Uric Acid and Impulse Control Disorders in Parkinson’s Disease: A Cross-Sectional Analysis
Abstract
1. Introduction
Uric Acid and Its Role in PD Pathophysiology
2. Materials and Methods
2.1. Participant Characteristics and Data Collection Procedure
2.2. Study Procedures and Assessment Tools
2.3. Statistical Analysis
3. Results
3.1. Prevalence of Impulse Control Disorders and Their Clinical Correlates
3.2. Uric Acid and Its Clinical Correlates
3.3. Uric Acid and the Occurrence of Impulse Control Disorders
3.4. Logistic Regression Analysis
4. Discussion
4.1. Uric Acid and Its Association with Parkinson’s Disease Symptoms
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE-III | Addenbrooke’s Cognitive Examination III |
AD | Alzheimer’s disease |
BDI-II | Beck Depression Inventory-II |
CI | Confidence interval |
DA | Dopamine agonist |
DRT | Dopaminergic replacement therapy |
H&Y | Hoehn and Yahr scale |
ICD | Impulse control disorder |
ICD-RB | Impulse control disorder-related behavior |
IQR | Interquartile range |
LEDD | Levodopa equivalent daily dose |
MDS-UPDRS | Movement Disorder Society–Unified Parkinson’s Disease Rating Scale |
MMSE | Mini-Mental State Examination |
MoCA | Montreal Cognitive Assessment |
MS | Multiple sclerosis |
NMS | Non-motor symptoms |
NMS-Quest | Non-Motor Symptoms Questionnaire |
NMSS | Non-Motor Symptoms Scale |
OR | Odds ratio |
PD | Parkinson’s disease |
PwP/PwPs | Patient(s) with Parkinson’s disease |
QUIP | Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease |
R | Spearman’s rank correlation coefficient |
ROS | Reactive oxygen species |
SD | Standard deviation |
UA | Uric acid |
UA/Cr | Uric acid to creatinine ratio |
References
- Ji, Z.; Chen, Q.; Yang, J.; Hou, J.; Wu, H.; Zhang, L. Global, regional, and national health inequalities of Alzheimer’s disease and Parkinson’s disease in 204 countries, 1990–2019. Int. J. Equity Health 2024, 23. [Google Scholar] [CrossRef]
- Filidei, M.; Marsili, L.; Colosimo, C. Do Parkinson’s Disease clinical subtypes really exist? Neurol. Neurochir. Pol. 2025, 59, 127–143. [Google Scholar] [CrossRef]
- Pfeiffer, R.F. Non-motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2016, 22, S119–22. [Google Scholar] [CrossRef]
- Oikonomou, P.; Koschel, J.; Altmann, C.F.; Jost, W.H. Differences in prevalence of orthostatic hypotension between Parkinson’s Disease motor subtypes. Neurol. Neurochir. Pol. 2025, 59, 188–190. [Google Scholar] [CrossRef]
- Bougea, A.; Angelopoulou, E. Non-Motor Disorders in Parkinson Disease and Other Parkinsonian Syndromes. Medicina 2024, 60, 309. [Google Scholar] [CrossRef]
- Jucevičiūtė, N.; Balnytė, R.; Laucius, O. Exploring the Spectrum of Visual Illusions and Other Minor Hallucinations in Patients with Parkinson’s Disease in Lithuania. Medicina 2024, 60, 606. [Google Scholar] [CrossRef]
- Furdu-Lunguț, E.; Antal, C.; Turcu, S.; Costea, D.G.; Mitran, M.; Mitran, L.; Diaconescu, A.S.; Novac, M.B.; Gorecki, G.P. Study on Pharmacological Treatment of Impulse Control Disorders in Parkinson’s Disease. J. Clin. Med. 2024, 13, 6708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Wang, X.X.; Feng, Y.; Fekete, R.; Jankovic, J.; Wu, Y.C. Impulse Control Disorders in Parkinson’s Disease: Epidemiology, Pathogenesis and Therapeutic Strategies. Front. Psychiatry 2021, 12, 635494. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Lewis, S. Impulse control disorders in Parkinson’s disease: What’s new? J. Neurol. 2025, 272, 138. [Google Scholar] [CrossRef] [PubMed]
- El Otmani, H.; Abdulhakeem, Z.; El Moutawakil, B.; Bellakhdar, S.; Rafai, M.A. Excessive charity: A new aspect of impulse control disorders in Parkinson’s disease? Int. Psychogeriatr. 2020, 32, 665–666. [Google Scholar] [CrossRef]
- Augustine, A.; Winstanley, C.A.; Krishnan, V. Impulse control disorders in parkinson’s disease: From bench to bedside. Front. Neurosci. 2021, 15, 654238. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Lin, R.J.; Chu, C.L.; Chen, Y.L.; Fu, S.C. Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 6146. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, V.; Corvol, J.C. Impulse control disorder: Review on clinical, pharmacologic, and genetic risk factors. Rev. Neurol. 2024, 180, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Chmiela, T.; Wszolek, Z.K.; Wilson, J.R. Parkinson’s Disease and glucose dysregulation: Shared pathophysiological mechanisms and clinical implications. Neurol. Neurochir. Pol. 2025, 59, 385–395. [Google Scholar] [CrossRef]
- Yamashita, K.Y.; Bhoopatiraju, S.; Silverglate, B.D.; Grossberg, G.T. Biomarkers in Parkinson’s disease: A state of the art review. Biomark. Neuropsychiatry 2023, 9, 100074. [Google Scholar] [CrossRef]
- Seifar, F.; Dinasarapu, A.R.; Jinnah, H.A. Uric Acid in Parkinson′s Disease: What Is the Connection? Mov. Disord. 2022, 37, 2173–2183. [Google Scholar] [CrossRef]
- Chang, H.; Wang, B.; Shi, Y.; Zhu, R. Dose-response meta-analysis on urate, gout, and the risk for Parkinson’s disease. NPJ Park. Dis. 2022, 8, 160. [Google Scholar] [CrossRef]
- Otani, N.; Hoshiyama, E.; Ouchi, M.; Takekawa, H.; Suzuki, K. Uric acid and neurological disease: A narrative review. Front. Neurol. 2023, 14, 1164756. [Google Scholar] [CrossRef]
- Gao, X.; O’Reilly, E.J.; Schwarzschild, M.A.; Ascherio, A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology 2016, 86, 520–526. [Google Scholar] [CrossRef]
- Dănău, A.; Dumitrescu, L.; Lefter, A.; Popescu, B.O. Serum Uric Acid Levels in Parkinson’s Disease: A Cross-Sectional Electronic Medical Record Database Study from a Tertiary Referral Centre in Romania. Medicina 2022, 58, 245. [Google Scholar] [CrossRef]
- Odeniyi, O.A.; Ojo, O.O.; Odeniyi, I.A.; Okubadejo, N.U. Association of serum uric acid and non-motor symptoms in Parkinson’s disease. J. Clin. Sci. 2022, 19, 104–109. [Google Scholar] [CrossRef]
- Moccia, M.; Picillo, M.; Erro, R.; Vitale, C.; Longo, K.; Amboni, M.; Santangelo, G.; Spina, E.; De Rosa, A.; De Michele, G.; et al. Is serum uric acid related to non-motor symptoms in de-novo Parkinson’s disease patients? Park. Relat. Disord. 2014, 20, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in parkinson’s disease. J. Park. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Henchcliffe, C.; Beal, F.M. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 2008, 4, 600–609. [Google Scholar] [CrossRef]
- Chen, X.; Burdett, T.C.; Desjardins, C.A.; Logan, R.; Cipriani, S.; Xu, Y.; Schwarzschild, M.A. Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 300–305. [Google Scholar] [CrossRef]
- Ascherio, A.; LeWitt, P.A.; Xu, K.; Eberly, S.; Watts, A.; Matson, W.R.; Marras, C.; Kieburtz, K.; Rudolph, A.; Bogdanov, M.B.; et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 2009, 66, 1460–1468. [Google Scholar] [CrossRef]
- Sutin, A.R.; Cutler, R.G.; Camandola, S.; Uda, M.; Feldman, N.H.; Cucca, F.; Zonderman, A.B.; Mattson, M.P.; Ferrucci, L.; Schlessinger, D.; et al. Impulsivity is Associated with Uric Acid: Evidence from Humans and Mice. Biol. Psychiatry 2014, 75, 31–37. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, C.; Zhang, C.; Wang, W.; Li, Y.; Qiu, H.; Wang, G.; Li, D.; Chen, X.; Lv, Z.; et al. Association Between Serum Uric Acid Levels and Suicide Attempts in Adolescents and Young Adults with Major Depressive Disorder: A Retrospective Study. Neuropsychiatr. Dis. Treat. 2022, 18, 1469–1477. [Google Scholar] [CrossRef]
- Toś, M.; Grażyńska, A.; Antoniuk, S.; Siuda, J. Impulse Control Disorders in Parkinson’s Disease and Atypical Parkinsonian Syndromes—Is There a Difference? Brain Sci. 2024, 14, 181. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Weintraub, D.; Mamikonyan, E.; Papay, K.; Shea, J.A.; Xie, S.X.; Siderowf, A. Questionnaire for impulsive-compulsive disorders in Parkinson’s Disease-Rating Scale. Mov. Disord. 2012, 27, 242–247. [Google Scholar] [CrossRef]
- Songsomboon, C.; Tanprawate, S.; Soontornpun, A.; Wantaneeyawong, C.; Louthrenoo, W. Serum Uric Acid, Serum Uric Acid to Serum Creatinine Ratio and Serum Bilirubin in Patients With Parkinson’s Disease: A Case-Control Study. J. Clin. Med. Res. 2020, 12, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Al-Attas, O.S.; Wani, K.; Sabico, S.; Alokail, M.S. Serum Uric Acid to Creatinine Ratio and Risk of Metabolic Syndrome in Saudi Type 2 Diabetic Patients. Sci. Rep. 2017, 7, 12104. [Google Scholar] [CrossRef] [PubMed]
- Siuda, J.; Boczarska-Jedynak, M.; Budrewicz, S.; Dulski, J.; Figura, M.; Fiszer, U.; Gajos, A.; Gorzkowska, A.; Koziorowska-Gawron, E.; Koziorowski, D.; et al. Validation of the Polish version of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Neurol. Neurochir. Pol. 2020, 54, 416–425. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, B.; Popiel, A.; Pragłowska, E. Charakterystyka psychometryczna polskiej adaptacji Kwestionariusza Depresji BDI-II Aarona T. Becka. Psychol. Etiol. Genet. 2009, 19, 71–95. [Google Scholar]
- Pangman, V.C.; Sloan, J.; Guse, L. An examination of psychometric properties of the Mini-Mental State Examination and the standardized Mini-Mental State Examination: Implications for clinical practice. Appl. Nurs. Res. 2000, 13, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.A.; Perez-Lloret, S.; Roldan Gerschcovich, E.; Martin, M.E.; Leiguarda, R.; Merello, M. Addenbrooke’s Cognitive Examination validation in Parkinson’s disease. Eur. J. Neurol. 2009, 16, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Jost, S.T.; Kaldenbach, M.A.; Antonini, A.; Martinez-Martin, P.; Timmermann, L.; Odin, P.; Katzenschlager, R.; Borgohain, R.; Fasano, A.; Stocchi, F.; et al. Levodopa Dose Equivalency in Parkinson’s Disease: Updated Systematic Review and Proposals. Mov. Disord. 2023, 38, 1236–1252. [Google Scholar] [CrossRef] [PubMed]
- Toś, M.; Grażyńska, A.; Antoniuk, S.; Siuda, J. Impulse Control Disorders in the Polish Population of Patients with Parkinson’s Disease. Medicina 2023, 59, 1468. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, D.; Koester, J.; Potenza, M.N.; Siderowf, A.D.; Stacy, M.; Voon, V.; Whetteckey, J.; Wunderlich, G.R.; Lang, A.E. Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Arch. Neurol. 2010, 67, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Barone, P.; Bonuccelli, U.; Annoni, K.; Asgharnejad, M.; Stanzione, P. ICARUS study: Prevalence and clinical features of impulse control disorders in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2017, 88, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Marković, V.; Stanković, I.; Petrović, I.; Stojković, T.; Dragašević-Mišković, N.; Radovanović, S.; Svetel, M.; Stefanova, E.; Kostić, V. Dynamics of impulsive–compulsive behaviors in early Parkinson’s disease: A prospective study. J. Neurol. 2020, 267, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Wolfschlag, M.; Weber, G.C.; Weintraub, D.; Odin, P.; Håkansson, A. Impulse control disorders in Parkinson’s disease: A national Swedish registry study on high-risk treatments and vulnerable patient groups. J. Neurol. Neurosurg. Psychiatry 2024, 96, 265–271. [Google Scholar] [CrossRef]
- Staubo, S.C.; Fuskevåg, O.M.; Toft, M.; Lie, I.H.; Alvik, K.M.J.; Jostad, P.; Tingvoll, S.H.; Lilleng, H.; Rosqvist, K.; Størset, E.; et al. Dopamine agonist serum concentrations and impulse control disorders in Parkinson’s disease. Eur. J. Neurol. 2024, 31, e16144. [Google Scholar] [CrossRef]
- Joosten, L.A.B.; Crişan, T.O.; Bjornstad, P.; Johnson, R.J. Asymptomatic hyperuricaemia: A silent activator of the innate immune system. Nat. Rev. Rheumatol. 2020, 16, 75–86. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022, 27, 45–52. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Chaudhary, M.R.; Chaudhary, S.; Sharma, Y.; Singh, T.A.; Mishra, A.K.; Sharma, S.; Mehdi, M.M. Aging, oxidative stress and degenerative diseases: Mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023, 24, 609–662. [Google Scholar] [CrossRef]
- Schrag, M.; Mueller, C.; Zabel, M.; Crofton, A.; Kirsch, W.M.; Ghribi, O.; Squitti, R.; Perry, G. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Neurobiol. Dis. 2013, 59, 100–110. [Google Scholar] [CrossRef]
- Xu, L.; Li, C.; Wan, T.; Sun, X.; Lin, X.; Yan, D.; Li, J.; Wei, P. Targeting uric acid: A promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun. Signal. 2025, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zeng, L.; Bu, L.; Liao, H.; Wang, M.; Xiong, Y.; Cao, F. Association between high uric acid and the risk of Parkinson’s disease: A meta-analysis. Medicine 2024, 103, e38947. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Ji, H.-F. Low uric acid levels in patients with Parkinson’s disease: Evidence from meta-analysis. BMJ Open 2013, 3, 3620. [Google Scholar] [CrossRef]
- Weisskopf, M.G.; O’reilly, E.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Plasma urate and risk of Parkinson’s disease. Am. J. Epidemiol. 2007, 166, 561–567. [Google Scholar] [CrossRef]
- Hink, H.U.; Santanam, N.; Dikalov, S.; McCann, L.; Nguyen, A.D.; Parthasarathy, S.; Harrison, D.G.; Fukai, T. Peroxidase properties of extracellular superoxide dismutase role of uric acid in modulating in vivo activity. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.; Wood, N.W. Molecular pathogenesis of Parkinson’s disease. Hum. Mol. Genet. 2005, 14, 2749–2755. [Google Scholar] [CrossRef]
- Schlesinger, I.; Schlesinger, N. Uric acid in Parkinson’s disease. Mov. Disord. 2008, 23, 1653–1657. [Google Scholar] [CrossRef]
- Chang, K.H.; Chen, C.M. The role of oxidative stress in Parkinson’s disease. Antioxidants 2020, 9, 597. [Google Scholar] [CrossRef]
- Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2015, 9, 91. [Google Scholar] [CrossRef]
- Moccia, M.; Pappatà, S.; Erro, R.; Picillo, M.; Vitale, C.; Amboni, M.; Longo, K.; Palladino, R.; Barone, P.; Pellecchia, M.T. Uric acid relates to dopamine transporter availability in Parkinson’s disease. Acta Neurol. Scand. 2015, 131, 127–131. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, S.; Singh, V.K.; Pathak, A.; Chaurasia, R.N.; Mishra, V.N.; Joshi, D. Assessment of non-motor symptoms of Parkinson’s disease and their impact on the quality of life: An observatiobnal study. Ann. Indian Acad. Neurol. 2022, 25, 909–915. [Google Scholar] [CrossRef] [PubMed]
- van Wamelen, D.J.; Sauerbier, A.; Leta, V.; Rodriguez-Blazquez, C.; Falup-Pecurariu, C.; Rodriguez-Violante, M.; Rizos, A.; Tsuboi, Y.; Metta, V.; Bhidayasiri, R.; et al. Cross-sectional analysis of the Parkinson’s disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life. Sci. Rep. 2021, 11, 9611. [Google Scholar] [CrossRef] [PubMed]
- Grażyńska, A.; Urbaś, W.; Antoniuk, S.; Adamczewska, K.; Bień, M.; Chmiela, T.; Siuda, J. Comparative analysis of non-motor symptoms in patients with Parkinson’s Disease and atypical parkinsonisms. Clin. Neurol. Neurosurg. 2020, 197, 106088. [Google Scholar] [CrossRef] [PubMed]
- Grażyńska, A.; Adamczewska, K.; Antoniuk, S.; Bień, M.; Toś, M.; Kufel, J.; Urbaś, W.; Siuda, J. The influence of serum uric acid level on non-motor symptoms occurrence and severity in patients with idiopathic parkinson’s disease and atypical parkinsonisms—A systematic review. Medicina 2021, 57, 972. [Google Scholar] [CrossRef]
- Van Wamelen, D.J.; Taddei, R.N.; Calvano, A.; Titova, N.; Leta, V.; Shtuchniy, I.; Jenner, P.; Martinez-Martin, P.; Katunina, E.; Chaudhuri, K.R. Serum Uric Acid Levels and Non-Motor Symptoms in Parkinson’s Disease. J. Park. Dis. 2020, 10, 1003–1010. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, J.; Ma, J.; Wang, Z.; Sun, W.; Li, M.; Huang, S.; Hu, S. Low serum uric acid levels are associated with the nonmotor symptoms and brain gray matter volume in Parkinson’s disease. Neurol. Sci. 2022, 43, 1747–1754. [Google Scholar] [CrossRef]
- Siuda, J.; Toś, M.; Chmiela, T.; Bogucki, A.; Borodziuk, B.; Budrewicz, S.; Dąbrowski, M.; Gacan, M.; Gajos, A.; Gawryluk, J. Validation of the Polish version of the Movement Disorder Society Non-motor Rating Scale (MDS-NMS). Neurol. Neurochir. Pol. 2025, 59, 396–402. [Google Scholar] [CrossRef]
- Bartoli, F.; Crocamo, C.; Mazza, M.G.; Clerici, M.; Carrà, G. Uric acid levels in subjects with bipolar disorder: A comparative meta-analysis. J. Psychiatr. Res. 2016, 81, 133–139. [Google Scholar] [CrossRef]
- Lyngdoh, T.; Bochud, M.; Glaus, J.; Castelao, E.; Waeber, G.; Vollenweider, P.; Preisig, M. Associations of serum uric acid and SLC2A9 variant with depressive and anxiety disorders: A population-based study. PLoS ONE 2013, 8, e76336. [Google Scholar] [CrossRef]
- Wen, S.; Cheng, M.; Wang, H.; Yue, J.; Wang, H.; Li, G.; Zheng, L.; Zhong, Z.; Peng, F. Serum uric acid levels and the clinical characteristics of depression. Clin. Biochem. 2012, 45, 49–53. [Google Scholar] [CrossRef]
- Gallagher, J.; Gochanour, C.; Caspell-Garcia, C.; Dobkin, R.D.; Aarsland, D.; Alcalay, R.N.; Barrett, M.J.; Chahine, L.; Chen-Plotkin, A.S.; Coffey, C.S.; et al. Long-Term Dementia Risk in Parkinson Disease. Neurology 2024, 103, e209699. [Google Scholar] [CrossRef]
- Åström, D.O.; Simonsen, J.; Raket, L.L.; Sgarbi, S.; Hellsten, J.; Hagell, P.; Norlin, J.M.; Kellerborg, K.; Martinez-Martin, P.; Odin, P. High risk of developing dementia in Parkinson’s disease: A Swedish registry-based study. Sci. Rep. 2022, 12, 16759. [Google Scholar] [CrossRef]
- Hendriks, M.; Vinke, S.; Berlot, R.; Benedičič, M.; Jahansahi, M.; Trošt, M.; Georgiev, D. In Parkinson’s disease dopaminergic medication and deep brain stimulation of the subthalamic nucleus increase motor, but not reflection and cognitive impulsivity. Front. Neurosci. 2024, 18, 1378614. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Bougea, A.; Hatzimanolis, A.; Stefanis, L.; Scarmeas, N.; Papageorgiou, S. Mild Behavioral Impairment in Parkinson’s Disease: An Updated Review on the Clinical, Genetic, Neuroanatomical, and Pathophysiological Aspects. Medicina 2024, 60, 115. [Google Scholar] [CrossRef] [PubMed]
- Moccia, M.; Picillo, M.; Erro, R.; Vitale, C.; Longo, K.; Amboni, M.; Santangelo, G.; Palladino, R.; Capo, G.; Orefice, G.; et al. Presence and progression of non-motor symptoms in relation to uric acid in de novo Parkinson’s disease. Eur. J. Neurol. 2015, 22, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Gao, H.; Long, L.; Xu, Y.; Liu, M.; Zou, J.; Wu, A.; Wei, X.; Chen, X.; Tang, B.; et al. Serum Uric Acid in Patients with Parkinson’s Disease and Vascular Parkinsonism: A Cross-Sectional Study. Neuroimmunomodulation 2012, 20, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ng, S.Y.E.; Chia, N.S.Y.; Acharyya, S.; Setiawan, F.; Lu, Z.H.; Ng, E.; Tay, K.Y.; Au, W.L.; Tan, E.K.; et al. Serum uric acid level and its association with motor subtypes and non-motor symptoms in early Parkinson’s disease: PALS study. Park. Relat. Disord. 2018, 55, 50–54. [Google Scholar] [CrossRef]
- Gerard Moeller, F.; Barratt, E.S.; Dougherty, D.M.; Schmitz, J.M.; Swann, A.C. Psychiatric Aspects of Impulsivity. Am. J. Psychiatry 2001, 158, 1783–1793. [Google Scholar] [CrossRef]
- Yildiz, S.; Kazgan Kılıçaslan, A.; Kurt, O.; Sevda, K.; Uğur, K. The Correlation Between Serum Uric Acid Level and Certain Clinical Variables in Antisocial Personality Disorder Patients. Neuropsychiatr. Investig. 2022, 59, 45–52. [Google Scholar] [CrossRef]
- Nurmedov, S.; İbadi, Y.; Noyan, C.; Yilmaz, O.; Kesebir, S.; Dilbaz, N.; Kose, M. Relationship Between Impulsivity and Plasma Uric Acid Levels in Patients with Substance Use Disorders Relationship between impulsivity and plasma uric acid levels in patients with substance use disorders. Bull. Clin. Psychopharmacol. 2016, 26, 223–228. [Google Scholar] [CrossRef]
- Johnson, R.J.; Wilson, W.L.; Bland, S.T.; Lanaspa, M.A. Fructose and uric acid as drivers of a hyperactive foraging response: A clue to behavioral disorders associated with impulsivity or mania? Evol. Hum. Behav. 2021, 42, 194–203. [Google Scholar] [CrossRef]
- Warden, A.C.M.; McAllister, C.; Ruitenberg, M.F.L.; MacDonald, H.J. Impulse control in Parkinson’s disease: Distinct effects between action and choice. Neurosci. Biobehav. Rev. 2025, 169, 106026. [Google Scholar] [CrossRef] [PubMed]
- Criaud, M.; Anton, J.L.; Nazarian, B.; Longcamp, M.; Metereau, E.; Boulinguez, P.; Ballanger, B. The human basal ganglia mediate the interplay between reactive and proactive control of response through both motor inhibition and sensory modulation. Brain Sci. 2021, 11, 560. [Google Scholar] [CrossRef]
- MacDonald, P.A.; Monchi, O. Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: Implications for cognitive function. Park. Dis. 2011, 2011, 572743. [Google Scholar] [CrossRef] [PubMed]
- Gentili, C.; Vanello, N.; Podina, I.; Popita, R.; Voinescu, B.; Pietrini, P.; David, D. You do not have to act to be impulsive: Brain resting-state activity predicts performance and impulsivity on the Balloon Analogue Risk Task. Behav. Brain Res. 2020, 379, 112395. [Google Scholar] [CrossRef] [PubMed]
- Kapsomenakis, A.; Kasselimis, D.; Vaniotis, E.; Bougea, A.; Koros, C.; Simitsi, A.M.; Stefanis, L.; Potagas, C. Frequency of Impulsive-Compulsive Behavior and Associated Psychological Factors in Parkinson’s Disease: Lack of Control or Too Much of It? Medicina 2023, 59, 1942. [Google Scholar] [CrossRef]
- Barassi, A.; Corsi Romanelli, M.M.; Pezzilli, R.; Dozio, E.; Damele, C.A.L.; Vaccalluzzo, L.; Di Dario, M.; Goi, G.; Papini, N.; Massaccesi, L.; et al. Levels of uric acid in erectile dysfunction of different aetiology. Aging Male 2018, 21, 200–205. [Google Scholar] [CrossRef]
- Chen, W.; Song, W.; Zhang, H.; Su, X.; Chen, J.; Chen, J. Potential links between serum uric acid levels and testosterone levels in adult males: A cross-sectional study. Sci. Rep. 2025, 15, 16924. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, K.; Wang, Y.; Chen, Y.; Zhang, W.; Xia, F.; Zhang, Y.; Wang, N.; Lu, Y. The Associations Between Gonadal Hormones and Serum Uric Acid Levels in Men and Postmenopausal Women With Diabetes. Front. Endocrinol. 2020, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.F.G.; Souza-Junior, T.P.; Fechio, J.J.; Gomes-Santos, J.A.F.; Sampaio, R.C.; Vardaris, C.V.; Lambertucci, R.H.; de Barros, M.P. Uric Acid and Cortisol Levels in Plasma Correlate with Pre-Competition Anxiety in Novice Athletes of Combat Sports. Brain Sci. 2022, 12, 712. [Google Scholar] [CrossRef]
- Tao, R.; Li, H. High serum uric acid level in adolescent depressive patients. J. Affect. Disord. 2015, 174, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis 2018, 278, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Gersch, C.; Palii, S.P.; Kim, K.M.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids 2008, 27, 967–978. [Google Scholar] [CrossRef]
- Papežíková, I.; Pekarová, M.; Kolářová, H.; Klinke, A.; Lau, D.; Baldus, S.; Lojek, A.; Kubala, L. Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic. Res. 2013, 47, 82–88. [Google Scholar] [CrossRef]
Clinical Features (N = 172) | Treatment and LEDD |
---|---|
Sex: male 107 (62.21%); female 65 (37.79%) | Levodopa: 148 (86.05%) |
Age (years): 63.72 ± 9.72 | DA (any): 107 (62.21%) |
Age at diagnosis, (years): 54.07 ± 10.82 | Pramipexole: 16 (9.30%) |
Disease duration, (years): 9.74 ± 6.02 | Ropinirole: 85 (49.42%) |
H&Y: median 3.00 (IQR 2–3) | Piribedil: 6 (3.49%) |
MDS-UPDRS part III OFF: 42.06 ± 18.88 | Amantadine: 47 (27.33%) |
MDS-UPDRS part III ON: 20.73 ± 12.84 | MAO-B inhibitors: 32 (18.60%) |
Motor complications: 103 (59.88%) | COMT inhibitors: 8 (4.66%) |
Levodopa–induced dyskinesia: 81 (47.09%) | Total LEDD (mg): 1104.85 ± 678.69 |
Wearing-off phenomenon: 86 (50.00%) | LD LEDD (mg): 911.39 ± 540.76 |
Cognitive status: lack of dementia 96 (55.81%), MCI 58 (33.72%), mild 16 (9.30%), moderate 2 (1.16%) | DA LEDD (mg): 212.59 ± 209.29 |
Depression: minimal 145 (84.30%), mild 20 (11.63%), moderate 7 (4.07%) | Therapy type: levodopa + DA 95 (56.73%); levodopa mono 56 (31.58%); DA mono 10 (5.85%); no DRT 9 (5.26%); other 1 (0.58%) |
ICD Patients | Non-ICD Patients | p | |
---|---|---|---|
Male | 29 (69.05%) | 78 (60%) | 0.293 |
Age at examination (years) | 67.5 (IQR 13) | 65 (IQR 13) | 0.136 |
Age of onset (years) | 53.98 ± 10.16 | 54.11 ± 11.19 | 0.946 |
Disease duration (years) | 11 (IQR 8) | 8 (IQR 9) | 0.004 * |
MDS-UPDRS part III in OFF state | 40 (IQR 22) | 40 (IQR 24) | 0.992 |
MDS-UPDRS part III in ON state | 19.5 (IQR 19.5) | 20 (IQR 17) | 0.945 |
H&Y | 3 (IQR 1) | 3 (IQR 1) | 0.029 * |
Motor fluctuations | 35 (83.33%) | 68 (52.31%) | <0.001 * |
DA use | 35 (83.33%) | 72 (55.38%) | <0.001 * |
Levodopa | 39 (93.33%) | 109 (84.67%) | 0.168 |
MAO-B inhibitors | 11 (26.19%) | 21 (16.15%) | 0.146 |
Amantadine use | 13 (30.95%) | 34 (26.15%) | 0.544 |
DA-LEDD | 160 (IQR 83) | 160 (IQR 183) | 0.433 |
LD-LEDD | 950 (IQR 825) | 800 (IQR 700) | 0.119 |
Total LEDD | 1180 (IQR 956) | 980 (IQR 985) | 0.038 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toś, M.; Dymek, A.; Morka, A.; Włodarczyk, P.; Siuda, J. Uric Acid and Impulse Control Disorders in Parkinson’s Disease: A Cross-Sectional Analysis. Medicina 2025, 61, 1789. https://doi.org/10.3390/medicina61101789
Toś M, Dymek A, Morka A, Włodarczyk P, Siuda J. Uric Acid and Impulse Control Disorders in Parkinson’s Disease: A Cross-Sectional Analysis. Medicina. 2025; 61(10):1789. https://doi.org/10.3390/medicina61101789
Chicago/Turabian StyleToś, Mateusz, Agata Dymek, Agata Morka, Paulina Włodarczyk, and Joanna Siuda. 2025. "Uric Acid and Impulse Control Disorders in Parkinson’s Disease: A Cross-Sectional Analysis" Medicina 61, no. 10: 1789. https://doi.org/10.3390/medicina61101789
APA StyleToś, M., Dymek, A., Morka, A., Włodarczyk, P., & Siuda, J. (2025). Uric Acid and Impulse Control Disorders in Parkinson’s Disease: A Cross-Sectional Analysis. Medicina, 61(10), 1789. https://doi.org/10.3390/medicina61101789