Diabetes and Cataracts Development—Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection and Medical Assessment
2.3. Statistical Analysis
3. Results
General Characteristics of the Studied Lot
4. Discussion
4.1. Findings and Their Interpretation
4.2. Strengths and Limitations of the Study
4.3. Relevance of the Findings
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Singer, M.E.; Dorrance, K.A.; Oxenreiter, M.M.; Yan, K.R.; Close, K.L. The Type 2 Diabetes “modern Preventable Pandemic” and Replicable Lessons from the COVID-19 Crisis. Prev. Med. Rep. 2022, 25, 101636. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.D.; Lin, J.; Mahoney, T.; Ume, N.; Yang, G.; Gabbay, R.A.; ElSayed, N.A.; Bannuru, R.R. Economic Costs of Diabetes in the U.S. in 2022. Diabetes Care 2024, 47, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.; Popa, S.G.; Mota, E.; Mitrea, A.; Catrinoiu, D.; Cheta, D.M.; Guja, C.; Hancu, N.; Ionescu-Tirgoviste, C.; Lichiardopol, R.; et al. Prevalence of Diabetes Mellitus and Prediabetes in the Adult R Omanian Population: PREDATORR Study. J. Diabetes 2016, 8, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Sayin, N. Ocular Complications of Diabetes Mellitus. WJD 2015, 6, 92. [Google Scholar] [CrossRef]
- Khan, J.; Shaw, S. Risk of Cataract and Glaucoma among Older Persons with Diabetes in India: A Cross-Sectional Study Based on LASI, Wave-1. Sci. Rep. 2023, 13, 11973. [Google Scholar] [CrossRef] [PubMed]
- Bixler, J. Cataracts and Their Treatment in People with Diabetes. Compendia 2019, 2019, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M.; Pony-Uram, M.; Bryl, A.; Zorena, K. Current Approach to the Pathogenesis of Diabetic Cataracts. IJMS 2023, 24, 6317. [Google Scholar] [CrossRef]
- Esteves, J.F.; Dal Pizzol, M.M.; Sccoco, C.A.; Roggia, M.F.; Milano, S.B.; Guarienti, J.A.A.; Rodrigues, T.C.; Canani, L.H. Cataract and Type 1 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2008, 82, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.P.-C.; Lamoureux, E.L.; Zheng, Y.; Tay, W.T.; Mitchell, P.; Wang, J.J.; Wong, T.Y. Frequency and Risk Factors of Non-Retinopathy Ocular Conditions in People with Diabetes: The Singapore Malay Eye Study. Diabet. Med. 2013, 30, e32–e40. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.F.; Mahar, P.S.; Memon, M.S.; Mumtaz, S.N.; Shaikh, S.A.; Fahim, M.F. Age-Related Cataract and Its Types in Patients with and without Type 2 Diabetes Mellitus: A Hospital-Based Comparative Study. J. Pak. Med. Assoc. 2016, 66, 1272–1276. [Google Scholar]
- Leske, M. Nine-Year Incidence of Lens Opacities in the Barbados Eye Studies. Ophthalmology 2004, 111, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A. Cataract Surgery and Subtype in a Defined, Older Population: The SEECAT Project. Br. J. Ophthalmol. 2004, 88, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- McCarty, C.A.; Mukesh, B.N.; Dimitrov, P.N.; Taylor, H.R. Incidence and Progression of Cataract in the Melbourne Visual Impairment Project. Am. J. Ophthalmol. 2003, 136, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wan, X.; Zhao, G. Meta-Analysis of the Risk of Cataract in Type 2 Diabetes. BMC Ophthalmol. 2014, 14, 94. [Google Scholar] [CrossRef]
- Hashemi, H.; Pakzad, R.; Yekta, A.; Aghamirsalim, M.; Pakbin, M.; Ramin, S.; Khabazkhoob, M. Global and Regional Prevalence of Age-Related Cataract: A Comprehensive Systematic Review and Meta-Analysis. Eye 2020, 34, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Aldhabaan, W.; Abdulrahman, M.A.; Asiri, M.Y.; Alshabab, M.Q.; Alshahrani, M.Y.; Alnakhli, G.R.; Alasmari, F.; Alharthi, A.; Al Zomia, A.S. Assessment of Knowledge Regarding Cataract Among Saudi Adult Population in Assir Region, Saudi Arabia. Cureus 2022, 14, e32703. [Google Scholar] [CrossRef]
- Javadi, M.-A.; Zarei-Ghanavati, S. Cataracts in Diabetic Patients: A Review Article. J. Ophthalmic Vis. Res. 2008, 3, 52–65. [Google Scholar]
- Tabin, G.; Chen, M.; Espandar, L. Cataract Surgery for the Developing World. Curr. Opin. Ophthalmol. 2008, 19, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Khan, A.; Khan, M.Z.-I.; Adil, M.; Abbas, S.H.; Khan, M.U.; Naz, S.M. Cataract: Trends in Surgical Procedures and Visual Outcomes; a Study in a Tertiary Care Hospital. J. Pak. Med. Assoc. 2012, 62, 209–212. [Google Scholar]
- Zhang, J.H.; Ramke, J.; Lee, C.N.; Gordon, I.; Safi, S.; Lingham, G.; Evans, J.R.; Keel, S. A Systematic Review of Clinical Practice Guidelines for Cataract: Evidence to Support the Development of the WHO Package of Eye Care Interventions. Vision 2022, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, J.; Laatikainen, L. The Decrease of Visual Acuity in Cataract Patients Waiting for Surgery. Acta Ophthalmol. Scand. 1999, 77, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Baderca, F.; Timar, B.; Popescu, S.; Simu, M.; Diaconu, L.; Velea, I.; Timar, R. Age as an Independent Factor for the Development of Neuropathy in Diabetic Patients. CIA 2016, 11, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.K.; Klein, R.; Lee, K.E. Diabetes, Cardiovascular Disease, Selected Cardiovascular Disease Risk Factors, and the 5-Year Incidence of Age-Related Cataract and Progression of Lens Opacities: The Beaver Dam Eye Study. Am. J. Ophthalmol. 1998, 126, 782–790. [Google Scholar] [CrossRef]
- Manasvi, P.; Panimalar, V.; Veeramani, A.; Divya, N.; Bhaskaran, B. Analysis of Cataract in Diabetic and Non-Diabetic Patients. IJCRR 2021, 13, 67–71. [Google Scholar] [CrossRef]
- Richardson, R.B.; Ainsbury, E.A.; Prescott, C.R.; Lovicu, F.J. Etiology of Posterior Subcapsular Cataracts Based on a Review of Risk Factors Including Aging, Diabetes, and Ionizing Radiation. Int. J. Radiat. Biol. 2020, 96, 1339–1361. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.; Mitchell, P.; Cumming, R.G. Refractive Associations with Cataract: The Blue Mountains Eye Study. Investig. Ophthalmol. Vis. Sci. 1999, 40, 3021–3026. [Google Scholar]
- Hong, Y.; Sun, Y.; Ye, X.; Lu, Y.; Xu, J.; Xu, J.; Ji, Y. Prevalence and Risk Factors for Adult Cataract in the Jingan District of Shanghai. J. Ophthalmol. 2022, 2022, 7547043. [Google Scholar] [CrossRef]
- Pollreisz, A.; Schmidt-Erfurth, U. Diabetic Cataract—Pathogenesis, Epidemiology and Treatment. J. Ophthalmol. 2010, 2010, 608751. [Google Scholar] [CrossRef] [PubMed]
- Olafsdottir, E.; Andersson, D.K.G.; Stefánsson, E. The Prevalence of Cataract in a Population with and without Type 2 Diabetes Mellitus. Acta Ophthalmol. 2012, 90, 334–340. [Google Scholar] [CrossRef]
- Grzybowski, A.; Kanclerz, P.; Huerva, V.; Ascaso, F.J.; Tuuminen, R. Diabetes and Phacoemulsification Cataract Surgery: Difficulties, Risks and Potential Complications. J. Clin. Med. 2019, 8, 716. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, R.; Moss, S.E. Prevalence of Cataracts in a Population-Based Study of Persons with Diabetes Mellitus. Ophthalmology 1985, 92, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.V.; Vinding, T. The Prevalence of Cataract in Insulin-Dependent and Non-Insulin-Dependent-Diabetes Mellitus. Acta Ophthalmol. 1984, 62, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Chylack, L.T.; Wu, S.Y. The Lens Opacities Case-Control Study. Risk Factors for Cataract. Arch. Ophthalmol. 1991, 109, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Schneider, C.; Aballéa, S.; Bailey, C.; Bourne, R.; Jick, S.; Meier, C. Cataract in Patients with Diabetes Mellitus—Incidence Rates in the UK and Risk Factors. Eye 2018, 32, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.R.; Koo, E.; Agrón, E.; Hallak, J.; Clemons, T.; Azar, D.; Sperduto, R.D.; Ferris, F.L.; Chew, E.Y. Age-Related Eye Disease Study Group Risk Factors Associated with Incident Cataracts and Cataract Surgery in the Age-Related Eye Disease Study (AREDS): AREDS Report Number 32. Ophthalmology 2011, 118, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Jansone-Langina, Z.; Solomatin, A.; Solomatins, M.; Krumina, G. Quality of Life Assessment for Nuclear, Cortical, Posterior Subcapsular Patients before and after Cataract Surgery. J. Optom. 2024, 17, 100489. [Google Scholar] [CrossRef]
- Steinberg, E.P.; Tielsch, J.M.; Schein, O.D.; Javitt, J.C.; Sharkey, P.; Cassard, S.D.; Legro, M.W.; Diener-West, M.; Bass, E.B.; Damiano, A.M. The VF-14. An Index of Functional Impairment in Patients with Cataract. Arch. Ophthalmol. 1994, 112, 630–638. [Google Scholar] [CrossRef]
- Naderi, K.; Gormley, J.; O’Brart, D. Cataract Surgery and Dry Eye Disease: A Review. Eur. J. Ophthalmol. 2020, 30, 840–855. [Google Scholar] [CrossRef] [PubMed]
- Temkar, S.; Murugesan, V. Cataract with Diabetic Retinopathy: Optimizing the Visual Outcomes. Indian J. Ophthalmol.-Case Rep. 2024, 4, 611–613. [Google Scholar] [CrossRef]
- Meuleners, L.B.; Brameld, K.; Fraser, M.L.; Chow, K. The Impact of First- and Second-Eye Cataract Surgery on Motor Vehicle Crashes and Associated Costs. Age Ageing 2019, 48, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, N.K.; Rajab, I.A.; Al-Taie, R.H.; Ismail, M. Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management. Cureus 2024, 16, e66600. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Chen, X.; Li, T.; Ma, T.; Yang, Y.; Bi, L.; Zhang, X. An Overview of Artificial Intelligence in Diabetic Retinopathy and Other Ocular Diseases. Front. Public Health 2022, 10, 971943. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Shi, C.; Xu, W.; Jin, X.; Han, W.; Jin, K.; Grzybowski, A.; Yao, K. Artificial Intelligence for Anterior Segment Diseases: A Review of Potential Developments and Clinical Applications. Ophthalmol. Ther. 2023, 12, 1439–1455. [Google Scholar] [CrossRef] [PubMed]
- Cicek, M.; Buckley, J.; Pearson-Stuttard, J.; Gregg, E.W. Characterizing Multimorbidity from Type 2 Diabetes. Endocrinol. Metab. Clin. North Am. 2021, 50, 531–558. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 5. Facilitating Positive Health Behaviors and Well-Being to Improve Health Outcomes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S68–S96. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K.; Maykish, A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines 2020, 8, 8. [Google Scholar] [CrossRef]
- Ivanescu, A.; Popescu, S.; Ivanescu, R.; Potra, M.; Timar, R. Predictors of Diabetic Retinopathy in Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2024, 12, 1889. [Google Scholar] [CrossRef] [PubMed]
Parameter | Overall (n = 201) | Men (n = 98) | Women (n = 103) | p-Value * |
---|---|---|---|---|
Age a (years) | 72 (63; 77) | 69.0 (88.8) | 74.0 (112.5) | 0.003 |
Weight a (kg) | 80 (72; 90) | 89.0 (133.6) | 75.0 (69.9) | <0.0001 |
Height a (cm) | 170 (165; 180) | 180.0 (146.1) | 165.0 (58.0) | <0.0001 |
BMI a | 27.3 (25.7; 29.3) | 27.4 (99.8) | 27.2 (102.0) | 0.7 |
Right IOP a (mmHg) | 15 (13; 18) | 15.0 (95.7) | 15.0 (105.9) | 0.2 |
Left IOP a (mmHg) | 16 (14; 18) | 15.0 (96.2) | 16.0 (105.5) | 0.2 |
Ophtalmologic Condition | Frequencies |
---|---|
Anterior pole/cornea (zona zoster, herpetic keratitis, vortex keratopathy, cornea guttata, pterygium) | 7.5% (15/201) |
Glaucoma | 17.9% (36/201) |
Macular degeneration | 13.9% (28/201) |
Retinal vascular diseases | 4.5% (9/201) |
Retinal tear/detachment | 8.0% (16/201) |
Chorioretinal degenerative diseases | 9.5% (19/201) |
Inflammatory disease | 2.0% (4/201) |
Parameter | Overall (n = 201) | Diabetes Patients | Non-Diabetes Patients | p-Value * |
---|---|---|---|---|
Male gender | 48.8% (98/201) | 52.4% (55/105) | 44.8% (43/96) | 0.2 |
Age a (years) | 72 (63; 77) | 66.0 (71.8) | 77 (132.9) | <0.0001 |
Weight a (kg) | 80 (72; 90) | 80.0 (107.3) | 79.5 (94.1) | 0.1 |
Height a (cm) | 170 (165; 180) | 170.0 (98.0) | 169.5 (104.2) | 0.4 |
BMI a | 27.3 (25.7; 29.3) | 28.2 (113.7) | 26.8 (87.0) | 0.001 |
Right IOP a (mmHg) | 15 (13; 18) | 15.0 (102.6) | 15.0 (99.1) | 0.6 |
Left IOP a (mmHg) | 16 (14; 18) | 16.0 (101.2) | 15.0 (100.7) | 0.9 |
Smoker b | 32.3% (65/201) | 29.5% (31/105) | 35.4% (34/96) | 0.3 |
Dyslipidemia b | 71.6% (144/201) | 66.6% (70/105) | 77.1% (74/96) | 0.1 |
HTN b | <0.0001 | |||
None | 7.0% (14/201) | 0 | 14.5% (14/96) | |
Grade 1 | 19.4% (39/201) | 29.5% (31/105) | 8.3% (8/96) | |
Grade 2 | 45.3% (91/201) | 45.7% (48/105) | 44.8% (43/96) | |
Grade 3 | 28.4% (57/201) | 24.8% (26/105) | 32.3% (31/96) | |
CVD b | 50.7% (102/201) | 58.0% (61/105) | 39.0% (41/105) | 0.02 |
CKD b | 27.9% (56/201) | 35.2% (37/105) | 19.8% (19/96) | 0.01 |
Liver disease b | 12.9% (26/201) | 15.2% (16/105) | 10.4% (10/96) | 0.3 |
Weight status b | 0.007 | |||
Normal-weight | 17.9% (36/201) | 16.2% (17/105) | 19.8% (19/96) | |
Overweight | 63.2% (127/201) | 55.2% (58/105) | 71.8% (69/96) | |
Grade 1 | 14.9% (30/201) | 21.9% (23/105) | 7.3% (7/96) | |
Grade 2 | 2.5% (5/201) | 3.8% (4/105) | 1.0% (1/96) | |
Grade 3 | 1.5% (3/201) | 2.8% (3/105) | 0 | |
Cataracts b | ||||
NS | 57.7% (116/201) | 63.8% (67/105) | 51.0% (49/96) | 0.06 |
CC | 87.5% (176/201) | 100% (105/105) | 73.9% (71/96) | <0.0001 |
PSC | 27.3% (55/201) | 29.5% (31/105) | 25% (24/96) | 0.4 |
Variables | Patients with Diabetes (n = 105) | Patients Without Diabetes (n = 96) | p-Value * |
---|---|---|---|
Cataract type | |||
Cortical cataract—right eye | 105 (100%) | 70 (72.9%) | p < 0.0001 * |
Cortical cataract—left eye | 90 (85.7%) | 71 (74.0%) | p = 0.03 * |
Nuclear cataract—right eye | 61 (58.1%) | 49 (51.0%) | p = 0.3 |
Nuclear cataract—left eye | 52 (49.5%) | 49 (51.0%) | p = 0.8 |
Posterior subcapsular cataract—right eye | 31 (29.5%) | 24 (25.0%) | p = 0.4 |
Posterior subcapsular cataract—left eye | 29 (27.6%) | 23 (24.0%) | p = 0.5 |
Confusion Matrix | Class Proportions | ||||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Data Set | Training Set | Validation Set | Test Set | |||||
1 | 2 | 3 | |||||||
Predicted | 1 | 0.12 | 0.15 | 0 | 1 | 0.338 | 0.359 | 0.364 | 0.250 |
2 | 0.12 | 0.55 | 0.05 | 2 | 0.602 | 0.563 | 0.636 | 0.700 | |
3 | 0 | 0 | 0 | 3 | 0.060 | 0.078 | 0.000 | 0.050 |
1 | 2 | 3 | Average/Total | |
---|---|---|---|---|
Support | 10 | 28 | 2 | 40 |
Accuracy | 0.725 | 0.675 | 0.950 | 0.783 |
Precision (Positive Predictive Value) | 0.455 | 0.759 | NaN | 0.645 |
Recall (True Positive Rate) | 0.500 | 0.786 | 0.000 | 0.675 |
False Positive Rate | 0.200 | 0.583 | 0.000 | 0.261 |
False Discovery Rate | 0.545 | 0.241 | NaN | 0.393 |
F1 Score | 0.476 | 0.772 | NaN | 0.659 |
Matthews Correlation Coefficient | 0.291 | 0.208 | NaN | 0.249 |
Area Under Curve (AUC) | 0.662 | 0.676 | 0.151 | 0.496 |
Negative Predictive Value | 0.828 | 0.455 | 0.950 | 0.744 |
True Negative Rate | 0.800 | 0.417 | 1.000 | 0.739 |
False Negative Rate | 0.500 | 0.214 | 1.000 | 0.571 |
False Omission Rate | 0.172 | 0.545 | 0.050 | 0.256 |
Threat Score | 0.294 | 1.100 | 0.000 | 0.465 |
Statistical Parity | 0.275 | 0.725 | 0.000 | 1.000 |
Mean Decrease in Accuracy | Total Increase in Node Purity | Mean Dropout Loss | |
---|---|---|---|
Diabetes | 0.011 | 0.036 | 60.191 |
Diabetes duration | 0.055 | 0.015 | 73.329 |
BMI | −0.022 | 0.006 | 60.693 |
PND | 0.022 | 0.006 | 54.581 |
OB | −0.009 | 0.003 | 54.565 |
Weight | −0.014 | 0.003 | 60.594 |
Smoker | 0.004 | 0.002 | 53.050 |
CKD | −0.002 | 0.002 | 52.643 |
HTN | −0.011 | −9.776 × 10−4 | 61.512 |
CVD | 0.014 | −0.001 | 58.661 |
Age | 0.010 | −0.003 | 62.280 |
Dyslipidemia | 0.006 | −0.003 | 54.121 |
Liver disease | −0.004 | −0.004 | 52.409 |
Sex | 8.839 × 10−4 | −0.006 | 56.207 |
Height | 0.006 | −0.009 | 62.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanescu, A.; Popescu, S.; Braha, A.; Timar, B.; Sorescu, T.; Lazar, S.; Timar, R.; Gaita, L. Diabetes and Cataracts Development—Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study. Medicina 2025, 61, 29. https://doi.org/10.3390/medicina61010029
Ivanescu A, Popescu S, Braha A, Timar B, Sorescu T, Lazar S, Timar R, Gaita L. Diabetes and Cataracts Development—Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study. Medicina. 2025; 61(1):29. https://doi.org/10.3390/medicina61010029
Chicago/Turabian StyleIvanescu, Adriana, Simona Popescu, Adina Braha, Bogdan Timar, Teodora Sorescu, Sandra Lazar, Romulus Timar, and Laura Gaita. 2025. "Diabetes and Cataracts Development—Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study" Medicina 61, no. 1: 29. https://doi.org/10.3390/medicina61010029
APA StyleIvanescu, A., Popescu, S., Braha, A., Timar, B., Sorescu, T., Lazar, S., Timar, R., & Gaita, L. (2025). Diabetes and Cataracts Development—Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study. Medicina, 61(1), 29. https://doi.org/10.3390/medicina61010029