A Comparative Study of Five Target Volume Definitions for Radiotherapy in Glioblastoma Multiforme
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3D-CRT | Three-dimensional conformal radiation therapy |
| ABTC | American Brain Tumor Consortium |
| ASTRO | American Society for Radiation Oncology |
| CI | Conformity index |
| CT | Computed tomography |
| CTV | Clinical target therapy |
| Dmax | Maximum dose |
| Dmean | Mean dose |
| D1cc | Maximum dose to 1 cc |
| EBRT | External beam radiation therapy |
| EORTC | European Organisation for Research and Treatment of Cancer |
| ESTRO | European Organisation for Research and Treatment of Cancer |
| EANO | European Association of Neuro-Oncology |
| FLAIR | Fluid attenuation inversion recovery |
| GBM | Glioblastoma multiforme |
| GTV | Gross tumor volume |
| Gy | Gray |
| HI | Homogeneity index |
| IMRT | Intensity modulated radiation therapy |
| MRI | Magnetic resonance imaging |
| NCCTG | North Central Cancer Treatment Group |
| OAR | Organ at risk |
| PTV | Planning target volume |
| RT | Radiotherapy |
| RTOG | Radiation Therapy Oncology Group |
| SD | Standard deviation |
| VMAT | Volumetric modulated arc therapy |
| V30 | Organ volume receiving >30 Gy |
References
- Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. Lancet 2018, 392, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Gzell, C.; Back, M.; Wheeler, H.; Bailey, D.; Foote, M. Radiotherapy in Glioblastoma: The Past, the Present and the Future. Clin. Oncol. 2017, 29, 15–25. [Google Scholar] [CrossRef]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.J.; Mundt, A.J.; Sweeney, P.J.; Llanes-Macy, S.; Dunaway, L.; Castillo, M.; Macdonald, R.L. A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology 2003, 60, 1113–1118. [Google Scholar] [CrossRef]
- Cabrera, A.R.; Kirkpatrick, J.P.; Fiveash, J.B.; Shih, H.A.; Koay, E.J.; Lutz, S.; Petit, J.; Chao, S.T.; Brown, P.D.; Vogelbaum, M.; et al. Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract. Radiat. Oncol. 2016, 6, 217–225. [Google Scholar] [CrossRef]
- Burger, P.C.; Heinz, E.R.; Shibata, T.; Kleihues, P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg. 1988, 68, 698–704. [Google Scholar] [CrossRef]
- Kelly, P.J.; Daumas-Duport, C.; Scheithauer, B.W.; Kall, B.A.; Kispert, D.B. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin. Proc. 1987, 62, 450–459. [Google Scholar] [CrossRef]
- Halperin, E.C.; Bentel, G.; Heinz, E.R.; Burger, P.C. Radiation therapy treatment planning in supratentorial glioblastoma multiforme: An analysis based on post mortem topographic anatomy with CT correlations. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 1347–1350. [Google Scholar] [CrossRef]
- Niyazi, M.; Andratschke, N.; Bendszus, M.; Chalmers, A.J.; Erridge, S.C.; Galldiks, N.; Lagerwaard, F.J.; Navarria, P.; Munck Af Rosenschöld, P.; Ricardi, U.; et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 2023, 184, 109663. [Google Scholar] [CrossRef]
- Brock, K.K.; Mutic, S.; McNutt, T.R.; Li, H.; Kessler, M.L. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med. Phys. 2017, 44, e43–e76. [Google Scholar] [CrossRef]
- Niyazi, M.; Brada, M.; Chalmers, A.J.; Combs, S.E.; Erridge, S.C.; Fiorentino, A.; Grosu, A.L.; Lagerwaard, F.J.; Minniti, G.; Mirimanoff, R.O.; et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother. Oncol. 2016, 118, 35–42. [Google Scholar] [CrossRef]
- Scoccianti, S.; Detti, B.; Gadda, D.; Greto, D.; Furfaro, I.; Meacci, F.; Simontacchi, G.; Brina, L.D.; Bonomo, P.; Giacomelli, I.; et al. Organs at risk in the brain and their dose-constraints in adults and in children: A radiation oncologist’s guide for delineation in everyday practice. Radiother. Oncol. 2015, 114, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Feuvret, L.; Noel, G.; Mazeron, J.J.; Bey, P. Conformity index: A review. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 333–342. [Google Scholar] [CrossRef]
- Yeboa, D.N.; Braunstein, S.E.; Cabrera, A.; Crago, K.; Galanis, E.; Hattab, E.M.; Heron, D.E.; Huang, J.; Kim, M.M.; Kirkpatrick, J.P.; et al. Radiation therapy for WHO grade 4 adult-type diffuse glioma: An ASTRO clinical practice guideline. Pract. Radiat. Oncol. 2025, 15, 451–471. [Google Scholar] [CrossRef] [PubMed]
- Steen, R.G.; Spence, D.; Wu, S.; Xiong, X.; Kun, L.E.; Merchant, T.E. Effect of therapeutic ionizing radiation on the human brain. Ann. Neurol. 2001, 50, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Marks, J.E.; Baglan, R.J.; Prassad, S.C.; Blank, W.F. Cerebral radionecrosis: Incidence and risk in relation to dose, time, fractionation and volume. Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 243–252. [Google Scholar] [CrossRef]
- Constine, L.S.; Konski, A.; Ekholm, S.; McDonald, S.; Rubin, P. Adverse effects of brain irradiation correlated with MR and CT imaging. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 319–330. [Google Scholar] [CrossRef]
- Brandes, A.A.; Tosoni, A.; Franceschi, E.; Sotti, G.; Frezza, G.; Amista, P.; Morandi, L.; Spagnolli, F.; Ermani, M. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: Correlation with MGMT promoter methylation status. J. Clin. Oncol. 2009, 27, 1275–1279. [Google Scholar] [CrossRef]
- Minniti, G.; Amelio, D.; Amichetti, M.; Salvati, M.; Muni, R.; Bozzao, A.; Lanzetta, G.; Scarpino, S.; Arcella, A.; Enrici, R.M. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother. Oncol. 2010, 97, 377–381. [Google Scholar] [CrossRef]
- Petrecca, K.; Guiot, M.C.; Panet-Raymond, V.; Souhami, L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neuro-Oncol. 2013, 111, 19–23. [Google Scholar] [CrossRef]
- Sherriff, J.; Tamangani, J.; Senthil, L.; Cruickshank, G.; Spooner, D.; Jones, B.; Brookes, C.; Sanghera, P. Patterns of relapse in glioblastoma multiforme following concomitant chemorahiotherapy with temozolomide. Br. J. Raiol. 2013, 86, 20120414. [Google Scholar] [CrossRef]
- Milano, M.T.; Okunieff, P.; Donatello, R.S.; Mohile, N.A.; Sul, J.; Walter, K.A.; Korones, D.N. Patterns and timing of recurrence after temozolomie-based chemoradiaiton for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1147–1155. [Google Scholar] [CrossRef]
- McDonald, M.W.; Shu, H.K.; Curran, W.J.; Crocker, I.R. Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 130–136. [Google Scholar] [CrossRef]
- Gebhardt, B.J.; Dobelbower, M.C.; Ennis, W.H.; Bag, A.K.; Market, J.M.; Fiveash, J.B. Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomied. Radiat. Oncol. 2014, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Paulsson, A.K.; McMullen, K.P.; Peiffer, A.M.; Hinson, W.H.; Kearns, W.T.; Johnson, A.J.; Lesser, J.G.; Ellis, T.L.; Tatter, S.B.; Debinski, W.; et al. Limited margins using modern radiotherapy techniques does not increase marginal failure rate of glioblastoma. Am. J. Clin. Oncol. 2014, 37, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Guram, K.; Smith, M.; Ginader, T.; Bodeker, K.; Pelland, D.; Pennington, E.; Buatti, J.M. Using smaller-than-standard radiation treatment margins does not change survial outcomes in patients with high grade gliomas. Pract. Radiat. Oncol. 2019, 9, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, R.; Sharma, S.C.; Mukherjee, A.; Khandelwal, N.; Tripathi, M.; Miriyala, R.; Oinam, A.S.; Madan, R.; Yadav, B.S.; et al. Impact of volume of irradiation on survival and quality of life in glioblastoma: A prospective, phase 2, randomized comparison of RTOG and MDACC protocols. Neuro-Oncol. Pract. 2020, 7, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Xiong, H.; Qiu, Y.; Li, G.; Wang, L.; Peng, S. Limited recurrence distance of glioblastoma under modern radiotherapy era. BMC Cancer 2021, 21, 720. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, Z.R.; Yu, Q.Q.; Shi, M.; Yang, Y.; Zhou, X.; Li, C.; Wei, Q. The definition and delineation of the target area of radiotherapy based on the recurrence pattern of glioblastoma after temozolomide chemoradiotherapy. Front. Oncol. 2021, 10, 615368. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, X.; Zhang, B.; He, H.; Shui, Y.; Xu, W.; Jiang, C.; Shen, L.; Wei, Q. Recurrence patterns in patients with high-grade glioma following temozolomide-based chemotherapy. Mol. Clin. Oncol. 2016, 5, 289–294. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Tan, Y.; Jiang, Y.; Lu, H. Observation of the delineation of the target volume of radiotherapy in adult-type diffuse gliomas after temozolomide-based chemoradiotherapy: Analysis of recurrence patterns and predictive factors. Radiat. Oncol. 2023, 18, 16. [Google Scholar] [CrossRef]
- Minniti, G.; Tini, P.; Giraffa, M.; Capone, L.; Raza, G.; Russo, I.; Cinelli, E.; Gentile, P.; Bozzao, A.; Paolini, S.; et al. Feasibility of clinical target volume reduction for glioblastoma treated with standard chemoradiation based on patterns of failure analysis. Radiother. Oncol. 2023, 181, 109435. [Google Scholar] [CrossRef] [PubMed]
- Qui, Y.; Li, Y.; Jiang, C.; Wu, X.; Liu, W.; Fan, C.; Ye, X.; He, L.; Xiao, S.; Zhao, Q.; et al. Toxicity and efficacy of different target volume delineations of radiation therapy based on the updated Radiation Therapy Oncology Group/National Research Group and European Organization for Research and Treatment of cancer guidelines in patients with grade 3-4 glioma: A randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 1168–1181. [Google Scholar] [CrossRef]
- Munck Af Rosenschold, P.; Law, I.; Engelholm, S.A.; Muhic, A.; Lundemann, M.J.; Roed, H.; Grunnet, K.; Skovgaard Poulsen, H. Influence of volumetric arc therapy and FET-PET scanning on treatment outcomes for glioblastoma patients. Radiother. Oncol. 2019, 130, 149–155. [Google Scholar] [CrossRef]
- Gondi, V.; Hermann, B.P.; Mehta, M.P.; Tome, W.A. Hippocampal dosimetry predicts neurocognitive function impaitment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e487–e493. [Google Scholar] [CrossRef]
- Hofmaier, J.; Kantz, S.; Söhn, M.; Dohm, O.S.; Bachle, S.; Alber, M.; Parodi, K.; Belka, C.; Niyazi, M. Hippocampal sparing radiotherapy for glioblastoma patients: A planning study using volumetric modulated arc therapy. Radiat. Oncol. 2016, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Le Fevre, C.; Cheng, X.; Loit, M.P.; Keller, A.; Cebula, H.; Antoni, D.; Thiery, A.; Constans, J.M.; Proust, F.; Noel, G. Role of hippocampal location and radiation dose in glioblastoma patients with hippocampal atrophy. Radiat. Oncol. 2021, 16, 112. [Google Scholar] [CrossRef]
- Tseng, C.L.; Zeng, K.L.; Mellon, E.A.; Soltys, S.G.; Ruschin, M.; Lau, A.Z.; Lutsik, N.S.; Chan, R.W.; Detsky, J.; Stewart, J.; et al. Evolving concepts in margin strategies and adaptive radiotherapy for glioblastoma: A new future is on the horizon. Neuro-Oncol. 2024, 26, S3–S16. [Google Scholar] [CrossRef]
- Marwaha, A.S.; Shepard, M.J.; Karlovits, S.M.; Herbst, J.; Wegner, R.E. Advancements in adaptive MR-guided radiotherapy for high-grade gliomas. J. Neuro-Oncol. 2025, 174, 1–6. [Google Scholar] [CrossRef]
- Tseng, C.L.; Stewart, J.; Whitfield, G.; Verhoeff, J.J.C.; Bovi, J.; Soliman, H.; Chung, C.; Myrehaug, S.; Campell, M.; Atenafu, E.G.; et al. Glioma consensus contouring recommendations from a MR-Linac International Consortium Research Group and evaluation of a CT-MRI and MRI-only workflow. J. Neuro-Oncol. 2020, 149, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.L.; Chen, H.; Stewart, J.; Lau, A.Z.; Chan, R.W.; Lawrence, L.S.P.; Myrehaug, S.; Soliman, H.; Detsky, J.; Lim-Fat, M.J.; et al. High grade glioma radiation therapy on a high field 1.5 Tesla MR-Linac-workflow and initial experience with daily adapt-to-position (ATP) MR guidance: A first report. Front. Oncol. 2022, 12, 1060098. [Google Scholar] [CrossRef] [PubMed]
- Guevara, B.; Cullison, K.; Maziero, D.; Azzam, G.A.; De LA Fuente, M.I.; Brown, K.; Valderrama, A.; Meshman, J.; Breto, A.; Ford, J.C.; et al. Simulated adaptive radiotherpay for shrinking glioblastoma resection cavities on a Hybrid MRI-Linear Accelerator. Cancers 2023, 15, 1555. [Google Scholar] [CrossRef] [PubMed]
- Detsky, J.; Chan, A.W.; Palhares, D.M.; Hudson, J.M.; Stewart, J.; Chen, H.; Das, S.; Lipsman, N.; Lim-Fat, M.J.; Perry, J.; et al. MR-Linac On-Line Weekly Adaptive Radiotherapy for High Grade Glioma (HGG): Results from the UNITED Single Arm Phase II Trial. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, S4. [Google Scholar] [CrossRef]


| Group | Definition | CTV-Initial | CTV-Boost | PTV |
|---|---|---|---|---|
| ABTC | Two-phase: 46 + 14 = 60 Gy | T2 + T1E + resection cavity + 5 mm | Resection cavity + T1E + 5 mm | 5 mm |
| EORTC | Single-phase | Resection cavity + T1E + 2 cm | - | 5 mm |
| NCCTG/Alliance | Two-phase: 50 + 10 = 60 Gy | T2 + T1E + resection cavity + 20 mm | Resection cavity + T1E + 20 mm | - |
| RTOG/NRG | Two-phase: 46 + 14 = 60 Gy | T2 +T1E + resection cavity + 20 mm | Resection cavity + T1E + 20 mm | 5 mm |
| ESTRO/EANO | Single-phase | Resection cavity + T1E + 15 mm (include non-contrast-enhancing tumor if suspected on FLAIR imaging) | - | 3 mm |
| Organ at Risk | Dose Constrains | Dose Constraints-Second Criteria |
|---|---|---|
| Optic chiasm | Dmax < 54 Gy | Dmax < 60 Gy |
| Optic nerve | Dmax < 54 Gy | Dmax < 55 Gy |
| Cochlea | Dmean < 45 Gy | |
| Brainstem | Dmax < 54 Gy | Dmax < 60 Gy, D59 Gy < 10 cc |
| Pituitary gland | Dmax < 50 Gy | Dmax < 60 Gy |
| Eyes | Macula < 45 Gy | |
| Retina | Dmax < 45 Gy | Dmax < 50 Gy |
| Lacrimal gland | Dmax < 40 Gy V30 Gy < 50% | |
| Lens | Dmax < 6 Gy | Dmax < 10 Gy |
| Parameter | Group A (ABTC) Median (Min–Max) | Group B (NCCTG/Alliance) Median (Min–Max) | Group C (RTOG/NRG) Median (Min–Max) | Group D (EORTC) Median (Min–Max) | Group E (ESTRO/EANO) Median (Min–Max) | p-Values |
|---|---|---|---|---|---|---|
| PTV cm3 | 293.8 (100–508.5) | 436.4 (213.7–714.6) | 519.7 (268–861) | 299 (151–694.5) | 220.4 (83.8–526.3) | All comparisons p < 0.001 * except: A vs. D (p = 0.083) |
| Brain-PTV Dmean Gy | 19 (10.2–24.6) | 23.9 (15.4–32) | 24.6 (16.2–31.3) | 24.6 (14.9–37.9) | 21.3 (11.8–35.9) | A vs. B, A vs. C, A vs. D (p < 0.001 *), A vs. E (p = 0.015) |
| Parameter | Group A (ABTC) Median (Min–Max) | Group B (NCCTG/Alliance) Median (Min–Max) | Group C (RTOG/NRG) Median (Min–Max) | Group D (EORTC) Median (Min–Max) | Group E (ESTRO/EANO) Median (Min–Max) | p-Values |
|---|---|---|---|---|---|---|
| PTV cm3 | 144.5 (46–351.3) | 233 (109.7–594) | 292 (150.6–691) | 299 (151–694.5) | 220.4 (83.8–526.3) | All comparisons p < 0.001 * except: C vs. D (p = 0.078) |
| Brain-PTV Dmean Gy | 25.9 (13.5–33.7) | 31.5 (19.3–39.8) | 34.3 (19.8–41.9) | 24.6 (14.9–37.9) | 21.3 (11.8–35.9) | All comparisons p < 0.001 * except: A vs. D (p = 0.481) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibis, K.; Toraman, K.O.; Akbas, C.K.; Guniken, O.G.; Kokce, K.; Gunay, S.C.; Meral, R.; Altun, M. A Comparative Study of Five Target Volume Definitions for Radiotherapy in Glioblastoma Multiforme. Medicina 2025, 61, 1860. https://doi.org/10.3390/medicina61101860
Ibis K, Toraman KO, Akbas CK, Guniken OG, Kokce K, Gunay SC, Meral R, Altun M. A Comparative Study of Five Target Volume Definitions for Radiotherapy in Glioblastoma Multiforme. Medicina. 2025; 61(10):1860. https://doi.org/10.3390/medicina61101860
Chicago/Turabian StyleIbis, Kamuran, Kubra Ozkaya Toraman, Canan Koksal Akbas, Ozlem Guler Guniken, Korhan Kokce, Sezi Ceren Gunay, Rasim Meral, and Musa Altun. 2025. "A Comparative Study of Five Target Volume Definitions for Radiotherapy in Glioblastoma Multiforme" Medicina 61, no. 10: 1860. https://doi.org/10.3390/medicina61101860
APA StyleIbis, K., Toraman, K. O., Akbas, C. K., Guniken, O. G., Kokce, K., Gunay, S. C., Meral, R., & Altun, M. (2025). A Comparative Study of Five Target Volume Definitions for Radiotherapy in Glioblastoma Multiforme. Medicina, 61(10), 1860. https://doi.org/10.3390/medicina61101860

