Psoriasis and Psoriatic Arthritis—Associated Genes, Cytokines, and Human Leukocyte Antigens
Abstract
:1. Introduction
2. Genetic and Pathogenetic Aspects of Psoriasis
3. Associated Genes
- Antigen Presentation: HLA-Cw6, ERAP1, ERAP2, MICA—These genes are critical for the presentation of antigenic peptides to T-cells. HLA-Cw6, for example, is one of the most strongly associated genetic markers for PsO, influencing how the immune system recognizes and responds to pathogens and self-antigens.
- IL-12/IL-23 Axis: IL12Bp40, IL23Ap19, IL23R, JAK2, TYK2—This group of genes regulates cytokines that are pivotal for T-cell differentiation, particularly into Th1 and Th17 cells. The IL-23 receptor pathway, through its influence on Th17 cell functioning, is a primary therapeutic target, as evidenced by the efficacy of biologics that block IL-23.
- T-cell Development and Polarization: RUNX1, RUNX3, STAT3, TAGAP, IL-4, IL-13—These genes are involved in T-cell lineage decisions and the polarization of T-cells into specific subtypes crucial for PsO pathogenesis, such as Th2 cells, which are influenced by IL-4 and IL-13.
- Innate Immunity: CARD14, c-REL, TRAF3IP2, DDX58, IFIH1—These genes encode proteins that play roles in the innate immune response, providing the first line of defense against pathogens and initiating inflammatory responses that can lead to psoriatic plaque formation.
- Negative Regulators of Immune Responses—TNIP1, TNFAIP3, NFKBIA, ZC3H12C, IL36RN, SOCS1: These genes help modulate and dampen the immune response, preventing uncontrolled inflammation. Dysregulation of these genes can lead to the prolonged inflammatory responses seen in PsO.
Psoriasis Susceptibility Loci (PSORS)
4. Human Leukocyte Antigens
- HLA Class I Associations
- HLA Class II Associations
5. Cytokines
6. Genetic and Pathogenetic Aspects of Psoriatic Arthritis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mrowietz, U.; Lauffer, F.; Sondermann, W.; Gerdes, S.; Sewerin, P. Psoriasis as a Systemic Disease. Dtsch. Arztebl. Int. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Alinaghi, F.; Calov, M.; Kristensen, L.E.; Gladman, D.D.; Coates, L.C.; Jullien, D.; Gottlieb, A.B.; Gisondi, P.; Wu, J.J.; Thyssen, J.P.; et al. Prevalence of Psoriatic Arthritis in Patients with Psoriasis: A Systematic Review and Meta-Analysis of Observational and Clinical Studies. J. Am. Acad. Dermatol. 2019, 80, 251–265.e19. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Psoriasis; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-156518-9. [Google Scholar]
- Gibbs, S. Skin Disease and Socioeconomic Conditions in Rural Africa: Tanzania. Int. J. Dermatol. 1996, 35, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Pariser, D.; Schenkel, B.; Carter, C.; Farahi, K.; Brown, T.M.; Ellis, C.N. Psoriasis Patient Interview Study Group A Multicenter, Non-Interventional Study to Evaluate Patient-Reported Experiences of Living with Psoriasis. J. Dermatolog. Treat. 2016, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Vena, G.A.; Altomare, G.; Ayala, F.; Berardesca, E.; Calzavara-Pinton, P.; Chimenti, S.; Giannetti, A.; Girolomoni, G.; Lotti, T.; Martini, P.; et al. Incidence of Psoriasis and Association with Comorbidities in Italy: A 5-Year Observational Study from a National Primary Care Database. Eur. J. Dermatol. 2010, 20, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Chandran, V. The Genetics of Psoriasis and Psoriatic Arthritis. Clin. Rev. Allergy Immunol. 2013, 44, 149–156. [Google Scholar] [CrossRef]
- Karmacharya, P.; Chakradhar, R.; Ogdie, A. The Epidemiology of Psoriatic Arthritis: A Literature Review. Best. Pract. Res. Clin. Rheumatol. 2021, 35, 101692. [Google Scholar] [CrossRef]
- Bowcock, A.M. The Genetics of Psoriasis and Autoimmunity. Annu. Rev. Genom. Hum. Genet. 2005, 6, 93–122. [Google Scholar] [CrossRef]
- Ran, D.; Cai, M.; Zhang, X. Genetics of Psoriasis: A Basis for Precision Medicine. Precis. Clin. Med. 2019, 2, 120–130. [Google Scholar] [CrossRef]
- Dand, N.; Mahil, S.K.; Capon, F.; Smith, C.H.; Simpson, M.A.; Barker, J.N. Psoriasis and Genetics. Acta Derm. Venereol. 2020, 100, 5647. [Google Scholar] [CrossRef]
- Chamian, F.; Lowes, M.A.; Lin, S.-L.; Lee, E.; Kikuchi, T.; Gilleaudeau, P.; Sullivan-Whalen, M.; Cardinale, I.; Khatcherian, A.; Novitskaya, I.; et al. Alefacept Reduces Infiltrating T Cells, Activated Dendritic Cells, and Inflammatory Genes in Psoriasis Vulgaris. Proc. Natl. Acad. Sci. USA 2005, 102, 2075–2080. [Google Scholar] [CrossRef] [PubMed]
- Harden, J.L.; Krueger, J.G.; Bowcock, A.M. The Immunogenetics of Psoriasis: A Comprehensive Review. J. Autoimmun. 2015, 64, 66–73. [Google Scholar] [CrossRef] [PubMed]
- O’Rielly, D.D.; Rahman, P. Genetics of Psoriatic Arthritis. Best. Pract. Res. Clin. Rheumatol. 2014, 28, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Valentova, V.; Galajda, P.; Péč, M.; Mokan, M.; Pec, J. Genetics of Psoriasis-Short Resume. Acta Medica Martiniana 2011, 11, 7–15. [Google Scholar] [CrossRef]
- Chandran, V. Genetics of Psoriasis and Psoriatic Arthritis. Indian J. Dermatol. 2010, 55, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Gudjonsson, J.E.; Le, S.; Maverakis, E.; Plazyo, O.; Ritchlin, C.; Scher, J.U.; Singh, R.; Ward, N.L.; Bell, S.; et al. New Frontiers in Psoriatic Disease Research, Part I: Genetics, Environmental Triggers, Immunology, Pathophysiology, and Precision Medicine. J. Investig. Dermatol. 2021, 141, 2112–2122.e3. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.T.; Cao, L.; Roberson, E.D.O.; Pierson, K.C.; Yang, C.-F.; Joyce, C.E.; Ryan, C.; Duan, S.; Helms, C.A.; Liu, Y.; et al. PSORS2 Is due to Mutations in CARD14. Am. J. Hum. Genet. 2012, 90, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, L.; Stiller, C.; Friberg, C.; Nilsson, C.; Inerot, A.; Wahlström, J. Association Analysis of Cystatin A and Zinc Finger Protein 148, Two Genes Located at the Psoriasis Susceptibility Locus PSORS5. J. Investig. Dermatol. 2004, 122, 1399–1400. [Google Scholar] [CrossRef] [PubMed]
- Duffin, K.C.; Chandran, V.; Gladman, D.D.; Krueger, G.G.; Elder, J.T.; Rahman, P. Genetics of Psoriasis and Psoriatic Arthritis: Update and Future Direction. J. Rheumatol. 2008, 35, 1449–1453. [Google Scholar]
- Sun, L.-D.; Li, W.; Yang, S.; Fan, X.; Yan, K.-L.; Liang, Y.-H.; Gao, M.; Cui, Y.; Xiao, F.-L.; Du, W.-H.; et al. Evidence for a Novel Psoriasis Susceptibility Locus at 9q33-9q34 in Chinese Hans. J. Investig. Dermatol. 2007, 127, 1140–1144. [Google Scholar] [CrossRef]
- Vasku, V.; Bienertova Vasku, J.; Slonková, V.; Kanková, K.; Vasku, A. Matrix Metalloproteinase-2 Promoter Variability in Psoriasis. Arch. Dermatol. Res. 2009, 301, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yuan, J.; Tian, Z.; Xu, J.; Lu, Z. Investigation of 36 Non-HLA (Human Leucocyte Antigen) Psoriasis Susceptibility Loci in a Psoriatic Arthritis Cohort. Arch. Dermatol. Res. 2017, 309, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Occella, C.; Bleidl, D.; Nozza, P.; Mascelli, S.; Raso, A.; Gimelli, G.; Gimelli, S.; Tassano, E. Identification of an Interstitial 18p11.32-P11.31 Duplication Including the EMILIN2 Gene in a Family with Porokeratosis of Mibelli. PLoS ONE 2013, 8, e61311. [Google Scholar] [CrossRef] [PubMed]
- Tsunemi, Y.; Saeki, H.; Nakamura, K.; Sekiya, T.; Hirai, K.; Fujita, H.; Asano, N.; Kishimoto, M.; Tanida, Y.; Kakinuma, T.; et al. Interleukin-12 P40 Gene (IL12B) 3′-Untranslated Region Polymorphism Is Associated with Susceptibility to Atopic Dermatitis and Psoriasis Vulgaris. J. Dermatol. Sci. 2002, 30, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Friberg, C.; Björck, K.; Nilsson, S.; Inerot, A.; Wahlström, J.; Samuelsson, L. Analysis of Chromosome 5q31-32 and Psoriasis: Confirmation of a Susceptibility Locus but No Association with SNPs within SLC22A4 and SLC22A5. J. Investig. Dermatol. 2006, 126, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Duffin, K.C.; Freeny, I.C.; Schrodi, S.J.; Wong, B.; Feng, B.-J.; Soltani-Arabshahi, R.; Rakkhit, T.; Goldgar, D.E.; Krueger, G.G. Association between IL13 Polymorphisms and Psoriatic Arthritis Is Modified by Smoking. J. Investig. Dermatol. 2009, 129, 2777–2783. [Google Scholar] [CrossRef]
- Nagai, N.; Kashiwamura, S.; Nakanishi, K.; Shinka, S. [Interleukin-4 (IL-4)]. Gan Kagaku Ryoho 1994, 21, 1099–1108. [Google Scholar]
- Yang, P.; Lu, Y.; Li, M.; Zhang, K.; Li, C.; Chen, H.; Tao, D.; Zhang, S.; Ma, Y. Identification of RNF114 as a Novel Positive Regulatory Protein for T Cell Activation. Immunobiology 2014, 219, 432–439. [Google Scholar] [CrossRef]
- Singh, S.; Singh, U.; Singh, S. Human Leukocyte Antigen in Patients with Psoriasis. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 535. [Google Scholar] [CrossRef]
- Gladman, D.D.; Anhorn, K.A.; Schachter, R.K.; Mervart, H. HLA Antigens in Psoriatic Arthritis. J. Rheumatol. 1986, 13, 586–592. [Google Scholar]
- Dand, N.; Duckworth, M.; Baudry, D.; Russell, A.; Curtis, C.J.; Lee, S.H.; Evans, I.; Mason, K.J.; Alsharqi, A.; Becher, G.; et al. HLA-C*06:02 Genotype Is a Predictive Biomarker of Biologic Treatment Response in Psoriasis. J. Allergy Clin. Immunol. 2019, 143, 2120–2130. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.Y.P.C.; Barton, A.; Worthington, J.; Thomson, W.; Silman, A.J.; Bruce, I.N. HLA-Cw6 and HLA-DRB1*07 Together Are Associated with Less Severe Joint Disease in Psoriatic Arthritis. Ann. Rheum. Dis. 2007, 66, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Budu-Aggrey, A.; Bowes, J.; Barton, A. Identifying a Novel Locus for Psoriatic Arthritis. Rheumatology 2016, 55, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Meephansan, J.; Subpayasarn, U.; Ohtsuki, M.K. Pathogenic Role of Cytokines and Effect of Their Inhibition in Psoriasis; IntechOpen: Rijeka, Croatia, 2017; ISBN 978-953-51-3252-3. [Google Scholar]
- Suzuki, E.; Mellins, E.D.; Gershwin, M.E.; Nestle, F.O.; Adamopoulos, I.E. The IL-23/IL-17 Axis in Psoriatic Arthritis. Autoimmun. Rev. 2014, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Gladman, D.D. Recent Advances in Understanding and Managing Psoriatic Arthritis. F1000Research 2016, 5, 2670. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; McInnes, I.B.; Kirkham, B.; Kavanaugh, A.; Rahman, P.; van der Heijde, D.; Landewé, R.; Nash, P.; Pricop, L.; Yuan, J.; et al. Secukinumab Inhibition of Interleukin-17A in Patients with Psoriatic Arthritis. N. Engl. J. Med. 2015, 373, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Boehncke, W.-H.; Brembilla, N.C.; Nissen, M.J. Guselkumab: The First Selective IL-23 Inhibitor for Active Psoriatic Arthritis in Adults. Expert. Rev. Clin. Immunol. 2021, 17, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-H.; Ho, J.-C.; Li, S.-C.; Chen, J.-F.; Hsiao, C.-C.; Lee, C.-H. MiR-146a-5p Expression in Peripheral CD14+ Monocytes from Patients with Psoriatic Arthritis Induces Osteoclast Activation, Bone Resorption, and Correlates with Clinical Response. J. Clin. Med. 2019, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Wade, S.M.; McGarry, T.; Wade, S.C.; Fearon, U.; Veale, D.J. Serum MicroRNA Signature as a Diagnostic and Therapeutic Marker in Patients with Psoriatic Arthritis. J. Rheumatol. 2020, 47, 1760–1767. [Google Scholar] [CrossRef]
- Van Raemdonck, K.; Umar, S.; Palasiewicz, K.; Romay, B.; Volkov, S.; Arami, S.; Sweiss, N.; Shahrara, S. TLR7 Endogenous Ligands Remodel Glycolytic Macrophages and Trigger Skin-to-Joint Crosstalk in Psoriatic Arthritis. Eur. J. Immunol. 2021, 51, 714–720. [Google Scholar] [CrossRef]
- Gregorio, J.; Meller, S.; Conrad, C.; Di Nardo, A.; Homey, B.; Lauerma, A.; Arai, N.; Gallo, R.L.; Digiovanni, J.; Gilliet, M. Plasmacytoid Dendritic Cells Sense Skin Injury and Promote Wound Healing through Type I Interferons. J. Exp. Med. 2010, 207, 2921–2930. [Google Scholar] [CrossRef]
- Lee, E.; Trepicchio, W.L.; Oestreicher, J.L.; Pittman, D.; Wang, F.; Chamian, F.; Dhodapkar, M.; Krueger, J.G. Increased Expression of Interleukin 23 P19 and P40 in Lesional Skin of Patients with Psoriasis Vulgaris. J. Exp. Med. 2004, 199, 125–130. [Google Scholar] [CrossRef]
- Gottlieb, A.B.; Chamian, F.; Masud, S.; Cardinale, I.; Abello, M.V.; Lowes, M.A.; Chen, F.; Magliocco, M.; Krueger, J.G. TNF Inhibition Rapidly Down-Regulates Multiple Proinflammatory Pathways in Psoriasis Plaques. J. Immunol. 2005, 175, 2721–2729. [Google Scholar] [CrossRef]
- Piskin, G.; Tursen, U.; Sylva-Steenland, R.M.R.; Bos, J.D.; Teunissen, M.B.M. Clinical Improvement in Chronic Plaque-Type Psoriasis Lesions after Narrow-Band UVB Therapy Is Accompanied by a Decrease in the Expression of IFN-Gamma Inducers-IL-12, IL-18 and IL-23. Exp. Dermatol. 2004, 13, 764–772. [Google Scholar] [CrossRef]
- Hohenberger, M.; Cardwell, L.A.; Oussedik, E.; Feldman, S.R. Interleukin-17 Inhibition: Role in Psoriasis and Inflammatory Bowel Disease. J. Dermatolog Treat. 2018, 29, 13–18. [Google Scholar] [CrossRef]
- Fletcher, J.M.; Moran, B.; Petrasca, A.; Smith, C.M. IL-17 in Inflammatory Skin Diseases Psoriasis and Hidradenitis Suppurativa. Clin. Exp. Immunol. 2020, 201, 121–134. [Google Scholar] [CrossRef]
- Lai, Y.; Li, D.; Li, C.; Muehleisen, B.; Radek, K.A.; Park, H.J.; Jiang, Z.; Li, Z.; Lei, H.; Quan, Y.; et al. The Antimicrobial Protein REG3A Regulates Keratinocyte Proliferation and Differentiation after Skin Injury. Immunity 2012, 37, 74–84. [Google Scholar] [CrossRef]
- Paroli, M.; Spadea, L.; Caccavale, R.; Spadea, L.; Paroli, M.P.; Nante, N. The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. Medicina 2022, 58, 1552. [Google Scholar] [CrossRef]
- Blauvelt, A.; Chiricozzi, A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin. Rev. Allergy Immunol. 2018, 55, 379–390. [Google Scholar] [CrossRef]
- Raychaudhuri, S.P.; Raychaudhuri, S.K. Mechanistic Rationales for Targeting Interleukin-17A in Spondyloarthritis. Arthritis Res. Ther. 2017, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Boniface, K.; Bernard, F.-X.; Garcia, M.; Gurney, A.L.; Lecron, J.-C.; Morel, F. IL-22 Inhibits Epidermal Differentiation and Induces Proinflammatory Gene Expression and Migration of Human Keratinocytes. J. Immunol. 2005, 174, 3695–3702. [Google Scholar] [CrossRef]
- Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; et al. IL-33, an Interleukin-1-like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef]
- Goldminz, A.M.; Au, S.C.; Kim, N.; Gottlieb, A.B.; Lizzul, P.F. NF-κB: An Essential Transcription Factor in Psoriasis. J. Dermatol. Sci. 2013, 69, 89–94. [Google Scholar] [CrossRef]
- Zaba, L.C.; Cardinale, I.; Gilleaudeau, P.; Sullivan-Whalen, M.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Novitskaya, I.; Khatcherian, A.; Bluth, M.J.; Lowes, M.A.; et al. Amelioration of Epidermal Hyperplasia by TNF Inhibition Is Associated with Reduced Th17 Responses. J. Exp. Med. 2007, 204, 3183–3194. [Google Scholar] [CrossRef]
- Gladman, D.D.; Antoni, C.; Mease, P.; Clegg, D.O.; Nash, P. Psoriatic Arthritis: Epidemiology, Clinical Features, Course, and Outcome. Ann. Rheum. Dis. 2005, 64 (Suppl. 2), ii14–ii17. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suárez-Fariñas, M.; Krueger, J.G. Immunology of Psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef]
- O’Rielly, D.D.; Rahman, P. Genetic, Epigenetic and Pharmacogenetic Aspects of Psoriasis and Psoriatic Arthritis. Rheum. Dis. Clin. N. Am. 2015, 41, 623–642. [Google Scholar] [CrossRef]
- Chandran, V.; Schentag, C.T.; Brockbank, J.E.; Pellett, F.J.; Shanmugarajah, S.; Toloza, S.M.A.; Rahman, P.; Gladman, D.D. Familial Aggregation of Psoriatic Arthritis. Ann. Rheum. Dis. 2009, 68, 664–667. [Google Scholar] [CrossRef]
- Myers, A.; Kay, L.J.; Lynch, S.A.; Walker, D.J. Recurrence Risk for Psoriasis and Psoriatic Arthritis within Sibships. Rheumatology 2005, 44, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Cortes, A.; Brown, M.A. Promise and Pitfalls of the Immunochip. Arthritis Res. Ther. 2011, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Helms, C.; Liao, W.; Zaba, L.C.; Duan, S.; Gardner, J.; Wise, C.; Miner, A.; Malloy, M.J.; Pullinger, C.R.; et al. A Genome-Wide Association Study of Psoriasis and Psoriatic Arthritis Identifies New Disease Loci. PLoS Genet. 2008, 4, e1000041. [Google Scholar] [CrossRef]
- Stuart, P.E.; Nair, R.P.; Tsoi, L.C.; Tejasvi, T.; Das, S.; Kang, H.M.; Ellinghaus, E.; Chandran, V.; Callis-Duffin, K.; Ike, R.; et al. Genome-Wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. Am. J. Hum. Genet. 2015, 97, 816–836. [Google Scholar] [CrossRef]
- Hile, G.; Kahlenberg, J.M.; Gudjonsson, J.E. Recent Genetic Advances in Innate Immunity of Psoriatic Arthritis. Clin. Immunol. 2020, 214, 108405. [Google Scholar] [CrossRef]
- Bowes, J.; Budu-Aggrey, A.; Huffmeier, U.; Uebe, S.; Steel, K.; Hebert, H.L.; Wallace, C.; Massey, J.; Bruce, I.N.; Bluett, J.; et al. Dense Genotyping of Immune-Related Susceptibility Loci Reveals New Insights into the Genetics of Psoriatic Arthritis. Nat. Commun. 2015, 6, 6046. [Google Scholar] [CrossRef]
- Nair, R.P.; Duffin, K.C.; Helms, C.; Ding, J.; Stuart, P.E.; Goldgar, D.; Gudjonsson, J.E.; Li, Y.; Tejasvi, T.; Feng, B.-J.; et al. Genome-Wide Scan Reveals Association of Psoriasis with IL-23 and NF-kappaB Pathways. Nat. Genet. 2009, 41, 199–204. [Google Scholar] [CrossRef]
- Stuart, P.E.; Nair, R.P.; Ellinghaus, E.; Ding, J.; Tejasvi, T.; Gudjonsson, J.E.; Li, Y.; Weidinger, S.; Eberlein, B.; Gieger, C.; et al. Genome-Wide Association Analysis Identifies Three Psoriasis Susceptibility Loci. Nat. Genet. 2010, 42, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Winchester, R.; FitzGerald, O. The Many Faces of Psoriatic Arthritis: Their Genetic Determinism. Rheumatology 2020, 59, i4–i9. [Google Scholar] [CrossRef]
- Ellinghaus, E.; Stuart, P.E.; Ellinghaus, D.; Nair, R.P.; Debrus, S.; Raelson, J.V.; Belouchi, M.; Tejasvi, T.; Li, Y.; Tsoi, L.C.; et al. Genome-Wide Meta-Analysis of Psoriatic Arthritis Identifies Susceptibility Locus at REL. J. Investig. Dermatol. 2012, 132, 1133–1140. [Google Scholar] [CrossRef]
- Hüffmeier, U.; Mössner, R. Complex Role of TNF Variants in Psoriatic Arthritis and Treatment Response to Anti-TNF Therapy: Evidence and Concepts. J. Investig. Dermatol. 2014, 134, 2483–2485. [Google Scholar] [CrossRef]
- Aterido, A.; Cañete, J.D.; Tornero, J.; Ferrándiz, C.; Pinto, J.A.; Gratacós, J.; Queiró, R.; Montilla, C.; Torre-Alonso, J.C.; Pérez-Venegas, J.J.; et al. Genetic Variation at the Glycosaminoglycan Metabolism Pathway Contributes to the Risk of Psoriatic Arthritis but Not Psoriasis. Ann. Rheum. Dis. 2019, 78, e214158. [Google Scholar] [CrossRef]
- Bowes, J.; Ashcroft, J.; Dand, N.; Jalali-Najafabadi, F.; Bellou, E.; Ho, P.; Marzo-Ortega, H.; Helliwell, P.S.; Feletar, M.; Ryan, A.W.; et al. Cross-Phenotype Association Mapping of the MHC Identifies Genetic Variants That Differentiate Psoriatic Arthritis from Psoriasis. Ann. Rheum. Dis. 2017, 76, 1774–1779. [Google Scholar] [CrossRef]
- Eder, L.; Chandran, V.; Pellett, F.; Shanmugarajah, S.; Rosen, C.F.; Bull, S.B.; Gladman, D.D. Differential Human Leucocyte Allele Association between Psoriasis and Psoriatic Arthritis: A Family-Based Association Study. Ann. Rheum. Dis. 2012, 71, 1361–1365. [Google Scholar] [CrossRef]
- Eder, L.; Chandran, V.; Pellet, F.; Shanmugarajah, S.; Rosen, C.F.; Bull, S.B.; Gladman, D.D. Human Leucocyte Antigen Risk Alleles for Psoriatic Arthritis among Patients with Psoriasis. Ann. Rheum. Dis. 2012, 71, 50–55. [Google Scholar] [CrossRef]
- Winchester, R.; Minevich, G.; Steshenko, V.; Kirby, B.; Kane, D.; Greenberg, D.A.; FitzGerald, O. HLA Associations Reveal Genetic Heterogeneity in Psoriatic Arthritis and in the Psoriasis Phenotype. Arthritis Rheum. 2012, 64, 1134–1144. [Google Scholar] [CrossRef]
- Elkayam, O.; Segal, R.; Caspi, D. Human Leukocyte Antigen Distribution in Israeli Patients with Psoriatic Arthritis. Rheumatol. Int. 2004, 24, 93–97. [Google Scholar] [CrossRef]
- Pollock, R.A.; Chandran, V.; Pellett, F.J.; Thavaneswaran, A.; Eder, L.; Barrett, J.; Rahman, P.; Farewell, V.; Gladman, D.D. The Functional MICA-129 Polymorphism Is Associated with Skin but Not Joint Manifestations of Psoriatic Disease Independently of HLA-B and HLA-C. Tissue Antigens 2013, 82, 43–47. [Google Scholar] [CrossRef]
- Liao, H.-T.; Lin, K.-C.; Chang, Y.-T.; Chen, C.-H.; Liang, T.-H.; Chen, W.-S.; Su, K.-Y.; Tsai, C.-Y.; Chou, C.-T. Human Leukocyte Antigen and Clinical and Demographic Characteristics in Psoriatic Arthritis and Psoriasis in Chinese Patients. J. Rheumatol. 2008, 35, 891–895. [Google Scholar]
- Cabaleiro, T.; Román, M.; Gallo, E.; Ochoa, D.; Tudelilla, F.; Talegón, M.; Prieto-Pérez, R.; García-Díez, A.; Daudén, E.; Abad-Santos, F. Association between Psoriasis and Polymorphisms in the TNF, IL12B, and IL23R Genes in Spanish Patients. Eur. J. Dermatol. 2013, 23, 640–645. [Google Scholar] [CrossRef]
- Chen, L.; Tsai, T.-F. HLA-Cw6 and Psoriasis. Br. J. Dermatol. 2018, 178, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Coto-Segura, P.; Coto, E.; González-Lara, L.; Alonso, B.; Gómez, J.; Cuesta-Llavona, E.; Queiro, R. Gene Variant in the NF-κB Pathway Inhibitor NFKBIA Distinguishes Patients with Psoriatic Arthritis within the Spectrum of Psoriatic Disease. Biomed. Res. Int. 2019, 2019, 1030256. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Han, B.; Tsoi, L.C.; Stuart, P.E.; Ellinghaus, E.; Tejasvi, T.; Chandran, V.; Pellett, F.; Pollock, R.; Bowcock, A.M.; et al. Fine Mapping Major Histocompatibility Complex Associations in Psoriasis and Its Clinical Subtypes. Am. J. Hum. Genet. 2014, 95, 162–172. [Google Scholar] [CrossRef]
- Soomro, M.; Hum, R.; Barton, A.; Bowes, J. Genetic Studies Investigating Susceptibility to Psoriatic Arthritis: A Narrative Review. Clin. Ther. 2023, 45, 810–815. [Google Scholar] [CrossRef]
- O’Rielly, D.D.; Jani, M.; Rahman, P.; Elder, J.T. The Genetics of Psoriasis and Psoriatic Arthritis. J. Rheumatol. Suppl. 2019, 95, 46–50. [Google Scholar] [CrossRef]
- Bocheńska, K.; Moskot, M.; Smolińska-Fijołek, E.; Jakóbkiewicz-Banecka, J.; Szczerkowska-Dobosz, A.; Słomiński, B.; Gabig-Cimińska, M. Impact of Isoflavone Genistein on Psoriasis in in Vivo and in Vitro Investigations. Sci. Rep. 2021, 11, 18297. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Zakeri, M.A.; Wang, S.-Y.; Yan, M.; Wang, Y.-H.; Li, L.; Sun, Z.-L.; Wang, R.-Y.; Miao, L.-Z. Assessment of Causal Relationships between Omega-3 and Omega-6 Polyunsaturated Fatty Acids in Autoimmune Rheumatic Diseases: A Brief Research Report from a Mendelian Randomization Study. Front. Nutr. 2024, 11, 1356207. [Google Scholar] [CrossRef]
- Klapan, K.; Frangež, Ž.; Markov, N.; Yousefi, S.; Simon, D.; Simon, H.-U. Evidence for Lysosomal Dysfunction within the Epidermis in Psoriasis and Atopic Dermatitis. J. Investig. Dermatol. 2021, 141, 2838–2848.e4. [Google Scholar] [CrossRef]
- Lin, S.-H.; Hsu, C.-Y.; Li, S.-C. Increased Circulating CD14+ Monocytes in Patients with Psoriatic Arthritis Presenting Impaired Apoptosis Activity. Biomedicines 2024, 12, 775. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, F.; Fan, X.; Wang, Y. Psoriatic Arthritis: A Systematic Review of Non-HLA Genetic Studies and Important Signaling Pathways. Int. J. Rheum. Dis. 2020, 23, 1288–1296. [Google Scholar] [CrossRef]
- Mulder, M.L.M.; van Hal, T.W.; Wenink, M.H.; Koenen, H.J.P.M.; van den Hoogen, F.H.J.; de Jong, E.M.G.J.; van den Reek, J.M.P.A.; Vriezekolk, J.E. Clinical, Laboratory, and Genetic Markers for the Development or Presence of Psoriatic Arthritis in Psoriasis Patients: A Systematic Review. Arthritis Res. Ther. 2021, 23, 168. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, H.; Qu, L.; Fu, X.; Yu, Y.; Yu, G.; Tian, H.; Yu, Y.; Sun, D.; Peng, J.; et al. Investigation of 20 Non-HLA (Human Leucocyte Antigen) Psoriasis Susceptibility Loci in Chinese Patients with Psoriatic Arthritis and Psoriasis Vulgaris. Br. J. Dermatol. 2013, 168, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-W.; Kang, J.-H.; Lin, H.-C. Increased Risk of Psoriasis Following Obstructive Sleep Apnea: A Longitudinal Population-Based Study. Sleep. Med. 2012, 13, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Loft, N.D.; Skov, L.; Rasmussen, M.K.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Genetic Polymorphisms Associated with Psoriasis and Development of Psoriatic Arthritis in Patients with Psoriasis. PLoS ONE 2018, 13, e0192010. [Google Scholar] [CrossRef] [PubMed]
- Bowes, J.; Eyre, S.; Flynn, E.; Ho, P.; Salah, S.; Warren, R.B.; Marzo-Ortega, H.; Coates, L.; McManus, R.; Ryan, A.W.; et al. Evidence to Support IL-13 as a Risk Locus for Psoriatic Arthritis but Not Psoriasis Vulgaris. Ann. Rheum. Dis. 2011, 70, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.; Chandran, V.; Pellett, F.; Pollock, R.; Shanmugarajah, S.; Rosen, C.F.; Rahman, P.; Gladman, D.D. IL13 Gene Polymorphism Is a Marker for Psoriatic Arthritis among Psoriasis Patients. Ann. Rheum. Dis. 2011, 70, 1594–1598. [Google Scholar] [CrossRef] [PubMed]
- Işık, S.; Sılan, F.; Kılıç, S.; Hız, M.M.; Ögretmen, Z.; Özdemir, Ö. 308G/A and 238G/A Polymorphisms in the TNF-α Gene May Not Contribute to the Risk of Arthritis among Turkish Psoriatic Patients. Egypt. Rheumatol. 2016, 38, 313–317. [Google Scholar] [CrossRef]
- Tejasvi, T.; Stuart, P.E.; Chandran, V.; Voorhees, J.J.; Gladman, D.D.; Rahman, P.; Elder, J.T.; Nair, R.P. TNFAIP3 Gene Polymorphisms Are Associated with Response to TNF Blockade in Psoriasis. J. Investig. Dermatol. 2012, 132, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Vecellio, M.; Hake, V.X.; Davidson, C.; Carena, M.C.; Wordsworth, B.P.; Selmi, C. The IL-17/IL-23 Axis and Its Genetic Contribution to Psoriatic Arthritis. Front. Immunol. 2020, 11, 596086. [Google Scholar] [CrossRef] [PubMed]
- Boehncke, W.-H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Zervou, M.; Goulielmos, G.; Castro-Giner, F.; Chiotaki, R.; Sidiropoulos, P.; Krueger-Krasagakis, S. Interleukin-12B (IL-12B) and Interleukin-23R (IL-23R) Gene Polymorphisms Do Not Confer Susceptibility to Psoriasis in a Southern European Population: A Case-Control Study. Int. J. New Technol. Res. (IJNTR) 2016, 2, 67–70. [Google Scholar]
- Brown, M.A.; Xu, H.; Li, Z. Genetics and the Axial Spondyloarthritis Spectrum. Rheumatology 2020, 59, iv58–iv66. [Google Scholar] [CrossRef]
- Feld, J.; Chandran, V.; Haroon, N.; Inman, R.; Gladman, D. Axial Disease in Psoriatic Arthritis and Ankylosing Spondylitis: A Critical Comparison. Nat. Rev. Rheumatol. 2018, 14, 363–371. [Google Scholar] [CrossRef]
- Carvalho, A.L.; Hedrich, C.M. The Molecular Pathophysiology of Psoriatic Arthritis-The Complex Interplay between Genetic Predisposition, Epigenetics Factors, and the Microbiome. Front. Mol. Biosci. 2021, 8, 662047. [Google Scholar] [CrossRef] [PubMed]
- Laborde, C.M.; Larzabal, L.; González-Cantero, Á.; Castro-Santos, P.; Díaz-Peña, R. Advances of Genomic Medicine in Psoriatic Arthritis. J. Pers. Med. 2022, 12, 35. [Google Scholar] [CrossRef]
- Cassell, S.; Kavanaugh, A. Psoriatic Arthritis: Pathogenesis and Novel Immunomodulatory Approaches to Treatment. J. Immune Based Ther. Vaccines 2005, 3, 6. [Google Scholar] [CrossRef]
- Kulakova, E.; Baлeнтинoвнa, K.Э.; Rybalkin, S.B.; Бopиcoвич, P.C. Experience of using genetic engineering biological therapy in a patient with psoriasis and chronic renal failure under hemodialysis. Vestn. Dermatol. Venerol. 2024. [Google Scholar] [CrossRef]
- Snehasis, N.; Zafar, S.; Herve, N.; Siri, P.; Ali, K.H. Efficacy and Safety of Various Drug Combinations in Treating Plaque Psoriasis: A Meta-Analysis. F1000Research 2024, 13, 453. [Google Scholar] [CrossRef]
- Potlabathini, T.; Pothacamuri, M.A.; Bandi, V.V.; Anjum, M.; Shah, P.; Molina, M.; Dutta, N.; Adzhymuratov, O.; Mathew, M.; Sadu, V.; et al. FDA-Approved Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) Inhibitors for Managing Rheumatoid Arthritis: A Narrative Review of the Literature. Cureus 2024, 16, e59978. [Google Scholar] [CrossRef]
- van Dijk, B.T.; Bergstra, S.A.; van den Berg, J.M.; Schonenberg-Meinema, D.; van Suijlekom-Smit, L.W.A.; van Rossum, M.A.J.; Koopman-Keemink, Y.; ten Cate, R.; Allaart, C.F.; Brinkman, D.M.C.; et al. Increasing the Etanercept Dose in a Treat-to-Target Approach in Juvenile Idiopathic Arthritis: Does It Help to Reach the Target? A Post-Hoc Analysis of the BeSt for Kids Randomised Clinical Trial. Pediatr. Rheumatol. 2024, 22, 53. [Google Scholar] [CrossRef]
- Coates, L.C.; Gossec, L.; Zimmermann, M.; Shawi, M.; Rampakakis, E.; Shiff, N.J.; Kollmeier, A.P.; Xu, X.L.; Nash, P.; Mease, P.J.; et al. Guselkumab Provides Durable Improvement across Psoriatic Arthritis Disease Domains: Post Hoc Analysis of a Phase 3, Randomised, Double-Blind, Placebo-Controlled Study. RMD Open 2024, 10, e003977. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Bhagwati, J. The Spectrum of Psoriatic Arthritis: A Polymorphic Puzzle. Int. J. Toxicol. Pharmacol. Res. 2024, 14, 197–202. [Google Scholar]
- Jung, S.; Lee, J.S. Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases. Mol. Cells 2023, 46, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Penkava, F.; Velasco-Herrera, M.D.C.; Young, M.D.; Yager, N.; Nwosu, L.N.; Pratt, A.G.; Lara, A.L.; Guzzo, C.; Maroof, A.; Mamanova, L.; et al. Single-Cell Sequencing Reveals Clonal Expansions of pro-Inflammatory Synovial CD8 T Cells Expressing Tissue-Homing Receptors in Psoriatic Arthritis. Nat. Commun. 2020, 11, 4767. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Li, Y.; Yan, C.; Callis-Duffin, K.P.; Matsunami, N.; Garcia, V.E.; Cargill, M.; Civello, D.; Bui, N.; Catanese, J.J.; et al. Variants in the 5q31 Cytokine Gene Cluster Are Associated with Psoriasis. Genes. Immun. 2008, 9, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Gao, J.; Yin, X.; Sheng, Y.; Sun, L.; Cui, Y.; Zhang, X. Association of the Late Cornified Envelope-3 Genes with Psoriasis and Psoriatic Arthritis: A Systematic Review. J. Genet. Genom. 2015, 42, 49–56. [Google Scholar] [CrossRef]
- Krishnan, V.S.; Kõks, S. Transcriptional Basis of Psoriasis from Large Scale Gene Expression Studies: The Importance of Moving towards a Precision Medicine Approach. Int. J. Mol. Sci. 2022, 23, 6130. [Google Scholar] [CrossRef]
- Yan, D.; Blauvelt, A.; Dey, A.K.; Golpanian, R.S.; Hwang, S.T.; Mehta, N.N.; Myers, B.; Shi, Z.; Yosipovitch, G.; Bell, S.; et al. New Frontiers in Psoriatic Disease Research, Part II: Comorbidities and Targeted Therapies. J. Investig. Dermatol. 2021, 141, 2328–2337. [Google Scholar] [CrossRef]
- Gossec, L.; Baraliakos, X.; Kerschbaumer, A.; de Wit, M.; McInnes, I.; Dougados, M.; Primdahl, J.; McGonagle, D.G.; Aletaha, D.; Balanescu, A.; et al. EULAR Recommendations for the Management of Psoriatic Arthritis with Pharmacological Therapies: 2019 Update. Ann. Rheum. Dis. 2020, 79, 700–712. [Google Scholar] [CrossRef] [PubMed]
Locus Name | Cytogenetic Localization | Genes, Their Products, and Their Roles |
---|---|---|
PSORS1 | 6p21.3 | Human leucocyte antigens (HLAs), especially HLACw6 [15]. Antigen presentation, strong association with PsO. |
PSORS2 | 17q24-25 | Missense mutation of CARD14 in keratinocytes leads to overexpression of NFκB, IL8, chemokine ligand 20, IL36, and ILγ [18]. Skin barrier functions and cellular signaling pathways. |
PSORS3 | 4q34 | Immunologically important proteins, including IL15 [15]. Influencing the inflammatory response and skin cell proliferation. |
PSORS4 | 1q21 | S100 calcium-binding proteins are overexpressed in keratinocytes of psoriatic patients and are responsible for chemotaxis of leucocytes [15]. Epidermal differentiation and barrier formation. |
PSORS5 | 3q21 | Cystatin A and zinc finger protein 148 [19]. Regulation of the immune system and inflammatory processes. |
PSORS6 | 19p13-q13 | JUNB gene produces one member of AP-1-family transcription factors controlling differentiation of keratinocytes, the KIR gene product associated with HLA antigens [20]. T-cell activation and immune response modulation. |
PSORS7 | 1p35-p34 | Gene EPS 15 codes intracellular substrate for EGF receptor, which is highly expressed in psoriatic skin [21]. Immune system and skin integrity. |
PSORS8 | 16q | The NOD2/CARD15 gene is associated with psoriasis and Crohn’s disease [22]. Cellular proliferation, apoptosis, and the body’s inflammatory responses. |
PSORS9 | 4q31 | Polymorphism of the IL-15 gene is connected with interleukin production and inflammation [23]. Inflammation and the immune system. |
PSORS10 | 18p11.23 | EMILIN2 gene regulates apoptosis and survival of epidermal keratinocytes [24]. Cytokine production and immune regulation. |
PSORS11 | 5q31.1-q33.1 | IL-12B affects the balance of Th1/Th2 cells [25], SLC22A4,5 organic cation transporters [26], IL-13-regulating T-cell-mediated immunity [27], and IL-4,5 as Th2 cell products [28]. Immune system signaling. |
PSORS12 | 20q13 | RNF114 ring finger protein is a positive regulator of T-cell activation [29]. Inflammation and immune system responses. |
Marker | Evidence | Association | Study |
---|---|---|---|
HLA-B*08 | Conflicting | - | [72,73,74,75,76] |
HLA-B*13 | Conflicting | - | [72,77,78] |
HLA-B*18 | Conflicting | - | [74,75,76] |
HLA-B*27 (EH27.1 and 2) | Moderate | Positive | |
HLA-B*27 | Moderate | Positive | [72,73,74,75,76,78,79] |
HLA-B*37 | Conflicting | - | [72,76] |
HLA-B*38 | Conflicting | - | [74,75,76,77,78] |
HLA-B*38 (EHB38.1) | Moderate | Negative | [74,75,76] |
HLA-B*39 | Conflicting | - | |
HLA-B*57 (EH57.1) | Moderate | Negative | |
HLA-B*57 | Moderate | No association | [72,74,75,78] |
HLA-C*01 | Moderate | No association | [74,75,76] |
HLA-C*02 | Conflicting | - | [72,74,75,76] |
HLA-C*06 | Moderate | Negative | [72,73,78,79,80,81,82] |
HLA-C*07 | Conflicting | - | [72,74,75] |
HLA-C*12 | Conflicting | - | [74,75] |
HLA-DRB1*03 | Moderate | No association | [72,77] |
HLA-DQB1*02 | Conflicting | - | |
HLA-B Glu45 | Conflicting | - | [73,83] |
Marker | Evidence | Association | Study |
---|---|---|---|
GJB2 SNP rs3751385 | Moderate | Positive | [92] |
ERAP1 SNP rs27524 | Moderate | Positive | |
IL1RN | Moderate | No association | [67,93] |
IL12B SNP rs2082412 | Moderate | Positive | [92] |
IL12B rs3212227 | Moderate | No association | [80,94] |
IL12B rs6887695 | Moderate | No association | |
IL12B SNP rs7709212 | Moderate | Positive | [23] |
IL13rs1800925 | Moderate | Positive | [95,96] |
IL13 rs20541 | Conflicting | - | [67,95] |
IL23A SNP rs2066807 | Moderate | No association | [67,93] |
IL23R SNP rs2201841 | Conflicting | - | |
LCE SNP rs1886734 | Moderate | Positive | [92] |
PTTI SNP rs2451697 | Moderate | Positive | |
RUNX3 SNP rs7536201 | Moderate | Positive | [23] |
TNFa-238 | Moderate | No association | [80,97] |
TNFa-308 | Moderate | No association | |
TNF alpha-induced protein 3 rs610604 | Moderate | No association | [98] |
TNIP1 SNP rs17728338 | Moderate | Positive | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalesak, M.; Danisovic, L.; Harsanyi, S. Psoriasis and Psoriatic Arthritis—Associated Genes, Cytokines, and Human Leukocyte Antigens. Medicina 2024, 60, 815. https://doi.org/10.3390/medicina60050815
Zalesak M, Danisovic L, Harsanyi S. Psoriasis and Psoriatic Arthritis—Associated Genes, Cytokines, and Human Leukocyte Antigens. Medicina. 2024; 60(5):815. https://doi.org/10.3390/medicina60050815
Chicago/Turabian StyleZalesak, Marek, Lubos Danisovic, and Stefan Harsanyi. 2024. "Psoriasis and Psoriatic Arthritis—Associated Genes, Cytokines, and Human Leukocyte Antigens" Medicina 60, no. 5: 815. https://doi.org/10.3390/medicina60050815