Ventilator-Associated Pneumonia After Cardiac Arrest and Prevention Strategies: A Narrative Review
Abstract
1. Introduction
2. Methods
3. Definition
- VAP is characterized by the development of pneumonia in intubated patients for more than 48 h and within 48 h of extubation.
- nvHAP, on the other hand, specifically pertains to instances of pneumonia developing in hospitalized patients who are neither on mechanical ventilation nor have undergone extubation within 48 h before the onset of pneumonia.
4. Epidemiology
5. Etiology
6. Pathophysiology
7. Clinical Features
8. Diagnosis & Testing Strategies
8.1. Clinical Strategy
8.2. Microbiological Strategy
8.3. Molecular Diagnosis
9. CPIS
10. Management
10.1. Timing of Initiating Antibiotics
10.2. Choosing an Empiric Therapy
10.3. Combination vs. Monotherapy
10.4. Modification of Therapy
10.5. Duration of Therapy
11. Complications/Outcomes
12. Risk Factors
12.1. Age
12.2. Male Sex
12.3. Prolonged Mechanical Ventilation
12.4. Altered Mental Status
12.5. Chronic Obstructive Pulmonary Disease (COPD)
12.6. Smoking History
12.7. Other Diseases
13. Procedures
14. Aspiration Prevention Strategies
14.1. Non-Invasive Positive Pressure Ventilation
14.2. Head of Bed Elevation
14.3. Sedation Holiday
14.4. Subglottic Suctioning
14.5. Antimicrobial-Coated Endotracheal Tubes
14.6. Decolonization
14.7. Probiotics
14.8. Early Mobilization
14.9. Early Enteral Nutrition
14.10. Post Pyloric Feeding
14.11. Low Tidal Volume Ventilation
14.12. Restrictive Transfusion Threshold
14.13. Use of Prophylactic Antibiotics
14.14. Nebulized Antibiotics
- By achieving greater respiratory levels of drug concentration, they exceed the Minimum inhibitory concentration (MIC) of bacteria, thereby decreasing resistance emergence [115]
- Reducing systemic complications by parenteral antibiotics such as nephrotoxicity [116]
- Direct action on antibiotic film formation on endotracheal tubes [117]
14.15. Post-Resuscitation Immune Dysregulation
15. Limitations
16. Conclusions
17. Future Direction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, P.S.; McNally, B.; Tang, F.; Kellermann, A. Recent Trends in Survival from Out-of-Hospital Cardiac Arrest in the United States. Circulation 2014, 130, 1876–1882. [Google Scholar] [CrossRef]
- Girotra, S.; Nallamothu, B.K.; Spertus, J.A.; Li, Y.; Krumholz, H.M.; Chan, P.S. Trends in survival after in-hospital cardiac arrest. N. Engl. J. Med. 2012, 367, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.M.; Berg, R.A.; Yang, L.; Becker, L.B.; Groeneveld, P.W.; Chan, P.S. Hospital variation in survival after in-hospital cardiac arrest. J. Am. Heart Assoc. 2014, 3, e000400. [Google Scholar] [CrossRef]
- Hessulf, F.; Bhatt, D.L.; Engdahl, J.; Lundgren, P.; Omerovic, E.; Rawshani, A.; Helleryd, E.; Dworeck, C.; Friberg, H.; Redfors, B.; et al. Predicting survival and neurological outcome in out-of-hospital cardiac arrest using machine learning: The SCARS model. eBioMedicne 2023, 89, 104464. [Google Scholar] [CrossRef]
- Brooks, S.C.; Clegg, G.R.; Bray, J.; Deakin, C.D.; Perkins, G.D.; Ringh, M.; Smith, C.M.; Link, M.S.; Merchant, R.M.; Pezo-Morales, J.; et al. International Liaison Committee on Resuscitation. Optimizing Outcomes After Out-of-Hospital Cardiac Arrest With Innovative Approaches to Public-Access Defibrillation: A Scientific Statement From the International Liaison Committee on Resuscitation. Circulation 2022, 145, e776–e801. [Google Scholar] [CrossRef] [PubMed]
- Rello, J.; Ollendorf, D.A.; Oster, G. Epidemiology and Outcomes of Ventilator-Associated Pneumonia in a Large US Database. Chest 2002, 122, 2115–2121. [Google Scholar] [CrossRef]
- Apostolopoulou, E.; Bakakos, P.; Katostaras, T.; Gregorakos, L. Incidence and risk factors for ventilator-associated pneumonia in 4 multidisciplinary intensive care units in Athens, Greece. Respir. Care 2003, 48, 681–688. [Google Scholar] [PubMed]
- Cook, D.J.; Walter, S.D.; Cook, R.J.; Griffith, L.E.; Guyatt, G.H.; Leasa, D.; Jaeschke, R.Z.; Brun-Buisson, C. Incidence of and Risk Factors for Ventilator-Associated Pneumonia in Critically Ill Patients. Ann. Intern. Med. 1998, 129, 433–440. [Google Scholar] [CrossRef]
- Chastre, J.; Trouillet, J.L.; Vuagnat, A.; Joly-Guillou, M.L.; Clavier, H.; Dombret, M.C.; Gibert, C. Nosocomial Pneumonia in Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 1998, 157, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Fagon, J.Y.; Chastre, J.; Hance, A.J.; Montravers, P.; Novara, A.; Gibert, C. Nosocomial pneumonia in ventilated patients: A cohort study evaluating attributable mortality and hospital stay. Am. J. Med. 1993, 94, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-Acquired Pneumonia Requiring Hospitalization among, U.S. Adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Taylor, J.K.; Singanayagam, A.; Fleming, G.B.; Akram, A.R.; Mandal, P.; Choudhury, G.; Hill, A.T. Epidemiology, antibiotic therapy, and clinical outcomes in health care-associated pneumonia: A UK cohort study. Clin. Infect. Dis. 2011, 53, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Puzniak, L.A.; Shorr, A.F. Microbiology, empiric therapy and its impact on the outcomes of nonventilated hospital-acquired, ventilated hospital-acquired, and ventilator-associated bacterial pneumonia in the United States, 2014–2019. Infect. Control. Hosp. Epidemiol. 2022, 43, 277–283. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (AL T). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Rother, C.; Salih, W.; Ewig, S. Healthcare-associated pneumonia does not accurately identify potentially resistant pathogens: A systematic review and meta-analysis. Clin. Infect. Dis. Off Publ. Infect. Dis. Soc. Am. 2014, 58, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. Off Publ. Infect. Dis. Soc. Am. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Heart Disease and Stroke Statistics—2016 Update|Circulat on. Available online: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000350?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 26 December 2023).
- Wang, H.E.; Abella, B.S.; Callaway, C.W. American Heart Association National Registry of Cardiopulmonary Resuscitation Investigators. Risk of cardiopulmonary arrest after acute respiratory compromise in hospitalized patients. Resuscitation 2008, 79, 234–240. [Google Scholar] [CrossRef]
- Perman, S.M.; Stanton, E.; Soar, J.; Berg, R.A.; Donnino, M.W.; Mikkelsen, M.E.; Edelson, D.P.; Churpek, M.M.; Yang, L.; Merchant, R.M.; et al. Location of In-Hospital Cardiac Arrest in the United States-Variability in Event Rate and Outcomes. J. Am. Heart Assoc. 2016, 5, e003638. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Levin, H.; Ullén, S.; Rylander, C.; Wise, M.P.; Oddo, M.; Cariou, A. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2021, 384, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Hasslacher, J.; Steinkohl, F.; Ulmer, H.; Lehner, G.; Klein, S.; Mayerhoefer, T.; Joannidis, M. Increased risk of ventilator-associated pneumonia in patients after cardiac arrest treated with mild therapeutic hypothermia. Acta Anaesthesiol. Scand. 2022, 66, 704–712. [Google Scholar] [CrossRef]
- Karakuzu, Z.; Iscimen, R.; Akalin, H.; Kelebek, G.N.; Kahveci, F.; Sinirtas, M. Prognostic Risk Factors in Ventilator-Associated Pneumonia. Med. Sci. Monit. 2018, 24, 1321–1328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadigov, A.; Mamedova, I.; Mammmadov, K. Ventilator-Associated Pneumonia and In-Hospital Mortality: Which Risk Factors may predict In-Hospital Mortality in Such Patients? J. Lung Health Dis. 2019, 3. [Google Scholar] [CrossRef]
- Craven, D.E.; Kunches, L.M.; Kilinsky, V.; Lichtenberg, D.A.; Make, B.J.; McCabe, W.R. Risk factors for pneumonia and fatality in patients receiving continuous mechanical ventilation. Am. Rev. Respir. Dis. 1986, 133, 792–796. [Google Scholar] [PubMed]
- Trouillet, J.L.; Chastre, J.; Vuagnat, A.; Joly-Guillou, M.L.; Combaux, D.; Dombret, M.C.; Gibert, C. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am. J. Respir. Crit. Care Med. 1998, 157, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Rello, J.; Valles, J.; Jubert, P.; Ferrer, A.; Domingo, C.; Mariscal, D.; Fontanals, D.; Artigas, A. Lower Respiratory Tract Infections Following Cardiac Arrest and Cardiopulmonary Resuscitation. Clin. Infect. Dis. 1995, 21, 310–314. [Google Scholar] [CrossRef]
- Rello, J.; Gallego, M.; Mariscal, D.; Soñora, R.; Valles, J. The Value of Routine Microbial Investigation in Ventilator-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 1997, 156, 196–200. [Google Scholar] [CrossRef]
- Fagon, J.Y.; Chastre, J.; Wolff, M.; Gervais, C.; Parer-Aubas, S.; Stéphan, F.; Similowski, T.; Mercat, A.; Diehl, J.L.; Sollet, J.P.; et al. Invasive and non-invasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann. Intern. Med. 2000, 132, 621–630. [Google Scholar] [CrossRef]
- Restrepo, M.I.; Peterson, J.; Fernandez, J.F.; Qin, Z.; Fisher, A.C.; Nicholson, S.C. Comparison of the Bacterial Etiology of Early-Onset and Late-Onset Ventilator-Associated Pneumonia in Subjects Enrolled in 2 Large Clinical Studies. Respir. Care 2013, 58, 1220–1225. [Google Scholar] [CrossRef]
- Quartin, A.A.; Scerpella, E.G.; Puttagunta, S.; Kett, D.H. A comparison of microbiology and demographics among patients with healthcare-associated, hospital-acquired, and ventilator-associated pneumonia: A retrospective analysis of 1184 patients from a large, international study. BMC Infect. Dis. 2013, 13, 561. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jiao, Y.; Zhang, J.; Xu, J.; Cheng, Q.; Li, Y.; Liang, S.; Li, H.; Gong, J.; Zhu, Y.; et al. Infection Assembly of Shanghai Respiratory Society. Microbial Etiology and Prognostic Factors of Ventilator-associated Pneumonia: A Multicenter Retrospective Study in Shanghai. Clin. Infect. Dis. 2018, 67 (Suppl. 2), S146–S152. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Ma, X.; Gao, S.; Su, L.; Shan, G.; Hu, Y.; Chen, J.; Ma, D.; Zhang, F.; Zhu, W.; et al. China National Critical Care Quality Control Center Group. Effect of ICU quality control indicators on VAP incidence rate and mortality: A retrospective study of 1267 hospitals in China. Crit. Care 2022, 26, 405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wicky, P.H.; Dupuis, C.; Cerf, C.; Siami, S.; Cohen, Y.; Laurent, V.; Mourvillier, B.; Reignier, J.; Goldgran-Toledano, D.; Schwebel, C.; et al. Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality-A Multicentric Observational Study from the OutcomeRea Network. J. Clin. Med. 2023; 12, 1298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nathwani, D.; Raman, G.; Sulham, K.; Gavaghan, M.; Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2014, 3, 32. [Google Scholar] [CrossRef]
- Tumbarello, M.; De Pascale, G.; Trecarichi, E.M.; Spanu, T.; Antonicelli, F.; Maviglia, R.; Pennisi, M.A.; Bello, G.; Antonelli, M. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med. 2013, 39, 682–692. [Google Scholar] [CrossRef]
- Wang, C.Y.; Jerng, J.S.; Chen, K.Y.; Lee, L.N.; Yu, C.J.; Hsueh, P.R.; Yang, P.C. Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: Clinical features, risk-factors and outcomes. Clin. Microbiol. Infect. Off Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2006, 12, 63–68. [Google Scholar] [CrossRef]
- Kollef, M.H.; Chastre, J.; Fagon, J.Y.; François, B.; Niederman, M.S.; Rello, J.; Torres, A.; Vincent, J.L.; Wunderink, R.G.; Go, K.W.; et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit. Care Med. 2014, 42, 2178–2187. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Q.; Wang, W.; Huang, Q.; Liao, J.; Li, J.; Long, L.; Ju, T.; Zhang, Q.; Wang, H.; et al. Acinetobacter baumannii Ventilator-Associated Pneumonia: Clinical Efficacy of Combined Antimicrobial Therapy and in vitro Drug Sensitivity Test Results. Front. Pharmacol. 2019, 10, 92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hurley, J.C. Worldwide variation in incidence of Acinetobacter associated ventilator associated pneumonia: A meta-regression. BMC Infect. Dis. 2016, 16, 577. [Google Scholar] [CrossRef] [PubMed]
- Dayan, G.H.; Mohamed, N.; Scully, I.L.; Cooper, D.; Begier, E.; Eiden, J.; Jansen, K.U.; Gurtman, A.; Anderson, A.S. Staphylococcus aureus: The current state of disease, pathophysiology and strategies for prevent on. Expert Rev. Vaccines 2016, 15, 1373–1392. [Google Scholar] [CrossRef] [PubMed]
- Tilouche, L.; Dhia, R.B.; Boughattas, S.; Ketata, S.; Bouallegue, O.; Chaouch, C.; Boujaafar, N. Staphylococcus aureus Ventilator-Associated Pneumonia: A Study of Bacterio-Epidemiological Profile and Virulence Factors. Curr. Microbiol. 2021, 78, 2556–2562. [Google Scholar] [CrossRef]
- Craven, D.E.; Steger, K.A. Nosocomial pneumonia in mechanically ventilated adult patients: Epidemiology and prevention in 1996. Semin. Respir. Infect. 1996, 11, 32–53. [Google Scholar] [PubMed]
- Chastre, J.; Fagon, J.Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef] [PubMed]
- Garrouste-Orgeas, M.; Chevret, S.; Arlet, G.; Marie, O.; Rouveau, M.; Popoff, N.; Schlemmer, B. Oropharyngeal or gastric colonization and nosocomial pneumonia in adult intensive care unit patients. A prospective study based on genomic DNA analysis. Am. J. Respir. Crit. Care Med. 1997, 156, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Safdar, N.; Crnich, C.J.; Maki, D.G. The pathogenesis of ventilator-associated pneumonia: Its relevance to developing effective strategies for prevention. Respir. Care. 2005, 50, 725–739, discussion 739–741. [Google Scholar] [PubMed]
- Nseir, S.; Di Pompeo, C.; Pronnier, P.; Beague, S.; Onimus, T.; Saulnier, F.; Grandbastien, B.; Mathieu, D.; Delvallez-Roussel, M.; Durocher, A. Nosocomial tracheobronchitis in mechanically ventilated patients: Incidence, aetiology and outcome. Eur. Respir. J. 2002, 20, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Souweine, B.; Veber, B.; Bedos, J.P.; Gachot, B.; Dombret, M.C.; Regnier, B.; Wolff, M. Diagnostic accuracy of protected specimen brush and bronchoalveolar lavage in nosocomial pneumonia: Impact of previous antimicrobial treatments. Crit. Care Med. 1998, 26, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Berton, D.C.; Kalil, A.C.; Teixeira, P.J. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2014, 2014, CD006482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luna, C.M.; Videla, A.; Mattera, J.; Vay, C.; Famiglietti, A.; Vujacich, P.; Niederman, M.S. Blood cultures have limited value in predicting severity of illness and as a diagnostic tool in ventilator-associated pneumonia. Chest 1999, 116, 1075–1084. [Google Scholar] [CrossRef]
- Iregui, M.; Ward, S.; Sherman, G.; Fraser, V.J.; Kollef, M.H. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002, 122, 262–268. [Google Scholar] [CrossRef]
- Tekin, A.; Truong, H.H.; Rovati, L.; Lal, A.; Gerberi, D.J.; Gajic, O.; O’Horo, J.C. The Diagnostic Accuracy of Metagenomic Next-Generation Sequencing in Diagnosing Pneumocystis Pneumonia: A Systemic Review and Meta-analysis. Open Forum. Infect. Dis. 2023, 10, ofad442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fàbregas, N.; Ewig, S.; Torres, A.; El-Ebiary, M.; Ramirez, J.; de La Bellacasa, J.P.; Bauer, T.; Cabello, H. Clinical diagnosis of ventilator associated pneumonia revisited: Comparative validation using immediate post-mortem lung biopsies. Thorax 1999, 54, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.M.; Vujacich, P.; Niederman, M.S.; Vay, C.; Gherardi, C.; Matera, J.; Jolly, E.C. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997, 111, 676–685. [Google Scholar] [CrossRef]
- Alvarez-Lerma, F. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group. Intensive Care Med. 1996, 22, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [PubMed]
- Fartoukh, M.; Maitre, B.; Honoré, S.; Cerf, C.; Zahar, J.R.; Brun-Buisson, C. Diagnosing pneumonia during mechanical ventilation: The clinical pulmonary infection score revisited. Am. J. Respir. Crit. Care Med. 2003, 168, 173–179. [Google Scholar] [CrossRef]
- Baker, A.M.; Bowton, D.L.; Haponik, E.F. Decision making in nosocomial pneumonia. An analytic approach to the interpretation of quantitative bronchoscopic cultures. Chest 1995, 107, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Mavros, M.N.; Roussos, N.; Falagas, M.E. Meta-analysis of randomized controlled trials of vancomycin for the treatment of patients with gram-positive infections: Focus on the study design. Mayo. Clin. Proc. 2012, 87, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Walkey, A.J.; O’Donnell, M.R.; Wiener, R.S. Linezolid vs glycopeptide antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A meta-analysis of randomized controlled trials. Chest 2011, 139, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Klompas, M.; Haynatzki, G.; Rupp, M.E. Treatment of hospital-acquired pneumonia with linezolid or vancomycin: A systematic review and meta-analysis. BMJ Open 2013, 3, e003912. [Google Scholar] [CrossRef]
- Singh, N.; Rogers, P.; Atwood, C.W.; Wagener, M.M.; Yu, V.L. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescript on. Am. J. Respir. Crit. Care Med. 2000, 162 Pt 1, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Esteban, A.; Frutos-Vivar, F.; Muriel, A.; Ferguson, N.D.; Peñuelas, O.; Abraira, V.; Raymondos, K.; Rios, F.; Nin, N.; Apezteguía, C.; et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am. J. Respir. Crit. Care Med. 2013, 188, 220–230. [Google Scholar] [CrossRef]
- Ventilator-Associated Pneumonia in Adult Intensive Care Unit Prevalence and Complications—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S209073031730021X (accessed on 3 January 2024).
- Safdar, N.; Dezfulian, C.; Collard, H.R.; Saint, S. Clinical and economic consequences of ventilator-associated pneumonia: A systematic review. Crit. Care Med. 2005, 33, 2184–2193. [Google Scholar] [CrossRef] [PubMed]
- Chouhdari, A.; Shokouhi, S.; Bashar, F.R.; Azimi, A.V.; Shojaei, S.P.; Fathi, M.; Goharani, R.; Sahraei, Z.; Hajiesmaeili, M. Is a Low Incidence Rate of Ventilation Associated Pneumonia Associated with Lower Mortality? a Descriptive Longitudinal Study in Iran. Tanaffos 2018, 17, 110–116. [Google Scholar] [PubMed] [PubMed Central]
- Liu, Y.; Di, Y.; Fu, S. Risk factors for ventilator-associated pneumonia among patients undergoing major oncological surgery for head and neck cancer. Front. Med. 2017, 11, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhang, Y.; Yang, Z.; Wang, J.; Jin, A.; Wang, W.; Chen, R.; Zhan, S. Incidence, temporal trend and factors associated with ventilator-associated pneumonia in mainland China: A systematic review and meta-analysis. BMC Infect. Dis. 2017, 17, 468. [Google Scholar] [CrossRef]
- Chang, L.; Dong, Y.; Zhou, P. Investigation on Risk Factors of Ventilator-Associated Pneumonia in Acute Cerebral Hemorrhage Patients in Intensive Care Unit. Can. Respir. J. 2017, 2017, 7272080. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Koulenti, D.; Dimopoulos, G.; Martin, C.; Komnos, A.; Krueger, W.A.; Spina, G.; Armaganidis, A.; Rello, J. Prevalence, Risk Factors, and Mortality for Ventilator-Associated Pneumonia in Middle-Aged, Old, and Very Old Critically Ill Patients*. Crit. Care Med. 2014, 42, 601. [Google Scholar] [CrossRef] [PubMed]
- Zubair, S.; Ali, H.; Raza, S.F.; Warind, J.A.; Beg, A.E.; Bushra, R. Assessment of Frequency and Transience Rate for Ventilator-Associated Pneumonia (VAP) in Geriatric Patients in Tertiary Care Settings of Karachi, Pakistan. J. Coll. Physicians Surg. Pak. 2018, 28, 536–540. [Google Scholar] [CrossRef]
- Bornstain, C.; Azoulay, E.; De Lassence, A.; Cohen, Y.; Costa, M.A.; Mourvillier, B.; Descorps-Declere, A.; Garrouste-Orgeas, M.; Thuong, M.; Schlemmer, B.; et al. Sedation, sucralfate, and antibiotic use are potential means for protection against early-onset ventilator-associated pneumonia. Clin. Infect. Dis. Off Publ. Infect. Dis. Soc. Am. 2004, 38, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, J.P.; Magnotti, L.J.; Weinberg, J.A.; Brocker, J.A.; Schroeppel, T.J.; Zarzaur, B.L.; Fabian, T.C.; Croce, M.A. Gender disparity in ventilator-associated pneumonia following trauma: Identifying risk factors for mortality. J. Trauma Acute Care Surg. 2014, 77, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Tejerina, E.; Frutos-Vivar, F.; Restrepo, M.I.; Anzueto, A.; Abroug, F.; Palizas, F.; González, M.; D’Empaire, G.; Apezteguía, C.; Esteban, A. Incidence, risk factors, and outcome of ventilator-associated pneumonia. J. Crit. Care 2006, 21, 56–65. [Google Scholar] [CrossRef]
- Jovanovic, B.; Milan, Z.; Djuric, O.; Markovic-Denic, L.; Karamarkovic, A.; Gregoric, P.; Doklestic, K.; Avramovic, J.; Velickovic, J.; Bumbasirevic, V. Twenty-Eight-Day Mortality of Blunt Traumatic Brain Injury and Co-Injuries Requiring Mechanical Ventilation. Med. Princ. Pract. Int. J. Kuwait Univ. Health Sci. Cent. 2016, 25, 435–441. [Google Scholar] [CrossRef] [PubMed]
- But, A.; Yetkin, M.A.; Kanyilmaz, D.; Aslaner, H.; Baştuğ, A.; Aypak, A.; Öngürü, P.; Akinci, E.; Mutlu, N.M.; Bodur, H. Analysis of epidemiology and risk factors for mortality in ventilator-associated pneumonia attacks in intensive care unit patients. Turk. J. Med. Sci. 2017, 47, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Trujillo, I.; Jiménez-García, R.; de Miguel-Díez, J.; de Miguel-Yanes, J.M.; Hernández-Barrera, V.; Méndez-Bailón, M.; Pérez-Farinós, N.; Salinero-Fort, M.Á.; López-de-Andrés, A. Incidence, characteristic and outcomes of ventilator-associated pneumonia among type 2 diabetes patients: An observational population-based study in Spain. Eur. J. Intern. Med. 2017, 40, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Younan, D.; Lin, E.; Griffin, R.; Vanlandingham, S.; Waters, A.; Harrigan, M.; Pittet, J.F.; Kerby, J.D. Early Trauma-Induced Coagulopathy is Associated with Increased Ventilator-Associated Pneumonia in Spinal Cord Injury Patients. Shock 2016, 45, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Wałaszek, M.; Kosiarska, A.; Gniadek, A.; Kołpa, M.; Wolak, Z.; Dobroś, W.; Siadek, J. The risk factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl. Epidemiol. 2016, 70, 15–20. [Google Scholar] [PubMed]
- Joseph, N.M.; Sistla, S.; Dutta, T.K.; Badhe, A.S.; Parija, S.C. Ventilator-associated pneumonia in a tertiary care hospital in India: Incidence and risk factors. J. Infect. Dev. Ctries. 2009, 3, 771–777. [Google Scholar] [CrossRef]
- Nava, S.; Ambrosino, N.; Clini, E.; Prato, M.; Orlando, G.; Vitacca, M.; Brigada, P.; Fracchia, C.; Rubini, F. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann. Intern. Med. 1998, 128, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Hess, D.R. Non-invasive positive-pressure ventilation and ventilator-associated pneumonia. Respir. Care 2005, 50, 924–929, discussion 929–931. [Google Scholar]
- Antonelli, M.; Conti, G.; Rocco, M.; Bufi, M.; de Blasi, R.A.; Vivino, G.; Gasparetto, A.; Meduri, G.U. A comparison of non-invasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N. Engl. J. Med. 1998, 339, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Drakulovic, M.B.; Torres, A.; Bauer, T.T.; Nicolas, J.M.; Nogué, S.; Ferrer, M. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: A randomised trial. Lancet Lond. Engl. 1999, 354, 1851–1858. [Google Scholar] [CrossRef]
- Orozco-Levi, M.; Torres, A.; Ferrer, M.; Piera, C.; el-Ebiary, M.; de la Bellacasa, J.P.; Rodriguez-Roisin, R. Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am. J. Respir. Crit. Care Med. 1995, 152 Pt 1, 1387–1390. [Google Scholar] [CrossRef]
- Torres, A.; Serra-Batlles, J.; Ros, E.; Piera, C.; de la Bellacasa, J.P.; Cobos, A.; Lomeña, F.; Rodríguez-Roisin, R. Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: The effect of body position. Ann. Intern. Med. 1992, 116, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Ely, E.W.; Meade, M.O.; Haponik, E.F.; Kollef, M.H.; Cook, D.J.; Guyatt, G.H.; Stoller, J.K. Mechanical ventilator weaning protocols driven by nonphysician health-care professionals: Evidence-based clinical practice guidelines. Chest 2001, 120 (Suppl. 6), 454S–463S. [Google Scholar] [CrossRef]
- Brook, A.D.; Ahrens, T.S.; Schaiff, R.; Prentice, D.; Sherman, G.; Shannon, W.; Kollef, M.H. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit. Care Med. 1999, 27, 2609–2615. [Google Scholar] [CrossRef] [PubMed]
- Muscedere, J.; Rewa, O.; McKechnie, K.; Jiang, X.; Laporta, D.; Heyland, D.K. Subglottic secretion drainage for the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. Crit. Care Med. 2011, 39, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Bo, L.; Tang, L.; Lou, J.; Wu, Y.; Chen, F.; Li, J.; Deng, X. Subglottic secretion drainage for preventing ventilator-associated pneumonia: An updated meta-analysis of randomized controlled trials. J. Trauma Acute Care Surg. 2012, 72, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Berra, L.; De Marchi, L.; Yu, Z.X.; Laquerriere, P.; Baccarelli, A.; Kolobow, T. Endotracheal tubes coated with antiseptics decrease bacterial colonization of the ventilator circuits, lungs, and endotracheal tube. Anesthesiology 2004, 100, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Afessa, B.; Anzueto, A.; Veremakis, C.; Kerr, K.M.; Margolis, B.D.; Craven, D.E.; Roberts, P.R.; Arroliga, A.C.; Hubmayr, R.D.; et al. NASCENT Investigation Group. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: The NASCENT randomized trial. JAMA 2008, 300, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Karchmer, T.B.; Giannetta, E.T.; Muto, C.A.; Strain, B.A.; Farr, B.M. A randomized crossover study of silver-coated urinary catheters in hospitalized patients. Arch. Intern. Med. 2000, 160, 3294–3298. [Google Scholar] [CrossRef] [PubMed]
- Chaiban, G.; Hanna, H.; Dvorak, T.; Raad, I. A rapid method of impregnating endotracheal tubes and urinary catheters with gendine: A novel antiseptic agent. J. Antimicrob. Chemother. 2005, 55, 51–56. [Google Scholar] [CrossRef] [PubMed]
- de Smet, A.M.; Kluytmans, J.A.; Cooper, B.S.; Mascini, E.M.; Benus, R.F.; van der Werf, T.S.; van der Hoeven, J.G.; Pickkers, P.; Bogaers-Hofman, D.; van der Meer, N.J.; et al. Decontamination of the digestive tract and oropharynx in ICU patients. N. Engl. J. Med. 2009, 360, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Tantipong, H.; Morkchareonpong, C.; Jaiyindee, S.; Thamlikitkul, V. Randomized controlled trial and meta-analysis of oral decontamination with 2% chlorhexidine solution for the prevention of ventilator-associated pneumonia. Infect. Control Hosp. Epidemcol. 2008, 29, 131–136. [Google Scholar] [CrossRef]
- Seguin, P.; Tanguy, M.; Laviolle, B.; Tirel, O.; Mallédant, Y. Effect of oropharyngeal decontamination by povidone-iodine on ventilator-associated pneumonia in patients with head trauma. Crit. Care Med. 2006, 34, 1514–1519. [Google Scholar] [CrossRef]
- Morrow, L.E.; Kollef, M.H.; Casale, T.B. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Zang, K.; Chen, B.; Wang, M.; Chen, D.; Hui, L.; Guo, S.; Ji, T.; Shang, F. The effect of early mobilization in critically ill patients: A meta-analysis. Nurs. Crit. Care 2020, 25, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ren, D.; Liu, Y.; Wang, Y.; Zhang, B.; Xiao, Q. Effects of early mobilization on the prognosis of critically ill patients: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2020, 110, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. Edinb. Scotl. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, B.; Wang, J.; Sun, L.; Xiao, Q. Gastric-tube versus post-pyloric feeding in critical patients: A systematic review and meta-analysis of pulmonary aspiration- and nutrition-related outcomes. Eur. J. Clin. Nutr. 2021, 75, 1337–1348. [Google Scholar] [CrossRef]
- Klompas, M. Potential Strategies to Prevent Ventilator-associated Events. Am. J. Respir. Crit. Care Med. 2015, 192, 1420–1430. [Google Scholar] [CrossRef]
- Neto, A.S.; Simonis, F.D.; Barbas, C.S.; Biehl, M.; Determann, R.M.; Elmer, J.; Friedman, G.; Gajic, O.; Goldstein, J.N.; Linko, R.; et al. Lung-Protective Ventilation With Low Tidal Volumes and the Occurrence of Pulmonary Complications in Patients Without Acute Respiratory Distress Syndrome: A Systematic Review and Individual Patient Data Analysis. Crit. Care Med. 2015, 43, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.S.; Cardoso, S.O.; Manetta, J.A.; Pereira, V.G.; Espósito, D.C.; Pasqualucci, M.O.; Damasceno, M.C.; Schultz, M.J. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: A meta-analysis. JAMA 2012, 308, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Rohde, J.M.; Dimcheff, D.E.; Blumberg, N.; Saint, S.; Langa, K.M.; Kuhn, L.; Hickner, A.; Rogers, M.A. Health care-associated infection after red blood cell transfusion: A systematic review and meta-analysis. JAMA 2014, 311, 1317–1326. [Google Scholar] [CrossRef]
- Zha, S.; Niu, J.; He, Z.; Fu, W.; Huang, Q.; Guan, L.; Zhou, L.; Chen, R. Prophylactic antibiotics for preventing ventilator-associated pneumonia: A pairwise and Bayesian network meta-analysis. Eur. J. Med. Res. 2023, 28, 348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Póvoa, F.C.C.; Cardinal-Fernandez, P.; Maia, I.S.; Reboredo, M.M.; Pinheiro, B.V. Effect of antibiotics administered via the respiratory tract in the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. J. Crit. Care 2018, 43, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.J.; Haas, L.E. Antibiotics or probiotics as preventive measures against ventilator-associated pneumonia: A literature review. Crit. Care Lond. Engl. 2011, 15, 18. [Google Scholar] [CrossRef]
- Mirtalaei, N.; Farazi, A.; Ebrahimi Monfared, M.; Jokar, A. Efficacy of antibiotic prophylaxis against ventilator-associated pneumonia. J. Hosp. Infect. 2019, 101, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Dahyot-Fizelier, C.; Lasocki, S.; Kerforne, T.; Perrigault, P.F.; Geeraerts, T.; Asehnoune, K.; Cinotti, R.; Launey, Y.; Cottenceau, V.; Laffon, M.; et al. Ceftriaxone to prevent early ventilator-associated pneumonia in patients with acute brain injury: A multicentre, randomised, double-blind, placebo-controlled, assessor-masked superiority trial. Lancet Respir. Med. 2024, 12, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Tavernier, E.; Barbier, F.; Meziani, F.; Quenot, J.P.; Herbrecht, J.E.; Landais, M.; Roux, D.; Seguin, P.; Schnell, D.; Veinstein, A.; et al. Inhaled amikacin versus placebo to prevent ventilator-associated pneumonia: The AMIKINHAL double-blind multicentre randomised controlled trial protocol. BMJ Open 2021, 11, e048591. [Google Scholar] [CrossRef]
- Luyt, C.E.; Clavel, M.; Guntupalli, K.; Johannigman, J.; Kennedy, J.I.; Wood, C.; Corkery, K.; Gribben, D.; Chastre, J. Pharmacokinetics and lung delivery of PDDS-aerosolized amikacin (NKTR-061) in intubated and mechanically ventilated patients with nosocomial pneumonia. Crit. Care Lond. Engl. 2009, 13, R200. [Google Scholar] [CrossRef]
- Petitcollin, A.; Dequin, P.F.; Darrouzain, F.; Vecellio, L.; Boulain, T.; Garot, D.; Paintaud, G.; Ternant, D.; Ehrmann, S. Pharmacokinetics of high-dose nebulized amikacin in ventilated critically ill patients. J. Antimicrob. Chemother. 2016, 71, 3482–3486. [Google Scholar] [CrossRef]
- Koerner, R.J. Contribution of endotracheal tubes to the pathogenesis of ventilator-associated pneumonia. J. Hosp. Infect. 1997, 35, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Claridge, J.A.; Edwards, N.M.; Swanson, J.; Fabian, T.C.; Weinberg, J.A.; Wood, C.; Croce, M.A. Aerosolized ceftazidime prophylaxis against ventilator-associated pneumonia in high-risk trauma patients: Rsults of a double-blind randomized study. Surg. Infect. 2007, 81, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Karvouniaris, M.; Makris, D.; Zygoulis, P.; Triantaris, A.; Xitsas, S.; Mantzarlis, K.; Petinaki, E.; Zakynthinos, E. Nebulised colistin for ventilator-associated pneumonia prevention. Eur. Respir. J. 2015, 46, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; He, L.L.; Che, L.Q.; Li, W.; Ying, S.M.; Chen, Z.H.; Shen, H.H. Aerosolized antibiotics for ventilator-associated pneumonia: A pairwise and Bayesian network meta-analysis. Crit. Care 2018, 22, 301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ehrmann, S.; Barbier, F.; Demiselle, J.; Quenot, J.P.; Herbrecht, J.E.; Roux, D.; Lacherade, J.C.; Landais, M.; Seguin, P.; Schnell, D.; et al. Inhaled Amikacin to Prevent Ventilator-Associated Pneumonia. N. Engl. J. Med. 2023, 389, 2052–2062. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.A.; Coppler, P.J.; Skolnik, A.B. The immunology of the post-cardiac arrest syndrome. Resuscitation 2022, 179, 116–123. [Google Scholar] [CrossRef] [PubMed]
- François, B.; Luyt, C.E.; Stover, C.K.; Brubaker, J.O.; Chastre, J.; Jafri, H.S. New Strategies Targeting Virulence Factors of Staphylococcus aureus and Pseudomonas aeruginosa. Semin. Respir. Crit. Care Med. 2017, 38, 346–358. [Google Scholar] [CrossRef]
- Prazak, J.; Valente, L.; Iten, M.; Grandgirard, D.; Leib, S.L.; Jakob, S.M.; Haenggi, M.; Que, Y.A.; Cameron, D.R. Nebulized Bacteriophages for Prophylaxis of Experimental Ventilator-Associated Pneumonia Due to Methicillin-Resistant Staphylococcus aureus. Crit. Care Med. 2020, 48, 1042–1046. [Google Scholar] [CrossRef]
Term | Definition | |
---|---|---|
CAP | An acute pulmonary infection acquired before hospitalization or within 48 h of hospitalizaiton | |
HAP | VAP | An acute pulmonary parenchymal infection occurred ≥ 48 h after endotracheal intubation |
nvHAP | An acute pulmonary infection in hospitalized patients after 48 h of hospitalization without mechanical ventilation. | |
HCAP | Retired term, used to classify pneumonia in patients with recent exposure to health care facilities including nursing homes and hemodialysis centers. |
Polymicrobial | 10–63.9% |
---|---|
Monomicrobial isolate | |
Gram-positive cocci | |
Staphylococcus aureus | 9–44% |
MRSA | 4–25% |
MSSA | 3–17% |
Streptococcus pneumoniae | 1–12% |
Enterococcus faecalis | 0.8–5% |
Gram-negative bacilli | |
Pseudomonas aeruginosa | 10–55% |
Acineteobacter spp * | 4–55% |
Haemophilus influenzae ¶ | 8–26% |
Escherichia coli | 2–13% |
Other Enterobacteriaceae | 1–7% |
Fungi | |
Candida spp. | 2–7% |
Aspergillus spp. | 2% |
2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society [18] | 2017 International ERS/ESICM/ESCMID/ALAT Guidelines [16] |
---|---|
|
|
|
|
Advantages | Disadvantages | |
---|---|---|
Clinical strategy | Decreases the risk of not treating patients with pneumonia (increased sensitivity) | Since the clinical features and imaging findings have low specificity, this approach leads to more antibiotic use, thus increasing the risk of resistant pathogens and recurrent pneumonia. |
Microbiological strategy | Reduced use of antibiotics, thus decreasing the emergence of resistant pathogens, and avoiding the side effects of antibiotic use. | False-negative results can occur after recent antibiotic use in the past 24 h, but up to 72 h and in early forms of infection can lead to undertreatment of pneumonia. Delays in obtaining culture data can lead to complications. Studies have shown inconsistent results on repeating even invasive sampling methods If a noninvasive sampling method or a semiquantitative culture is used, it can lead to overtreatment since an infection cannot be differentiated from a colonization. |
2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society [18] | 2017 International ERS/ESICM/ESCMID/ALAT Guidelines [16] |
---|---|
Recommends empiric therapy to cover Staphylococcus aureus (MSSA), Pseudomonas aeruginosa, and other gram-negative bacilli with one of the following agents, piperacillin-tazobactam, cefepime, levofloxacin, imipenem or meropenem (strong recommendation, low-quality evidence) | Suggests narrow-spectrum empiric antibiotic therapy like ceftriaxone, cefotaxime, moxifloxacin or levofloxacin if there is a low risk for MDR pathogens and if it is early-onset VAP (weak recommendation, very low-quality evidence) |
Recommends adding vancomycin or linezolid to cover for MRSA (strong recommendation, moderate quality evidence) * if
| Recommends combination therapy to cover MRSA and P. aeruginosa if the patient has septic shock and/or the following risk factors for potentially resistant microorganisms
|
Suggests empiric therapy with two agents from different classes to cover for Pseudomonas aeruginosa ^, instead of one, if
| |
Avoid aminoglycoside for P. aeruginosa (strong recommendation, very low quality evidence) and any gram-negative bacilli coverage if alternative agents are available due to the poorer clinical response rates and higher risk of nephrotoxicity (weak recommendation, low-quality evidence) | |
Avoid colistin if alternative agents are available for gram-negative bacilli are available since overuse can jeopardize its current role as the last resort and has increased risk of nephrotoxcity (weak recommendation, very low quality evidence). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugavel Geetha, H.; Teo, Y.X.; Ravichandran, S.; Lal, A. Ventilator-Associated Pneumonia After Cardiac Arrest and Prevention Strategies: A Narrative Review. Medicina 2025, 61, 78. https://doi.org/10.3390/medicina61010078
Shanmugavel Geetha H, Teo YX, Ravichandran S, Lal A. Ventilator-Associated Pneumonia After Cardiac Arrest and Prevention Strategies: A Narrative Review. Medicina. 2025; 61(1):78. https://doi.org/10.3390/medicina61010078
Chicago/Turabian StyleShanmugavel Geetha, Harinivaas, Yi Xiang Teo, Sharmitha Ravichandran, and Amos Lal. 2025. "Ventilator-Associated Pneumonia After Cardiac Arrest and Prevention Strategies: A Narrative Review" Medicina 61, no. 1: 78. https://doi.org/10.3390/medicina61010078
APA StyleShanmugavel Geetha, H., Teo, Y. X., Ravichandran, S., & Lal, A. (2025). Ventilator-Associated Pneumonia After Cardiac Arrest and Prevention Strategies: A Narrative Review. Medicina, 61(1), 78. https://doi.org/10.3390/medicina61010078