Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Protocol
2.2. Assessment of Anthropometric Parameters
2.3. Laboratory Investigations
2.4. Evaluation of Blood Pressure and Brachial-Ankle Pulse Wave Velocity
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 2018, 33, iii28–iii34. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Golembiewska, E.; Lindholm, B.; Stenvinkel, P. End-stage renal disease, inflammation and cardiovascular outcomes. Expand. Hemodial. 2017, 191, 32–43. [Google Scholar]
- Wang, Y.; Gao, L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Front. Pharmacol. 2022, 13, 800950. [Google Scholar] [CrossRef] [PubMed]
- Podkowińska, A.; Formanowicz, D. Chronic kidney disease as oxidative stress-and inflammatory-mediated cardiovascular disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in chronic kidney disease—Potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2019, 21, 263. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Gluba-Brzózka, A. Oxidative stress in ESRD patients on dialysis and the risk of cardiovascular diseases. Antioxidants 2020, 9, 1079. [Google Scholar] [CrossRef]
- Sarafidis, P.A.; Loutradis, C.; Karpetas, A.; Tzanis, G.; Piperidou, A.; Koutroumpas, G.; Raptis, V.; Syrgkanis, C.; Liakopoulos, V.; Efstratiadis, G. Ambulatory pulse wave velocity is a stronger predictor of cardiovascular events and all-cause mortality than office and ambulatory blood pressure in hemodialysis patients. Hypertension 2017, 70, 148–157. [Google Scholar] [CrossRef]
- Matschkal, J.; Mayer, C.C.; Sarafidis, P.A.; Lorenz, G.; Braunisch, M.C.; Guenthner, R.; Angermann, S.; Steubl, D.; Kemmner, S.; Bachmann, Q. Comparison of 24-hour and office pulse wave velocity for prediction of mortality in hemodialysis patients. Am. J. Nephrol. 2019, 49, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: Recent evidence and clinical applications. Curr. Hypertens. Rev. 2014, 10, 49–57. [Google Scholar] [CrossRef]
- Chen, S.-C.; Huang, J.-C.; Su, H.-M.; Chiu, Y.-W.; Chang, J.-M.; Hwang, S.-J.; Chen, H.-C. Prognostic cardiovascular markers in chronic kidney disease. Kidney Blood Press. Res. 2018, 43, 1388–1407. [Google Scholar] [CrossRef]
- Tsai, J.-P.; Hsu, B.-G. Arterial stiffness: A brief review. Tzu Chi Med. J. 2021, 33, 115–121. [Google Scholar]
- Wung, C.-H.; Wang, Y.-H.; Lee, Y.-C.; Chang, C.-W.; Wu, P.-Y.; Huang, J.-C.; Tsai, Y.-C.; Chen, S.-C.; Chang, J.-M.; Hwang, S.-J. Association between flow-mediated dilation and skin perfusion pressure with peripheral artery disease in hemodialysis patients. J. Pers. Med. 2021, 11, 1251. [Google Scholar] [CrossRef]
- Baba, M.; Maris, M.; Jianu, D.; Luca, C.T.; Stoian, D.; Mozos, I. The impact of the blood lipids levels on arterial stiffness. J. Cardiovasc. Dev. Dis. 2023, 10, 127. [Google Scholar] [CrossRef]
- Wu, C.-F.; Liu, P.-Y.; Wu, T.-J.; Hung, Y.; Yang, S.-P.; Lin, G.-M. Therapeutic modification of arterial stiffness: An update and comprehensive review. World J. Cardiol. 2015, 7, 742. [Google Scholar] [CrossRef]
- Busch, C.J.; Binder, C.J. Malondialdehyde epitopes as mediators of sterile inflammation. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2017, 1862, 398–406. [Google Scholar] [CrossRef]
- Gianazza, E.; Brioschi, M.; Martinez Fernandez, A.; Casalnuovo, F.; Altomare, A.; Aldini, G.; Banfi, C. Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxid. Redox Signal. 2021, 34, 49–98. [Google Scholar] [CrossRef]
- Ichikawa, K.; Miyoshi, T.; Osawa, K.; Miki, T.; Ito, H. Increased circulating malondialdehyde-modified low-density lipoprotein level is associated with high-risk plaque in coronary computed tomography angiography in patients receiving statin therapy. J. Clin. Med. 2021, 10, 1480. [Google Scholar] [CrossRef]
- Prasad, A.; Clopton, P.; Ayers, C.; Khera, A.; De Lemos, J.A.; Witztum, J.L.; Tsimikas, S. Relationship of autoantibodies to MDA-LDL and ApoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1213–1221. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxidative Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and Lipoproteins in Atherosclerosis; Endotext: Dartmouth, MA, USA, 2019. [Google Scholar]
- Hou, J.-S.; Wang, C.-H.; Lai, Y.-H.; Kuo, C.-H.; Lin, Y.-L.; Hsu, B.-G.; Tsai, J.-P. Serum malondialdehyde-modified low-density lipoprotein is a risk factor for central arterial stiffness in maintenance hemodialysis patients. Nutrients 2020, 12, 2160. [Google Scholar] [CrossRef]
- Mozos, I.; Luca, C.T. Crosstalk between oxidative and nitrosative stress and arterial stiffness. Curr. Vasc. Pharmacol. 2017, 15, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.-G.; Wang, C.-H.; Lin, Y.-L.; Lai, Y.-H.; Tsai, J.-P. Serum trimethylamine N-oxide level is associated with peripheral arterial stiffness in advanced non-dialysis chronic kidney disease patients. Toxins 2022, 14, 526. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Tomiyama, H.; Maruhashi, T.; Matsuzawa, Y.; Miyoshi, T.; Kabutoya, T.; Kario, K.; Sugiyama, S.; Munakata, M.; Ito, H. Physiological diagnostic criteria for vascular failure. Hypertension 2018, 72, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H.; Shiina, K. State of the art review: Brachial-ankle PWV. J. Atheroscler. Thromb. 2020, 27, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Xia, N.; Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef]
- Guzik, T.J.; Touyz, R.M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 2017, 70, 660–667. [Google Scholar] [CrossRef]
- Martin-Ventura, J.L.; Rodrigues-Diez, R.; Martinez-Lopez, D.; Salaices, M.; Blanco-Colio, L.M.; Briones, A.M. Oxidative stress in human atherothrombosis: Sources, markers and therapeutic targets. Int. J. Mol. Sci. 2017, 18, 2315. [Google Scholar] [CrossRef]
- Takamura, T.-A.; Tsuchiya, T.; Oda, M.; Watanabe, M.; Saito, R.; Sato-Ishida, R.; Akao, H.; Kawai, Y.; Kitayama, M.; Kajinami, K. Circulating malondialdehyde-modified low-density lipoprotein (MDA-LDL) as a novel predictor of clinical outcome after endovascular therapy in patients with peripheral artery disease (PAD). Atherosclerosis 2017, 263, 192–197. [Google Scholar] [CrossRef]
- Piqueras, L.; Sanz, M.-J. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free. Radic. Biol. Med. 2020, 157, 38–54. [Google Scholar] [CrossRef]
- Suciu, C.F.; Prete, M.; Ruscitti, P.; Favoino, E.; Giacomelli, R.; Perosa, F. Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmun. Rev. 2018, 17, 366–375. [Google Scholar] [CrossRef]
- Amirfakhryan, H. Vaccination against atherosclerosis: An overview. Hell. J. Cardiol. 2020, 61, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, J.; Alique, M.; Vida, C.; Bodega, G.; Ceprián, N.; Morales, E.; Praga, M.; de Sequera, P.; Ramírez, R. Mechanisms of cardiovascular disorders in patients with chronic kidney disease: A process related to accelerated senescence. Front. Cell Dev. Biol. 2020, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Hsu, S.H.-J.; Wu, Y.-J.; Su, T.-C. Additive effects of postchallenge hyperglycemia and low-density lipoprotein particles on the risk of arterial stiffness in healthy adults. Lipids Health Dis. 2014, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Orekhov, A.N.; Bobryshev, Y.V.; Sobenin, I.A.; Melnichenko, A.A.; Chistiakov, D.A. Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int. J. Mol. Sci. 2014, 15, 12807–12841. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, T.; Maeda, S.; Mukai, J.; Ohki, M.; Nakanishi, M.; Yoshikawa, T. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J. Clin. Biochem. Nutr. 2015, 57, 151–155. [Google Scholar] [CrossRef]
- Matsui, S.; Kajikawa, M.; Hida, E.; Maruhashi, T.; Iwamoto, Y.; Iwamoto, A.; Oda, N.; Kishimoto, S.; Hidaka, T.; Kihara, Y. Optimal target level of low-density lipoprotein cholesterol for vascular function in statin naïve individuals. Sci. Rep. 2017, 7, 8422. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, H.-K.; Wu, X.-W.; Cao, Z.; Tu, Y.-C.; Ma, Y.; Wang, W.-Q.; Cheng, J.; Zhou, Z.-H. Small dense low density lipoprotein-cholesterol and cholesterol ratios to predict arterial stiffness progression in normotensive subjects over a 5-year period. Lipids Health Dis. 2018, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Takaeko, Y.; Kajikawa, M.; Kishimoto, S.; Yamaji, T.; Harada, T.; Han, Y.; Kihara, Y.; Hida, E.; Chayama, K.; Goto, C. Low levels of low-density lipoprotein cholesterol and endothelial function in subjects without lipid-lowering therapy. J. Clin. Med. 2020, 9, 3796. [Google Scholar] [CrossRef]
- Scarpioni, R.; Ricardi, M.; Melfa, L.; Cristinelli, L. Dyslipidemia in chronic kidney disease: Are statins still indicated in reduction cardiovascular risk in patients on dialysis treatment? Cardiovasc. Ther. 2010, 28, 361–368. [Google Scholar] [CrossRef]
- Moradi, H.; Streja, E.; Vaziri, N.D. ESRD-induced dyslipidemia—Should management of lipid disorders differ in dialysis patients? In Seminars in Dialysis; Whiley: Hoboken, NJ, USA, 2018; pp. 398–405. [Google Scholar]
- Zanoli, L.; Lentini, P.; Briet, M.; Castellino, P.; House, A.A.; London, G.M.; Malatino, L.; McCullough, P.A.; Mikhailidis, D.P.; Boutouyrie, P. Arterial stiffness in the heart disease of CKD. J. Am. Soc. Nephrol. 2019, 30, 918–928. [Google Scholar] [CrossRef]
- An, W.S.; Kim, S.-E.; Kim, K.-H.; Bae, H.-R.; Rha, S.-H. Associations between oxidized LDL to LDL ratio, HDL and vascular calcification in the feet of hemodialysis patients. J. Korean Med. Sci. 2009, 24, S115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, X.; Wu, H. Arterial stiffness: A focus on vascular calcification and its link to bone mineralization. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- Safar, M.E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 2018, 15, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Mishra, M. Do advanced glycation end products and its receptor play a role in pathophysiology of hypertension? Int. J. Angiol. 2017, 26, 001–011. [Google Scholar]
- Lin, G.-M.; Wu, C.-F.; Liu, P.-Y.; Han, C.-L. Modified low-density lipoprotein may moderate the association of baseline hs-CRP with incident cardiac events in the Asian populations. J. Cardiol. 2016, 68, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-M.; Liu, K.; Colangelo, L.A.; Lakoski, S.G.; Tracy, R.P.; Greenland, P. Low-density lipoprotein cholesterol concentrations and association of high-sensitivity C-reactive protein concentrations with incident coronary heart disease in the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 2016, 183, 46–52. [Google Scholar] [CrossRef] [PubMed]
- London, G.M. Arterial stiffness in chronic kidney disease and end-stage renal disease. Blood Purif. 2018, 45, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Pirillo, A.; Norata, G.D. Vascular inflammation and low-density lipoproteins: Is cholesterol the link? A lesson from the clinical trials. Br. J. Pharmacol. 2017, 174, 3973–3985. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, R.C.; Ballantyne, C.M. Residual cardiovascular risk at low LDL: Remnants, lipoprotein (a), and inflammation. Clin. Chem. 2021, 67, 143–153. [Google Scholar] [CrossRef]
- Aminuddin, A.; Lazim, M.R.M.; Hamid, A.A.; Hui, C.K.; Mohd Yunus, M.H.; Kumar, J.; Ugusman, A. The association between inflammation and pulse wave velocity in dyslipidemia: An evidence-based review. Mediat. Inflamm. 2020, 2020, 4732987. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: A 2020 update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Wallert, M.; Lorkowski, S.; Peter, K. Cardiovascular and metabolic protection by vitamin E: A matter of treatment strategy? Antioxidants 2020, 9, 935. [Google Scholar] [CrossRef] [PubMed]
- Breyer, M.D.; Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 2016, 15, 568–588. [Google Scholar] [CrossRef] [PubMed]
- Sprick, J.D.; Mammino, K.; Jeong, J.; DaCosta, D.R.; Hu, Y.; Morison, D.G.; Nocera, J.R.; Park, J. Aerobic exercise training improves endothelial function and attenuates blood pressure reactivity during maximal exercise in chronic kidney disease. J. Appl. Physiol. 2022, 132, 758–793. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean diet and cardiovascular health: A critical review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
Items | All Participants (n = 100) | baPWV ≤ 18 m/s Group (n = 48) | baPWV > 18 m/s Group (n = 52) | p Value |
---|---|---|---|---|
Age (years) | 63.84 ± 13.51 | 57.94 ± 13.35 | 67.37 ± 12.11 | <0.001 * |
HD duration (months) | 55.92 (21.96–123.60) | 55.44 (19.44–132.00) | 56.16 (24.42–112.62) | 0.992 |
Height (cm) | 160.70 ± 7.43 | 162.09 ± 9.19 | 159.47 ± 5.21 | 0.079 |
Pre-HD body weight (kg) | 63.52 ± 15.13 | 66.37 ± 16.16 | 60.89 ± 13.74 | 0.070 |
Post-HD body weight (kg) | 61.36 ± 14.68 | 64.05 ± 15.76 | 58.88 ± 13.29 | 0.079 |
Body mass index (kg/m2) | 24.49 ± 5.20 | 25.16 ± 5.73 | 23.90 ± 4.66 | 0.226 |
Waist circumference (cm) | 90.68 ± 12.48 | 90.40 ± 13.32 | 90.94 ± 11.76 | 0.828 |
Systolic blood pressure (mmHg) | 140.49 ± 25.73 | 138.31 ± 24.81 | 142.50 ± 26.64 | 0.419 |
Diastolic blood pressure (mmHg) | 76.60 ± 15.16 | 78.50 ± 15.33 | 74.85 ± 14.93 | 0.230 |
Left baPWV (m/s) | 18.04 ± 3.25 | 15.47 ± 1.91 | 20.41 ± 2.28 | <0.001 * |
Right baPWV (m/s) | 18.14 ± 3.29 | 15.38 ± 1.55 | 20.68 ± 2.26 | <0.001 * |
Hemoglobin (g/dL) | 10.41 ± 1.18 | 10.36 ± 1.26 | 10.46 ± 1.11 | 0.652 |
Albumin (g/dL) | 4.15 ± 0.43 | 4.25 ± 0.41 | 4.06 ± 0.43 | 0.022 * |
Total cholesterol (mg/dL) | 149.14 ± 35.87 | 145.88 ± 33.97 | 152.15 ± 37.61 | 0.384 |
Triglyceride (mg/dL) | 153.91 ± 80.23 | 152.54 ± 75.19 | 155.17 ± 85.33 | 0.871 |
MDA-LDL (mg/dL) | 88.67 (69.96–148.52) | 78.38 (59.41–98.35) | 119.67 (81.65–176.54) | <0.001 * |
Glucose (mg/dL) | 132.50 (110.00–171.25) | 131.00 (104.00–172.00) | 133.00 (113.00–173.00) | 0.377 |
Blood urea nitrogen (mg/dL) | 59.18 ± 14.21 | 61.71 ± 14.68 | 56.85 ± 13.49 | 0.087 |
Creatinine (mg/dL) | 9.41 ± 1.87 | 9.85 ± 1.98 | 8.99 ± 1.67 | 0.021 * |
Total calcium (mg/dL) | 8.90 ± 0.75 | 8.86 ± 0.67 | 8.95 ± 0.83 | 0.549 |
Phosphorus (mg/dL) | 4.55 ± 1.25 | 4.68 ± 1.28 | 4.43 ± 1.22 | 0.326 |
Intact parathyroid hormone (pg/mL) | 204.05 (56.83–355.30) | 205.20 (69.40–461.30) | 192.90 (54.90–340.65) | 0.297 |
C-reactive protein (mg/dL) | 0.28 (0.06–0.66) | 0.16 (0.05–0.40) | 0.35 (0.10–1.01) | 0.007 * |
Urea reduction rate | 0.74 ± 0.05 | 0.73 ± 0.05 | 0.74 ± 0.04 | 0.181 |
Kt/V (Gotch) | 1.36 ± 0.19 | 1.33 ± 0.21 | 1.38 ± 0.18 | 0.195 |
Female, n (%) | 47 (47.0) | 18 (38.3) | 29 (54.7) | 0.101 |
Diabetes mellitus, n (%) | 46 (46.0) | 19 (40.4) | 27 (50.9) | 0.292 |
Hypertension, n (%) | 46 (46.0) | 22 (46.8) | 24 (45.3) | 0.879 |
Angiotensin receptor blocker, n (%) | 28 (28.0) | 15 (31.9) | 13 (24.5) | 0.412 |
β-blocker, n (%) | 35 (35.0) | 15 (31.9) | 20 (37.7) | 0.542 |
Calcium channel blocker, n (%) | 40 (40.0) | 21 (44.7) | 19 (35.8) | 0.368 |
Statin, n (%) | 31 (31.0) | 13 (27.7) | 18 (34.0) | 0.496 |
Fibrate, n (%) | 25 (25.0) | 12 (25.5) | 13 (24.5) | 0.908 |
Variables | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
MDA-LDL, 1 mg/mL | 1.014 | 1.004–1.025 | 0.009 * |
Age, 1 year | 1.044 | 1.004–1.085 | 0.031 * |
C-reactive protein, 1 mg/dL | 3.697 | 1.149–11.893 | 0.028 * |
Albumin, 1 g/dL | 0.526 | 0.144–1.926 | 0.332 |
Creatinine, 1 mg/dL | 0.971 | 0.734–1.285 | 0.837 |
Variables | Left baPWV (m/s) | Right baPWV (m/s) | ||
---|---|---|---|---|
Spearman’s Coefficient of Correlation | p Value | Spearman’s Coefficient of Correlation | p Value | |
Age (years) | 0.284 | 0.004 * | 0.308 | 0.002 * |
Log-HD duration (months) | –0.037 | 0.711 | 0.009 | 0.930 |
Height (cm) | –0.115 | 0.256 | –0.136 | 0.178 |
Pre-HD body weight (kg) | –0.168 | 0.094 | –0.147 | 0.146 |
Body mass index (kg/m2) | –0.146 | 0.146 | –0.115 | 0.253 |
Waist circumference (cm) | 0.003 | 0.973 | 0.029 | 0.778 |
Systolic blood pressure (mmHg) | 0.121 | 0.232 | 0.119 | 0.238 |
Diastolic blood pressure (mmHg) | –0.070 | 0.487 | –0.096 | 0.343 |
Left baPWV (m/s) | — | — | 0.875 | <0.001 * |
Right baPWV (m/s) | 0.875 | <0.001 * | — | — |
Hemoglobin (g/dL) | 0.053 | 0.601 | 0.054 | 0.593 |
Albumin (g/dL) | –0.160 | 0.111 | –0.180 | 0.072 |
Total cholesterol (mg/dL) | 0.025 | 0.806 | 0.060 | 0.553 |
Triglyceride (mg/dL) | 0.075 | 0.461 | 0.021 | 0.835 |
Log-MDA-LDL (mg/dL) | 0.385 | <0.001 * | 0.390 | <0.001 * |
Log-Glucose (mg/dL) | 0.227 | 0.023 * | 0.191 | 0.054 |
Blood urea nitrogen (mg/dL) | –0.126 | 0.212 | –0.101 | 0.317 |
Creatinine (mg/dL) | –0.221 | 0.027 * | –0.216 | 0.031 * |
Total calcium (mg/dL) | –0.100 | 0.323 | –0.031 | 0.758 |
Phosphorus (mg/dL) | –0.099 | 0.329 | –0.070 | 0.466 |
Log-iPTH (pg/mL) | –0.184 | 0.067 | –0.085 | 0.403 |
Log-CRP (mg/dL) | 0.307 | 0.002 * | 0.249 | 0.013 * |
Urea reduction rate | 0.184 | 0.067 | 0.106 | 0.292 |
Kt/V (Gotch) | 0.195 | 0.052 | 0.154 | 0.127 |
Cutoff | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
80.91 mg/dL | 79.25% | 59.57% | 68.85% | 71.80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-N.; Hsu, Y.-C.; Lu, C.-W.; Lin, S.-C.; Wu, T.-J.; Lin, G.-M. Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients. Medicina 2024, 60, 697. https://doi.org/10.3390/medicina60050697
Liu W-N, Hsu Y-C, Lu C-W, Lin S-C, Wu T-J, Lin G-M. Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients. Medicina. 2024; 60(5):697. https://doi.org/10.3390/medicina60050697
Chicago/Turabian StyleLiu, Wei-Nung, Yi-Chiung Hsu, Chia-Wen Lu, Ssu-Chin Lin, Tsung-Jui Wu, and Gen-Min Lin. 2024. "Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients" Medicina 60, no. 5: 697. https://doi.org/10.3390/medicina60050697
APA StyleLiu, W.-N., Hsu, Y.-C., Lu, C.-W., Lin, S.-C., Wu, T.-J., & Lin, G.-M. (2024). Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients. Medicina, 60(5), 697. https://doi.org/10.3390/medicina60050697