Surgical Approach and Outcomes in Early-Stage Endometrial Cancer: A Molecularly Stratified Comparison of Open, Laparoscopic, and Robotic Surgery
Simple Summary
Abstract
1. Introduction
1.1. Evolution of Surgical Approaches
1.2. The Molecular Revolution and Its Impact on Surgical Research
1.3. The Critical Gap in Surgical Comparison Studies
1.4. Study Rationale and Objectives
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Population
- Inclusion Criteria (Patients were included if they met ALL of the following criteria):
- Histologically confirmed endometrial adenocarcinoma;
- FIGO 2009 stage I–II disease (all surgeries performed before 2023 FIGO implementation);
- Primary surgical treatment between 1 January 2018 and 31 January 2024;
- Complete surgical and pathological data available;
- Minimum 6 months follow-up (unless death occurred earlier).
- Exclusion Criteria (Patients were excluded if they met ANY of the following criteria):
- Stage III–IV disease or evidence of extrauterine spread;
- Synchronous primary malignancies;
- Previous pelvic radiotherapy;
- Neoadjuvant therapy;
- Palliative surgical intent;
- Inadequate tissue for histological assessment.
2.3. Surgical Techniques and Approach Selection
- 1.
- Procedural Extent:
- Basic procedure: Total hysterectomy with bilateral salpingo-oophorectomy;
- Extended staging: Addition of lymph node assessment (sentinel lymph node mapping or systematic lymphadenectomy);
- Comprehensive staging: Addition of omentectomy and/or peritoneal biopsies for high-risk histologies.
- 2.
- Technical Difficulty Factors:
- Uterine size and mobility;
- Presence of adhesions requiring adhesiolysis;
- Patient factors (obesity, previous abdominal surgery);
- Intraoperative findings requiring procedure modification.
- 3.
- Rationale for Exploring Biological Complexity:
- Enhanced tumour vascularity in high-risk molecular subtypes potentially affecting blood loss;
- Tissue architectural changes potentially affecting surgical planes and operative time;
- Altered tumour–host interactions potentially influencing technical difficulty.
2.4. Molecular Classification
2.5. Data Collection
2.6. Survival Outcome Definitions
- Overall Survival (OS):
- Definition: Time from date of primary surgery to death from any cause;
- Censoring: Patients alive at last follow-up were censored at the date of last contact;
- Follow-up protocol: Routine surveillance every 3–6 months for the first 2 years, then annually.
- Recurrence-Free Survival (RFS):
- Definition: Time from date of primary surgery to first documented recurrence of endometrial cancer;
- Events: Disease recurrence only (local, regional, or distant);
- Censoring: Patients without evidence of recurrence were censored at last follow-up date. Deaths without documented recurrence were censored at time of death;
- Recurrence criteria: Clinical, radiological, or pathological evidence of disease recurrence.
- Recurrence Classification:
- Local recurrence: Vaginal vault, pelvic recurrence, regional lymph node involvement;
- Distant recurrence: Extra-pelvic metastases, distant organ involvement.
2.7. Outcome Measures
- Primary Outcomes:
- Operative time (skin-to-skin duration);
- Estimated blood loss;
- Hospital length of stay;
- Complication rates (intraoperative and 30-day postoperative).
- Secondary Outcomes:
- Conversion rates (minimally invasive to open surgery);
- Lymph node assessment success and nodal yields;
- Recurrence-free survival and overall survival;
- Surgical outcomes stratified by molecular subtype.
2.8. Statistical Analysis
- Comprehensive Bias Control Strategy:
- Multivariable regression adjusting for molecular subtype, age, BMI, ASA score, stage, grade, and histological subtype;
- Propensity score matching using nearest-neighbour matching with caliper of 0.1 standard deviations;
- Molecular subtype-stratified analyses to assess technique effects within biologically similar groups;
- Cox proportional hazards regression for survival outcomes.
- Comparative Analysis:
- Continuous variables: One-way ANOVA with post-hoc Tukey’s test or Kruskal–Wallis test as appropriate;
- Categorical variables: Chi-square test or Fisher’s exact test;
- Survival analysis: Kaplan–Meier method with log-rank tests.
2.9. Complication Classification
3. Results
3.1. Patient Characteristics and Case Selection Patterns
3.1.1. Baseline Demographics
3.1.2. Tumour Characteristics Revealing Case Selection Bias
3.2. Staging Procedures by Surgical Approach
3.3. Molecular Subtype Distribution: The Critical Bias Factor
3.4. Perioperative Outcomes: Technique Advantages Confirmed
3.5. Enhanced Length of Stay Analysis
3.6. Detailed Complication Analysis
3.7. Lymph Node Assessment Analysis
3.8. Exploratory Analysis: Surgical Parameters by Molecular Subtype Within Each Approach
3.9. Multivariable Analysis: Controlling for Molecular and Other Biases
3.10. Propensity Score-Matched Analysis
3.11. Oncological Outcomes: Molecular-Stratified Analysis
3.11.1. Survival Analysis
3.11.2. Multivariable Survival Analysis
3.12. The Impact of Molecular Stratification on Surgical Comparison
- POLE: 0% (0/4 patients);
- NSMP: 2.8% (4/143 patients);
- MMRd: 7.4% (4/54 patients);
- p53abn: 16.7% (3/18 patients).
3.13. Learning Curve Analysis
3.14. Subgroup Analyses
3.14.1. High-Risk Subgroups
3.14.2. Obese Patients (BMI ≥30 kg/m2)
4. Discussion
4.1. Principal Finding: Molecular Stratification as Essential Bias Control Establishes That Case Selection Based on Tumour Biology Explains Apparent Surgical Differences
- Molecular subtype distribution varies systematically by surgical approach: high-risk p53abn tumours concentrated in open surgery (11.4% vs. 7.3–8.2% in minimally invasive approaches);
- This molecular distribution bias explains univariate outcome differences: apparent surgical approach differences attenuated substantially after molecular stratification;
- Genuine technique-related benefits persist after bias control: minimally invasive approaches maintained significant perioperative advantages even after comprehensive adjustment.
- Demonstrating sufficient statistical power: significant findings in adjusted analyses confirm adequate sample size;
- Establishing the framework: showing how to incorporate molecular data for bias control;
- Reflecting real-world implementation: our 42.8% rate mirrors actual clinical practice during 2018–2024 when molecular testing was transitioning to standard care;
- Providing actionable methodology: future researchers can now apply this framework regardless of their molecular profiling rate.
4.2. Validation of Minimally Invasive Surgery Advantages
4.3. Exploratory Evidence for Molecular Influences on Operative Parameters
- Complications are driven by surgical approach, not molecular subtype:
- 2.
- Operative metrics show significant within-approach differences:
4.4. Methodological Advancement: Establishing Molecular Stratification as Standard for Surgical Research
- Molecular subtype distribution biases surgical comparisons: demonstrated through significant baseline differences;
- Bias control changes conclusions: multivariable analyses showed attenuation of univariate differences;
- The methodology is implementable: achieved with partial molecular data reflecting real-world scenarios;
- Future standards are established: all future surgical approach comparisons should incorporate molecular stratification.
4.5. Clinical Implications
4.5.1. Surgical Approach Selection
4.5.2. Integration of Molecular Information
4.6. Comparison with Existing Literature
4.6.1. Landmark Randomised Trials
4.6.2. Recent Meta-Analyses
4.6.3. Robotic Surgery Literature
4.7. Study Strengths and Limitations
4.7.1. Strengths
4.7.2. Limitations
4.8. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- World Health Organization. Global Cancer Observatory: Cancer Tomorrow. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/tomorrow (accessed on 10 November 2024).
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2016, 387, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Kitchener, H.; Swart, A.M.; Qian, Q.; Amos, C.; Parmar, M.K. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): A randomised study. Lancet 2009, 373, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Zullo, F.; Palomba, S.; Russo, T.; Falbo, A.; Costantino, M.; Tolino, A.; Zupi, E.; Tagliaferri, P.; Venuta, S. A prospective randomised comparison between laparoscopic and laparotomic approaches in women with early stage endometrial cancer: A focus on the quality of life. Am. J. Obstet. Gynecol. 2005, 193, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Malzoni, M.; Tinelli, R.; Cosentino, F.; Fusco, A.; Malzoni, C. Total laparoscopic hysterectomy versus abdominal hysterectomy with lymphadenectomy for early-stage endometrial cancer: A prospective randomised study. Gynecol. Oncol. 2009, 112, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Boggess, J.F.; Gehrig, P.A.; Cantrell, L.; Shafer, A.; Ridgway, M.; Skinner, E.N.; Fowler, W.C. A comparative study of 3 surgical methods for hysterectomy with staging for endometrial cancer: Robotic assistance, laparoscopy, laparotomy. Am. J. Obstet. Gynecol. 2008, 199, 360.e1–360.e9. [Google Scholar] [CrossRef]
- Walker, J.L.; Piedmonte, M.R.; Spirtos, N.M.; Eisenkop, S.M.; Schlaerth, J.B.; Mannel, R.S.; Spiegel, G.; Barakat, R.; Pearl, M.L.; Sharma, S.K.; et al. Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group Study LAP2. J. Clin. Oncol. 2009, 27, 5331–5336. [Google Scholar] [CrossRef]
- Janda, M.; Gebski, V.; Davies, L.C.; Forder, P.; Brand, A.; Hogg, R.; Jobling, T.W.; Land, R.; Manolitsas, T.; Nascimento, M.; et al. Effect of Total Laparoscopic Hysterectomy vs. Total Abdominal Hysterectomy on Disease-Free Survival Among Women with Stage I Endometrial Cancer: A Randomised Clinical Trial. JAMA 2017, 317, 1224–1233. [Google Scholar] [CrossRef]
- Levine, D.A.; Cancer Genome Atlas Research Network. Integrated genomic characterisation of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N.; FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int. J. Gynaecol. Obstet. 2023, 162, 383–394. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Matsuo, K.; Yabuno, A.; Hom, M.S.; Shida, M.; Kakuda, M.; Adachi, S.; Mandelbaum, R.S.; Machida, H.; Moeini, A.; Roman, L.D.; et al. Significance of the 2023 FIGO staging system for endometrial cancer. Gynecol. Oncol. 2023, 171, 38–46. [Google Scholar]
- Schwameis, R.; Postl, M.; Bekos, C.; Hager, M.; Polterauer, S.; Concin, N.; Vergote, I.; Chekerov, R.; Mahner, S.; Mirza, M.R.; et al. The prognostic impact of the 2023 FIGO staging in endometrial cancer: An international validation study. Int. J. Gynecol. Cancer 2023, 33, 1712–1719. [Google Scholar]
- León-Castillo, A.; de Boer, S.M.; Powell, M.E.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Singh, N.; Pollock, P.M.; Bessette, P.; et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy. J. Clin. Oncol. 2020, 38, 3388–3397. [Google Scholar] [CrossRef] [PubMed]
- Galaal, K.; Bryant, A.; Fisher, A.D.; Al-Khaduri, M.; Kew, F.; Lopes, A.D. Laparoscopy versus laparotomy for the management of early stage endometrial cancer. Cochrane Database Syst. Rev. 2018, 10, CD006655. [Google Scholar] [CrossRef]
- He, H.; Zeng, D.; Ou, H.; Tang, Y.; Li, L.; Wang, K. Laparoscopic treatment of endometrial cancer: Systematic review. J. Minim. Invasive Gynecol. 2013, 20, 413–423. [Google Scholar] [CrossRef]
- McMeekin, D.S.; Filiaci, V.L.; Thigpen, J.T.; Gallion, H.H.; Fleming, G.F.; Rodgers, W.H. The relationship between histology and outcome in advanced and recurrent endometrial cancer patients participating in first-line chemotherapy trials: A Gynecologic Oncology Group study. Gynecol. Oncol. 2007, 106, 16–22. [Google Scholar] [CrossRef]
- Coronado, P.J.; Herraiz, M.A.; Magrina, J.F.; Fasero, M.; Vidart, J.A. Comparison of perioperative outcomes and cost of robotic-assisted laparoscopy, laparoscopy and laparotomy for endometrial cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 165, 289–294. [Google Scholar] [CrossRef]
- Jamieson, A.; Thompson, E.F.; Huvila, J.; Leung, S.; Lum, A.; Köbel, M.; Gilks, C.B.; Nout, R.A.; Creutzberg, C.L.; Talhouk, A. Endometrial carcinoma molecular subtype correlates with the degree of tumour infiltrating lymphocytes: Implications for recurrence and survival. Br. J. Cancer 2021, 125, 1134–1144. [Google Scholar]
- Tang, J.; Zhu, L.; Lin, J.; Chen, W.; Jiang, Z.; Li, X. Minimally invasive surgery for endometrial cancer: A systematic review and network meta-analysis of randomised controlled trials. Gynecol. Oncol. 2021, 162, 447–456. [Google Scholar]
- Lau, S.; Vaknin, Z.; Ramana-Kumar, A.V.; Halliday, D.; Franco, E.L.; Gotlieb, W.H. Outcomes and cost comparisons after introducing a robotics program for endometrial cancer surgery. Obstet. Gynecol. 2020, 135, 1265–1273. [Google Scholar] [CrossRef]
- Ind, T.E.; Laios, A.; Hacking, M.; Nobbenhuis, M.A.; Papadopoulos, A.J.; Lamb, J.M.; Hutson, R. A comparison of operative outcomes between standard and robotic laparoscopic surgery for endometrial cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2017, 43, 1075–1084. [Google Scholar] [CrossRef]
- Church, D.N.; Stelloo, E.; Nout, R.A.; Valtcheva, N.; Depreeuw, J.; ter Haar, N.; Noske, A.; Amant, F.; Tomlinson, I.P.; Wild, P.J.; et al. Prognostic significance of POLE proofreading mutations in endometrial cancer. J. Natl. Cancer Inst. 2015, 107, 402. [Google Scholar] [CrossRef]
- Hamilton, C.A.; Cheung, M.K.; Osann, K.; Chen, L.; Teng, N.N.; Longacre, T.A.; Powell, M.A.; Hendrickson, M.R.; Kapp, D.S.; Chan, J.K. Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Br. J. Cancer 2006, 94, 642–646. [Google Scholar] [CrossRef]


| Characteristic | Open Surgery (n = 83) | Laparoscopic (n = 278) | Robotic Surgery (n = 151) | p -Value |
|---|---|---|---|---|
| Demographics | ||||
| Age, mean ± SD | 64.2 ± 11.4 | 63.1 ± 10.8 | 63.8 ± 9.9 | 0.456 |
| Age > 65 years, n (%) | 45 (54.2) | 138 (49.6) | 78 (51.7) | 0.754 |
| BMI, mean ± SD | 35.1 ± 8.2 | 34.2 ± 7.9 | 34.6 ± 7.4 | 0.321 |
| BMI ≥ 30 kg/m2, n (%) | 62 (74.7) | 198 (71.2) | 115 (76.2) | 0.523 |
| Comorbidities | ||||
| ASA Score ≥ 3, n (%) | 29 (34.9) | 67 (24.1) | 40 (26.5) | 0.142 |
| Diabetes mellitus, n (%) | 18 (21.7) | 52 (18.7) | 31 (20.5) | 0.764 |
| Hypertension, n (%) | 48 (57.8) | 148 (53.2) | 89 (58.9) | 0.487 |
| Characteristic | Open Surgery (n = 83) | Laparoscopic (n = 278) | Robotic Surgery (n = 151) | p -Value |
|---|---|---|---|---|
| FIGO 2009 Stage | ||||
| Stage IA, n (%) | 43 (51.8) | 170 (61.2) | 104 (68.9) | 0.034 |
| Stage IB, n (%) | 30 (36.1) | 85 (30.6) | 33 (21.9) | 0.041 |
| Stage II, n (%) | 10 (12.1) | 23 (8.2) | 14 (9.2) | 0.029 |
| Histological Grade | ||||
| Grade 1, n (%) | 37 (44.6) | 142 (51.1) | 72 (47.7) | 0.034 |
| Grade 2, n (%) | 31 (37.3) | 98 (35.3) | 52 (34.4) | 0.028 |
| Grade 3, n (%) | 15 (18.1) | 38 (13.6) | 27 (17.9) | 0.042 |
| Histological Subtype | ||||
| Endometrioid, n (%) | 70 (84.3) | 250 (90.0) | 136 (90.1) | 0.023 |
| Non-endometrioid, n (%) | 13 (15.7) | 28 (10.0) | 15 (9.9) | |
| - Serous | 4 (4.8) | 7 (2.5) | 3 (2.0) | |
| - Clear cell | 1 (1.2) | 2 (0.7) | 0 (0.0) | |
| - Mixed | 4 (4.8) | 8 (2.9) | 3 (2.0) | |
| - Carcinosarcoma | 4 (4.8) | 7 (2.5) | 3 (2.0) | |
| Other High-Risk Features | ||||
| Myometrial invasion ≥50%, n (%) | 32 (38.6) | 80 (28.8) | 32 (21.2) | 0.018 |
| LVSI present, n (%) | 22 (26.5) | 48 (17.3) | 21 (13.9) | 0.042 |
| Procedure | Total | Open (n = 83) | Laparoscopic (n = 278) | Robotic (n = 151) | p -Value |
|---|---|---|---|---|---|
| Omentectomy, n (%) | 118 (23.1) | 28 (33.7) | 62 (22.3) | 28 (18.5) | 0.023 |
| Peritoneal biopsies, n (%) | 89 (17.4) | 18 (21.7) | 47 (16.9) | 24 (15.9) | 0.456 |
| Pelvic LN assessment, n (%) | 219 (42.8) | 40 (48.2) | 116 (41.7) | 63 (41.7) | 0.521 |
| Para-aortic LN assessment, n (%) | 18 (3.5) | 12 (14.5) | 4 (1.4) | 2 (1.3) | <0.001 |
| Molecular Subtype | Open (n = 35) | Laparoscopic (n = 123) | Robotic (n = 61) | Total (n = 219) | p -Value |
|---|---|---|---|---|---|
| NSMP | 22 (62.9%) | 82 (66.7%) | 39 (63.9%) | 143 (65.3%) | 0.456 |
| MMRd | 8 (22.9%) | 31 (25.2%) | 15 (24.6%) | 54 (24.7%) | 0.754 |
| p53abn | 4 (11.4%) | 9 (7.3%) | 5 (8.2%) | 18 (8.2%) | 0.612 |
| POLE | 1 (2.9%) | 1 (0.8%) | 2 (3.3%) | 4 (1.8%) | 0.387 |
| Outcome | Open Surgery (n = 83) | Laparoscopic (n = 278) | Robotic Surgery (n = 151) | p -Value |
|---|---|---|---|---|
| Operative Metrics | ||||
| Operative time (min), mean ± SD | 169.6 ± 45.2 | 145.3 ± 38.7 1 | 186.9 ± 52.1 2 | <0.001 |
| Blood loss (mL), mean ± SD | 261.4 ± 189.3 | 129.8 ± 95.7 1 | 157.9 ± 112.4 1 | <0.001 |
| Blood loss (mL), median (IQR) | 200 (100–350) | 100 (50–150) | 100 (75–200) | <0.001 |
| Hospital Course | ||||
| Length of stay (days), mean ± SD | 5.3 ± 2.1 | 2.4 ± 1.2 1 | 2.2 ± 0.9 1 | <0.001 |
| Length of stay (days), median (IQR) | 5 (4–6) | 2 (2–3) | 2 (2–3) | <0.001 |
| Conversions | ||||
| Conversion to open, n (%) | N/A | 7 (2.5) | 12 (7.9) | 0.008 |
| Complications | ||||
| Intraoperative, n (%) | 8 (9.6) | 4 (1.4) 1 | 6 (4.0) | 0.002 |
| Postoperative, n (%) | 10 (12.0) | 12 (4.3) 1 | 4 (2.6) 1 | 0.006 |
| Any complication, n (%) | 18 (21.6) | 16 (5.7) 1 | 10 (6.6) 1 | <0.001 |
| Surgical Approach | Pelvic LN Yield | Para-aortic LN Yield |
|---|---|---|
| Open (n = 83) | 10.9 ± 6.2 (n = 40, 48.2%) | 3.6 ± 2.1 (n = 12, 14.5%) |
| Laparoscopic (n = 278) | 9.3 ± 5.8 (n = 116, 41.7%) | 5.0 ± 3.2 (n = 4, 1.4%) |
| Robotic (n = 151) | 6.7 ± 4.9 (n = 63, 41.7%) | 6.0 ± 7.1 (n = 2, 1.3%) |
| p-value | 0.032 | 0.623 |
| Parameter | NSMP | MMRd | p53abn | POLE | p -Value |
|---|---|---|---|---|---|
| Mean Operative Time (min) | |||||
| Open | 162.3 ± 41.2 | 168.4 ± 48.6 | 189.2 ± 52.1 | 175.0 | 0.045 |
| Laparoscopic | 142.1 ± 36.8 | 151.8 ± 42.3 | 167.3 ± 45.7 | 138.0 | 0.031 |
| Robotic | 183.2 ± 49.5 | 192.4 ± 56.2 | 205.8 ± 61.4 | 168.5 ± 12.0 | 0.042 |
| Mean Blood Loss (mL) | |||||
| Open | 245.2 ± 165.4 | 267.3 ± 198.7 | 298.7 ± 215.6 | 220.0 | 0.038 |
| Laparoscopic | 126.4 ± 92.1 | 135.7 ± 101.3 | 152.1 ± 118.9 | 115.0 | 0.029 |
| Robotic | 154.8 ± 108.2 | 162.9 ± 116.7 | 178.4 ± 125.3 | 145.0 ± 14.1 | 0.041 |
| Any Complication (%) | |||||
| Open | 18.2% | 25.0% | 50.0% | 0.0% | 0.124 |
| Laparoscopic | 4.9% | 6.5% | 11.1% | 0.0% | 0.656 |
| Robotic | 5.1% | 6.7% | 20.0% | 0.0% | 0.287 |
| Outcome | Laparoscopic vs. Open | Robotic vs. Open | Laparoscopic vs. Robotic |
|---|---|---|---|
| β (95% CI) p-value | β (95% CI) p-value | β (95% CI) p-value | |
| Operative Time (min) | |||
| Adjusted difference | −18.4 (−28.9, −7.9) 0.001 | +12.8 (1.2, 24.4) 0.031 | −31.2 (−41.8, −20.6) <0.001 |
| Blood Loss (mL) | |||
| Adjusted difference | −108.7 (−138.4, −79.0) <0.001 | −89.3 (−123.7, −54.9) <0.001 | −19.4 (−47.2, 8.4) 0.171 |
| Length of Stay (days) | |||
| Adjusted difference | −2.6 (−3.1, −2.1) <0.001 | −2.8 (−3.4, −2.2) <0.001 | +0.2 (−0.3, 0.7) 0.421 |
| Outcome | Open (n = 65) | Laparoscopic (n = 65) | Robotic (n = 65) | p -Value |
|---|---|---|---|---|
| Operative time (min), mean ± SD | 168.2 ± 42.1 | 148.9 ± 35.4 1 | 184.7 ± 48.9 2 | <0.001 |
| Blood loss (mL), mean ± SD | 245.8 ± 178.2 | 135.7 ± 98.1 1 | 162.3 ± 115.7 1 | <0.001 |
| Length of stay (days), mean ± SD | 5.1 ± 1.9 | 2.5 ± 1.3 1 | 2.3 ± 0.9 1 | <0.001 |
| Any complication, n (%) | 12 (18.5) | 4 (6.2) 1 | 5 (7.7) 1 | 0.042 |
| Outcome | Open Surgery (n = 83) | Laparoscopic (n = 278) | Robotic Surgery (n = 151) | p -Value |
|---|---|---|---|---|
| Recurrence Patterns | ||||
| Any recurrence, n (%) | 8 (9.6) | 14 (5.0) | 0 (0.0) | 0.002 |
| Local recurrence, n (%) | 3 (3.6) | 1 (0.4) | 0 (0.0) | 0.008 |
| Distant recurrence, n (%) | 4 (4.8) | 13 (4.7) | 0 (0.0) | 0.051 |
| Both local and distant, n (%) | 1 (1.2) | 0 (0.0) | 0 (0.0) | 0.162 |
| Survival Outcomes | ||||
| Deaths, n (%) | 10 (12.0) | 40 (14.4) | 13 (8.6) | 0.284 |
| Cancer-specific deaths, n (%) | 6 (7.2) | 22 (7.9) | 8 (5.3) | 0.567 |
| Survival Rates | ||||
| 2-year OS, % (95% CI) | 91.6 (83.5–96.2) | 90.3 (86.2–93.4) | 95.4 (90.5–98.0) | 0.156 |
| 3-year OS, % (95% CI) | 88.0 (79.1–94.2) | 85.6 (80.8–89.4) | 91.4 (85.4–95.2) | 0.284 |
| 2-year RFS, % (95% CI) | 92.8 (85.0–97.0) | 96.4 (93.5–98.2) | 100.0 (97.6–100.0) | 0.008 |
| 3-year RFS, % (95% CI) | 90.4 (84.1–96.7) | 95.0 (92.5–97.5) | 100.0 (97.6–100.0) | 0.003 |
| Variable | Overall Survival | Recurrence-Free Survival |
|---|---|---|
| HR (95% CI) p-value | HR (95% CI) p-value | |
| Surgical Approach | ||
| Open surgery | Reference | Reference |
| Laparoscopic | 0.82 (0.45–1.49) 0.512 | 0.53 (0.31–0.89) 0.017 |
| Robotic | 0.76 (0.41–1.41) 0.384 | 0.48 (0.28–0.83) 0.009 |
| Molecular Subtype | ||
| NSMP | Reference | Reference |
| MMRd | 1.85 (0.98–3.49) 0.058 | 2.10 (1.00–4.40) 0.048 |
| p53abn | 3.42 (1.67–7.01) 0.001 | 4.52 (2.10–9.70) <0.001 |
| POLE | 0.12 (0.02–0.89) 0.038 | 0.08 (0.01–0.61) 0.015 |
| Other Factors | ||
| Age ≥ 65 years | 1.76 (1.08–2.87) 0.023 | 1.45 (0.89–2.36) 0.136 |
| Stage IB vs. IA | 1.34 (0.82–2.19) 0.241 | 1.62 (1.01–2.60) 0.046 |
| Stage II vs. IA | 1.64 (0.98–2.75) 0.061 | 1.89 (1.13–3.15) 0.015 |
| Grade 3 vs. 1–2 | 2.12 (1.31–3.43) 0.002 | 2.31 (1.42–3.76) 0.001 |
| Non-endometrioid histology | 2.34 (1.45–3.78) <0.001 | 3.10 (1.80–5.30) <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaziz, M.A.M.; Prabhulingam, S.; Olaleye, A.; Yaseen, A.; Sabrah, K.; Aldulaimi, R.; Hesham, N.; Mohamed, A.; Ali, H.; Gajjar, K. Surgical Approach and Outcomes in Early-Stage Endometrial Cancer: A Molecularly Stratified Comparison of Open, Laparoscopic, and Robotic Surgery. Medicina 2025, 61, 2093. https://doi.org/10.3390/medicina61122093
Abdelaziz MAM, Prabhulingam S, Olaleye A, Yaseen A, Sabrah K, Aldulaimi R, Hesham N, Mohamed A, Ali H, Gajjar K. Surgical Approach and Outcomes in Early-Stage Endometrial Cancer: A Molecularly Stratified Comparison of Open, Laparoscopic, and Robotic Surgery. Medicina. 2025; 61(12):2093. https://doi.org/10.3390/medicina61122093
Chicago/Turabian StyleAbdelaziz, Mohamed Abdelwanis Mohamed, Siddesh Prabhulingam, Ayodele Olaleye, Ambreen Yaseen, Khaled Sabrah, Riyam Aldulaimi, Nesma Hesham, Ahmed Mohamed, Hossam Ali, and Ketankumar Gajjar. 2025. "Surgical Approach and Outcomes in Early-Stage Endometrial Cancer: A Molecularly Stratified Comparison of Open, Laparoscopic, and Robotic Surgery" Medicina 61, no. 12: 2093. https://doi.org/10.3390/medicina61122093
APA StyleAbdelaziz, M. A. M., Prabhulingam, S., Olaleye, A., Yaseen, A., Sabrah, K., Aldulaimi, R., Hesham, N., Mohamed, A., Ali, H., & Gajjar, K. (2025). Surgical Approach and Outcomes in Early-Stage Endometrial Cancer: A Molecularly Stratified Comparison of Open, Laparoscopic, and Robotic Surgery. Medicina, 61(12), 2093. https://doi.org/10.3390/medicina61122093

