | |||
| 3 | 1.00 | 1.71 (1.12–2.61) | 0.013 | |||
| 4 | 1.00 | 1.77 (1.14–2.75) | 0.012 |
3.3. Polysomnographic Results (Table 4)
| Whole Sample | Subjects Without Recent Change in Anhedonia | Subjects with Recent Change in Anhedonia | p-Value | |
|---|---|---|---|---|
| Sleep latency (min) | 62.5 (33.8–109.3) | 59.5 (31.0–105.5) | 72.5 (37.0–114.0) | 0.175 |
| Sleep efficiency (%) | 73.2 (61.9–82.0) | 74.6 (64.5–82.4) | 71.1 (58.0–81.7) | 0.021 |
| Sleep period time (min) | 438.5 (400.0–472.3) | 441.5 (405.0–474.5) | 434.0 (391.5–468.0) | 0.177 |
| Total sleep time (min) | 379.3 (329.0–421.3) | 387.5 (339.0–424.5) | 372.5 (304.5–412.5) | 0.013 |
| % stage 1 | 7.0 (4.7–9.9) | 7.3 (5.2–9.9) | 6.9 (4.3–9.8) | 0.151 |
| % stage 2 | 50.3 (42.3–57.0) | 50.1 (41.9–57.0) | 50.3 (42.8–57.2) | 0.760 |
| % Stage 3 | 12.2 (5.3–18.0) | 12.8 (5.4–19.0) | 11.0 (5.1–17.1) | 0.280 |
| % REM sleep | 15.9 (10.8–20.3) | 16.3 (11.6–20.5) | 14.8 (9.2–19.5) | 0.020 |
| REM latency (min) | 92.0 (67.5–155.0) | 87.8 (64.5–136.0) | 100.5 (72.5–186.5) | <0.001 |
| % wake after sleep onset | 11.1 (5.7–19.3) | 10.0 (5.4–18.5) | 12.1 (6.2–21.0) | 0.049 |
| Number of awakenings | 24 (17–33) | 23 (17–32) | 24 (17–34) | 0.654 |
| Micro-arousal index | 11 (6–17) | 11 (7–16) | 10 (6–18) | 0.725 |
| Apnea–hypopnea index | 7 (2–19) | 7 (2–18) | 8 (2–21) | 0.227 |
| Oxygen desaturation index | 4 (1–13) | 4 (1–12) | 4 (1–15) | 0.248 |
| Total time under 90% of SaO2 (min) | 0.5 (0.0–9.0) | 0.0 (0.0–8.5) | 0.5 (0.0–12.0) | 0.281 |
| PLMS index | 1 (0–7) | 2 (0–8) | 1 (0–7) | 0.211 |
| Median (P25–P75) | Median (P25–P75) | Median (P25–P75) | Wilcoxon test |
4. Discussion
4.1. Population Characteristics and Prevalence
4.2. Inflammation
4.3. Perspectives Opened by the Results of This Study for the Management of MDD Subjects with Anhedonia and Low-Grade Inflammation
4.3.1. Conventional Treatment
4.3.2. Other Treatments
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loas, G.; Solibieda, A.; Rotsaert, M.; Englert, Y. Suicidal ideations among medical students: The role of anhedonia and type D personality. PLoS ONE 2019, 14, e0217841. [Google Scholar] [CrossRef]
- Darquennes, G.; Wacquier, B.; Loas, G.; Hein, M. Suicidal Ideations in Major Depressed Subjects: Role of the Temporal Dynamics of Anhedonia. Brain Sci. 2023, 13, 1065. [Google Scholar] [CrossRef]
- Ducasse, D.; Dubois, J.; Jaussent, I.; Azorin, J.M.; Etain, B.; Gard, S.; Henry, C.; Bougerol, T.; Kahn, J.P.; Aubin, V.; et al. Association between anhedonia and suicidal events in patients with mood disorders: A 3-year prospective study. Depress. Anxiety 2021, 38, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Whitton, A.E.; Kumar, P.; Treadway, M.T.; Rutherford, A.V.; Ironside, M.L.; Foti, D.; Fitzmaurice, G.; Du, F.; Pizzagalli, D.A. Distinct profiles of anhedonia and reward processing and their prospective associations with quality of life among individuals with mood disorders. Mol. Psychiatry 2023, 28, 5272–5281. [Google Scholar] [CrossRef] [PubMed]
- Khazanov, G.K.; Xu, C.; Dunn, B.D.; Cohen, Z.D.; DeRubeis, R.J.; Hollon, S.D. Distress and anhedonia as predictors of depression treatment outcome: A secondary analysis of a randomized clinical trial. Behav. Res. Ther. 2020, 125, 103507. [Google Scholar] [CrossRef] [PubMed]
- Vinckier, F.; Gourion, D.; Mouchabac, S. Anhedonia predicts poor psychosocial functioning: Results from a large cohort of patients treated for major depressive disorder by general practitioners. Eur. Psychiatry 2017, 44, 1–8. [Google Scholar] [CrossRef]
- Willame, H.; Wacquier, B.; Point, C.; Dosogne, M.; Al Faker, M.; Loas, G.; Hein, M. The association between type 2 diabetes and anhedonic subtype of major depression in hypertensive individuals. J. Clin. Hypertens. 2022, 24, 156–166. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Jones, B.D.M.; Mahmood, U.; Hodsoll, J.; Chaudhry, I.B.; Khoso, A.B.; Husain, M.O.; Ortiz, A.; Husain, N.; Mulsant, B.H.; Young, A.H.; et al. Associations between peripheral inflammation and clinical phenotypes of bipolar depression in a lower-middle income country. CNS Spectr. 2023, 28, 710–718. [Google Scholar] [CrossRef]
- Bekhbat, M.; Treadway, M.T.; Felger, J.C. Inflammation as a Pathophysiologic Pathway to Anhedonia: Mechanisms and Therapeutic Implications. Curr. Top. Behav. Neurosci. 2022, 58, 397–419. [Google Scholar]
- Bekhbat, M.; Li, Z.; Mehta, N.D.; Treadway, M.T.; Lucido, M.J.; Woolwine, B.J.; Haroon, E.; Miller, A.H.; Felger, J.C. Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: Evidence from a dopamine challenge study. Mol. Psychiatry 2022, 27, 4113–4121. [Google Scholar] [CrossRef]
- Bernier, V.; Debarge, M.H.; Hein, M.; Ammendola, S.; Mungo, A.; Loas, G. Major Depressive Disorder, Inflammation, and Nutrition: A Tricky Pattern? Nutrients 2023, 15, 3438. [Google Scholar] [CrossRef]
- Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 2020, 25, 1301–1311. [Google Scholar] [CrossRef]
- Foley, É.M.; Parkinson, J.T.; Kappelmann, N.; Khandaker, G.M. Clinical phenotypes of depressed patients with evidence of inflammation and somatic symptoms. Compr. Psychoneuroendocrinol. 2021, 8, 100079. [Google Scholar] [CrossRef]
- Li, Y.; Yue, Y.; Chen, S.; Jiang, W.; Xu, Z.; Chen, G.; Zhu, Z.; Tan, L.; Yuan, Y. Combined serum IL-6, C-reactive protein, and cortisol may distinguish patients with anhedonia in major depressive disorder. Front. Mol. Neurosci. 2022, 15, 935031. [Google Scholar] [CrossRef]
- Bernier, V.; Alsaleh, G.; Point, C.; Wacquier, B.; Lanquart, J.P.; Loas, G.; Hein, M. Low-Grade Inflammation Associated with Major Depression Subtypes: A Cross-Sectional Study. Brain Sci. 2024, 14, 850. [Google Scholar] [CrossRef] [PubMed]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Steer, R.A.; Ball, R.; Ranieri, W. Comparison of Beck Depression Inventories-IA and-II in psychiatric outpatients. J. Pers. Assess. 1996, 67, 588–597. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. Test manual for the State Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Morin, C.M. Insomnia: Psychological Assessment and Management; Guilford Press: New York, NY, USA, 1993. [Google Scholar]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Joiner, T.E.; Brown, J.S.; Metalsky, G.I. A test of the tripartite model’s prediction of anhedonia’s specificity to depression: Patients with major depression versus patients with schizophrenia. Psychiatry Res. 2003, 119, 243–250. [Google Scholar] [CrossRef]
- Billones, R.R.; Kumar, S.; Saligan, L.N. Disentangling fatigue from anhedonia: A scoping review. Transl. Psychiatry 2020, 10, 273. [Google Scholar] [CrossRef]
- Ferré, S.; Díaz-Ríos, M.; Salamone, J.D.; Prediger, R.D. New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders. J. Caffeine Adenosine Res. 2018, 8, 121–131. [Google Scholar] [CrossRef]
- Gabbay, V.; Johnson, A.R.; Alonso, C.M.; Evans, L.K.; Babb, J.S.; Klein, R.G. Anhedonia, but not irritability, is associated with illness severity outcomes in adolescent major depression. J. Child. Adolesc. Psychopharmacol. 2015, 25, 194–200. [Google Scholar] [CrossRef]
- Gallo, J.J.; Anthony, J.C.; Muthén, B.O. Age differences in the symptoms of depression: A latent trait analysis. J. Gerontol. 1994, 49, P251–P264. [Google Scholar] [CrossRef]
- Garfield, J.B.; Lubman, D.I.; Yücel, M. Anhedonia in substance use disorders: A systematic review of its nature, course and clinical correlates. Aust. N. Z. J. Psychiatry 2014, 48, 36–51. [Google Scholar] [CrossRef]
- Gilbert, D.G.; Stone, B.M. Anhedonia in Nicotine Dependence. Curr. Top. Behav. Neurosci. 2022, 58, 167–184. [Google Scholar]
- Grillo, C.A.; Mulder, P.; Macht, V.A.; Kaigler, K.F.; Wilson, S.P.; Wilson, M.A.; Reagan, L.P. Dietary restriction reverses obesity-induced anhedonia. Physiol. Behav. 2014, 128, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.P.; Jansen, K.; Cardoso, T.A.; Mondin, T.C.; Vieira, I.S.; Magalhães, P.V.D.S.; Kapczinski, F.; Souza, L.D.M.; da Silva, R.A.; Oses, J.P.; et al. Metabolic syndrome, depression and anhedonia among young adults. Psychiatry Res. 2019, 271, 306–310. [Google Scholar] [CrossRef]
- Pelle, A.J.; Pedersen, S.S.; Erdman, R.A.; Kazemier, M.; Spiering, M.; van Domburg, R.T.; Denollet, J. Anhedonia is associated with poor health status and more somatic and cognitive symptoms in patients with coronary artery disease. Qual. Life Res. 2011, 20, 643–651. [Google Scholar] [CrossRef]
- Wang, X.; Xia, Y.; Yan, R.; Sun, H.; Huang, Y.; Zou, H.; Du, Y.; Hua, L.; Tang, H.; Zhou, H.; et al. The sex differences in anhedonia in major depressive disorder: A resting-state fMRI study. J. Affect. Disord. 2023, 340, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Wieman, S.T.; Arditte Hall, K.A.; MacDonald, H.Z.; Gallagher, M.W.; Suvak, M.K.; Rando, A.A.; Liverant, G.I. Relationships Among Sleep Disturbance, Reward System Functioning, Anhedonia, and Depressive Symptoms. Behav. Ther. 2022, 53, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Winer, E.S.; Bryant, J.; Bartoszek, G.; Rojas, E.; Nadorff, M.R.; Kilgore, J. Mapping the relationship between anxiety, anhedonia, and depression. J. Affect. Disord. 2017, 221, 289–296. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, H.; Li, N.; Wu, W.; Ma, X.; Zhang, X.; Liu, W.; Shang, L.; Wang, H.; Dong, H.; et al. Association between sleep disorder and anhedonia in adolescence with major depressive disorder: The mediating effect of stress. BMC Psychiatry 2024, 24, 962. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, L.; Zhao, X.; Shi, Y.; Li, J.; Wu, W.; Yu, H.; Lv, R.; Liu, N.; Wu, X.; et al. Network structure of sleep quality and its bridging association with anhedonia in adolescent major depression disorder. Physiol Behav. 2025, 292, 114833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Chu, Z.; Wang, T.; Yu, J.; Zhu, P.; Zhang, J.; Zhu, D. Correlation between hypersomnia and anhedonia in patients with major depressive disorder. Chin. J. Behav. Med. Brain Sci. 2021, 12, 289–293. [Google Scholar]
- Barateau, L.; Lopez, R.; Franchi, J.A.; Dauvilliers, Y. Hypersomnolence, Hypersomnia, and Mood Disorders. Curr Psychiatry Rep. 2017, 19, 13. [Google Scholar] [CrossRef]
- Collins, A.C.; Gallagher, M.R.; Calafiore, C.; Jordan, D.G.; Winer, E.S. From anxiety to depression: A longitudinal investigation into the role of anhedonia. J. Affect. Disord. 2025, 380, 17–25. [Google Scholar] [CrossRef]
- Conenna, M.; Point, C.; Wacquier, B.; Lanquart, J.P.; Hein, M. Risk of Major Depression Associated with Excessive Daytime Sleepiness in Apneic Individuals. Clocks Sleep 2025, 7, 22. [Google Scholar] [CrossRef]
- Hein, M.; Wacquier, B.; Conenna, M.; Lanquart, J.P.; Point, C. The Association between Suicidal Ideation and Subtypes of Comorbid Insomnia Disorder in Apneic Individuals. J. Clin. Med. 2024, 13, 5907. [Google Scholar] [CrossRef]
- Younes, A.; Point, C.; Wacquier, B.; Lanquart, J.P.; Hein, M. Excessive Daytime Sleepiness in Hypertensive Patients: The Role of Major Depressive Disorder. Diagnostics 2024, 14, 1854. [Google Scholar] [CrossRef]
- Point, C.; Wacquier, B.; Dosogne, M.; Al Faker, M.; Willame, H.; Loas, G.; Hein, M. Impact of Alexithymia on the Lipid Profile in Major Depressed Individuals. J. Lipids 2022, 2022, 5450814. [Google Scholar] [CrossRef]
- Kale, H.; Cambron-Mellott, M.J.; Drissen, T.; Perkowski, K.; King-Concialdi, K.; Jha, M.K. Association between anhedonia severity and clinical, humanistic, and economic outcomes among US adults with major depressive disorder. Int. J. Neuropsychopharmacol. 2025, 28, pyaf048. [Google Scholar] [CrossRef]
- Pizzagalli, D.A. Toward a Better Understanding of the Mechanisms and Pathophysiology of Anhedonia: Are We Ready for Translation? Am. J. Psychiatry 2022, 179, 458–469. [Google Scholar] [CrossRef]
- Serretti, A. Anhedonia and Depressive Disorders. Clin. Psychopharmacol. Neurosci. 2023, 21, 401–409. [Google Scholar] [CrossRef]
- Fatima, Y.; Doi, S.A.; Najman, J.M.; Mamun, A.A. Exploring Gender Difference in Sleep Quality of Young Adults: Findings from a Large Population Study. Clin. Med. Res. 2016, 14, 138–144. [Google Scholar] [CrossRef]
- Haufe, A.; Leeners, B. Sleep Disturbances Across a Woman’s Lifespan: What Is the Role of Reproductive Hormones? J. Endocr. Soc. 2023, 7, bvad036. [Google Scholar] [CrossRef] [PubMed]
- Tamanna, S.; Geraci, S.A. Major sleep disorders among women: (women’s health series). South. Med. J. 2013, 106, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. N. Am. 2009, 29, 247–264. [Google Scholar] [CrossRef]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Capuron, L.; Miller, A.H. Cytokines and psychopathology: Lessons from interferon-alpha. Biol. Psychiatry 2004, 56, 819–824. [Google Scholar] [CrossRef]
- Lu, S.; Wu, C.; Jia, L.; Fang, Z.; Lu, J.; Mou, T.; Hu, S.; He, H.; Huang, M.; Xu, Y. Increased plasma levels of IL-6 are associated with striatal structural atrophy in major depressive disorder patients with anhedonia. Front. Psychiatry 2022, 13, 1016735. [Google Scholar] [CrossRef]
- Savitz, J.; Figueroa-Hall, L.K.; Teague, T.K.; Yeh, H.W.; Zheng, H.; Kuplicki, R.; Burrows, K.; El-Sabbagh, N.; Thomas, M.; Ewers, I.; et al. Systemic Inflammation and Anhedonic Responses to an Inflammatory Challenge in Adults with Major Depressive Disorder: A Randomized Controlled Trial. Am. J. Psychiatry 2025, 182, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Der-Avakian, A.; Markou, A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012, 35, 68–77. [Google Scholar] [CrossRef]
- Admon, R.; Kaiser, R.H.; Dillon, D.G.; Beltzer, M.; Goer, F.; Olson, D.P.; Vitaliano, G.; Pizzagalli, D.A. Dopaminergic Enhancement of Striatal Response to Reward in Major Depression. Am. J. Psychiatry 2017, 174, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Rømer Thomsen, K.; Whybrow, P.C.; Kringelbach, M.L. Reconceptualizing anhedonia: Novel perspectives on balancing the pleasure networks in the human brain. Front. Behav. Neurosci. 2015, 9, 49. [Google Scholar] [CrossRef]
- Treadway, M.T.; Zald, D.H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neurosci. Biobehav. Rev. 2011, 35, 537–555. [Google Scholar] [CrossRef]
- Wu, C.; Mu, Q.; Gao, W.; Lu, S. The characteristics of anhedonia in depression: A review from a clinically oriented perspective. Transl. Psychiatry 2025, 15, 90. [Google Scholar] [CrossRef]
- Berridge, K.C.; Robinson, T.E. Parsing reward. Trends Neurosci. 2003, 26, 507–513. [Google Scholar] [CrossRef]
- Borsini, A.; Wallis, A.S.J.; Zunszain, P.; Pariante, C.M.; Kempton, M.J. Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression. Cogn. Affect. Behav. Neurosci. 2020, 20, 816–841. [Google Scholar] [CrossRef]
- Eisenberger, N.I.; Berkman, E.T.; Inagaki, T.K.; Rameson, L.T.; Mashal, N.M.; Irwin, M.R. Inflammation-induced anhedonia: Endotoxin reduces ventral striatum responses to reward. Biol. Psychiatry 2010, 68, 748–754. [Google Scholar] [CrossRef]
- Swardfager, W.; Rosenblat, J.D.; Benlamri, M.; McIntyre, R.S. Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci. Biobehav. Rev. 2016, 64, 148–166. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Li, Z.; Haroon, E.; Woolwine, B.J.; Jung, M.Y.; Hu, X.; Miller, A.H. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol. Psychiatry 2016, 21, 1358–1365. [Google Scholar] [CrossRef]
- Cao, B.; Zhu, J.; Zuckerman, H.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Subramanieapillai, M.; Park, C.; Lee, Y.; McIntyre, R.S. Pharmacological interventions targeting anhedonia in patients with major depressive disorder: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 92, 109–117. [Google Scholar] [CrossRef]
- Haroon, E.; Daguanno, A.W.; Woolwine, B.J.; Goldsmith, D.R.; Baer, W.M.; Wommack, E.C.; Felger, J.C.; Miller, A.H. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology 2018, 95, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Minhajuddin, A.; Gadad, B.S.; Greer, T.; Grannemann, B.; Soyombo, A.; Mayes, T.L.; Rush, A.J.; Trivedi, M.H. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology 2017, 78, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Tomarken, A.J.; Dichter, G.S.; Freid, C.; Addington, S.; Shelton, R.C. Assessing the effects of bupropion SR on mood dimensions of depression. J. Affect. Disord. 2004, 78, 235–241. [Google Scholar] [CrossRef]
- Arnold, W.R.; Carnevale, L.N.; Xie, Z.; Baylon, J.L.; Tajkhorshid, E.; Hu, H.; Das, A. Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. Nat. Commun. 2021, 12, 926. [Google Scholar] [CrossRef]
- Barrie, N.; Manolios, N. The endocannabinoid system in pain and inflammation: Its relevance to rheumatic disease. Eur. J. Rheumatol. 2017, 4, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, T.; Pflüger-Müller, B.; Giménez, V.M.M.; Sailer, F.; Dirks, H.; Zehr, S.; Warwick, T.; Brettner, F.; Munoz-Tello, P.; Zimmer, A.; et al. The endocannabinoid anandamide mediates anti-inflammatory effects through activation of NR4A nuclear receptors. Br. J. Pharmacol. 2025, 182, 1164–1182. [Google Scholar] [CrossRef]
- Roussel, C.; Sola, M.; Lessard-Lord, J.; Nallabelli, N.; Généreux, P.; Cavestri, C.; Azeggouar Wallen, O.; Villano, R.; Raymond, F.; Flamand, N.; et al. Human gut microbiota and their production of endocannabinoid-like mediators are directly affected by a dietary oil. Gut Microbes 2024, 16, 2335879. [Google Scholar] [CrossRef]
- Witkamp, R.; Meijerink, J. The endocannabinoid system: An emerging key player in inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 130–138. [Google Scholar] [CrossRef]
- Minichino, A.; Jackson, M.A.; Francesconi, M.; Steves, C.J.; Menni, C.; Burnet, P.W.J.; Lennox, B.R. Endocannabinoid system mediates the association between gut-microbial diversity and anhedonia/amotivation in a general population cohort. Mol. Psychiatry 2021, 26, 6269–6276. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Urpi-Sardà, M.; Sacanella, E.; Arranz, S.; Corella, D.; Castañer, O.; Lamuela-Raventós, R.M.; Salas-Salvadó, J.; Lapetra, J.; Portillo, M.P.; et al. Anti-Inflammatory Effects of the Mediterranean Diet in the Early and Late Stages of Atheroma Plaque Development. Mediators Inflamm. 2017, 2017, 3674390. [Google Scholar] [CrossRef]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef]
- Landaeta-Díaz, L.; Durán-Agüero, S.; González-Medina, G. Exploring food intake networks and anhedonia symptoms in a Chilean Adults sample. Appetite 2023, 190, 107042. [Google Scholar] [CrossRef]
- Arikawa, A.Y.; Jakits, H.E.; Flood, A.; Thomas, W.; Gross, M.; Schmitz, K.H.; Kurzer, M.S. Consumption of a high glycemic load but not a high glycemic index diet is marginally associated with oxidative stress in young women. Nutr. Res. 2015, 35, 7–13. [Google Scholar] [CrossRef]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Carr, K.D.; Weiner, S.P.; Vasquez, C.; Schmidt, A.M. Involvement of the Receptor for Advanced Glycation End Products (RAGE) in high fat-high sugar diet-induced anhedonia in rats. Physiol. Behav. 2023, 271, 114337. [Google Scholar] [CrossRef] [PubMed]
- Peppa, M.; Uribarri, J.; Vlassara, H. Glucose, Advanced Glycation End Products, and Diabetes Complications: What Is New and What Works. Clin. Diabetes 2003, 21, 186–187. [Google Scholar] [CrossRef]
- Detopoulou, P.; Voulgaridou, G.; Seva, V.; Kounetakis, O.; Desli, I.I.; Tsoumana, D.; Dedes, V.; Papachristou, E.; Papadopoulou, S.; Panoutsopoulos, G. Dietary Restriction of Advanced Glycation End-Products (AGEs) in Patients with Diabetes: A Systematic Review of Randomized Controlled Trials. Int. J. Mol. Sci. 2024, 25, 11407. [Google Scholar] [CrossRef] [PubMed]
- Franklin, T.C.; Wohleb, E.S.; Zhang, Y.; Fogaça, M.; Hare, B.; Duman, R.S. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior. Biol. Psychiatry 2018, 83, 50–60. [Google Scholar] [CrossRef]
- Hein, M.; Lanquart, J.P.; Loas, G.; Hubain, P.; Linkowski, P. Prevalence and risk factors of excessive daytime sleepiness in major depression: A study with 703 individuals referred for polysomnography. J. Affect. Disord. 2019, 243, 23–32. [Google Scholar] [CrossRef]
- Loas, G.; Dubal, S.; Perot, P.; Tirel, F.; Nowaczkowski, P.; Pierson, A. Validation of the French version of the Snaith-Hamilton Pleasure Scale (SHAPS, Snaith et al. 1995). Determination of the statistical parameters in 208 normal subjects and 103 hospitalized patients presenting with depression or schizophrenia. Encephale 1997, 23, 454–458. [Google Scholar]
- AASM Scoring Manual—American Academy of Sleep Medicine. American Academy of Sleep Medicine—Association for Sleep Clinicians and Researchers. Available online: https://aasm.org/clinical-resources/scoring-manual/ (accessed on 25 August 2025).
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef]
- Edinger, J.D.; Bonnet, M.H.; Bootzin, R.R.; Doghramji, K.; Dorsey, C.M.; Espie, C.A.; Jamieson, A.O.; McCall, W.V.; Morin, C.M.; Stepanski, E.J.; et al. Derivation of research diagnostic criteria for insomnia: Report of an American Academy of Sleep Medicine Work Group. Sleep 2004, 27, 1567–1596. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R.; Koo, B.B.; Picchietti, D.L.; Fulda, S. Periodic leg movements during sleep: Phenotype, neurophysiology, and clinical significance. Sleep Med. 2017, 31, 29–38. [Google Scholar] [CrossRef]
- Fleetham, J.; Ayas, N.; Bradley, D.; Ferguson, K.; Fitzpatrick, M.; George, C.; Hanly, P.; Hill, F.; Kimoff, J.; Kryger, M.; et al. Canadian Thoracic Society guidelines: Diagnosis and treatment of sleep disordered breathing in adults. Can. Respir. J. 2006, 13, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Haba-Rubio, J.; Marti-Soler, H.; Tobback, N.; Andries, D.; Marques-Vidal, P.; Vollenweider, P.; Preisig, M.; Heinzer, R. Clinical significance of periodic limb movements during sleep: The HypnoLaus study. Sleep Med. 2018, 41, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Hein, M.; Lanquart, J.-P.; Loas, G.; Hubain, P.; Linkowski, P. Risk of high blood pressure associated with objective insomnia and self-reported insomnia complaints in major depression: A study on 703 individuals. Clin. Exp. Hypertens. 2019, 41, 538–547. [Google Scholar] [CrossRef]
- Kushida, C.A.; Littner, M.R.; Morgenthaler, T.; Alessi, C.A.; Bailey, D.; Coleman, J.; Jr Friedman, L.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; et al. Practice Parameters for the Indications for Polysomnography and Related Procedures: An Update for 2005. Sleep 2005, 28, 499–523. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernier, V.; Mungo, A.; Point, C.; Wacquier, B.; Loas, G.; Hein, M. Recent Change in Anhedonia, Major Depression and Low-Grade Inflammation: Dangerous Liaisons? A Study Based on a Cohort Referred for Polysomnography. Medicina 2025, 61, 2125. https://doi.org/10.3390/medicina61122125
Bernier V, Mungo A, Point C, Wacquier B, Loas G, Hein M. Recent Change in Anhedonia, Major Depression and Low-Grade Inflammation: Dangerous Liaisons? A Study Based on a Cohort Referred for Polysomnography. Medicina. 2025; 61(12):2125. https://doi.org/10.3390/medicina61122125
Chicago/Turabian StyleBernier, Véronique, Anaïs Mungo, Camille Point, Benjamin Wacquier, Gwenolé Loas, and Matthieu Hein. 2025. "Recent Change in Anhedonia, Major Depression and Low-Grade Inflammation: Dangerous Liaisons? A Study Based on a Cohort Referred for Polysomnography" Medicina 61, no. 12: 2125. https://doi.org/10.3390/medicina61122125
APA StyleBernier, V., Mungo, A., Point, C., Wacquier, B., Loas, G., & Hein, M. (2025). Recent Change in Anhedonia, Major Depression and Low-Grade Inflammation: Dangerous Liaisons? A Study Based on a Cohort Referred for Polysomnography. Medicina, 61(12), 2125. https://doi.org/10.3390/medicina61122125

