Impact of the COVID-19 Pandemic on Diabetic Ketoacidosis Patients Treated in a Pediatric Intensive Care Unit: A Single-Center Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glaser, N.; Fritsch, M.; Priyambada, L.; Rewers, A.; Cherubini, V.; Estrada, S.; Wolfsdorf, J.I.; Codner, E. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Pediatr. Diabetes 2022, 23, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Dhatariya, K.K.; Glaser, N.S.; Codner, E.; Umpierrez, G.E. Diabetic Ketoacidosis. Nat. Rev. Dis. Primer 2020, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Sadauskaite-Kuehne, V.; Samuelsson, U.; Jasinskiene, E.; Padaiga, Z.; Urbonaite, B.; Edenvall, H.; Ludvigsson, J.; DEBS Study Group. Severity at Onset of Childhood Type 1 Diabetes in Countries with High and Low Incidence of the Condition. Diabetes Res. Clin. Pract. 2002, 55, 247–254. [Google Scholar] [CrossRef]
- Auzanneau, M.; Rosenbauer, J.; Warncke, K.; Maier, W.; Kamrath, C.; Hofmann, T.; Wurm, M.; Hammersen, J.; Schröder, C.; Hake, K.; et al. Frequency of Ketoacidosis at Diagnosis of Pediatric Type 1 Diabetes Associated with Socioeconomic Deprivation and Urbanization: Results from the German Multicenter DPV Registry. Diabetes Care 2022, 45, 1807–1813. [Google Scholar] [CrossRef]
- Lévy-Marchal, C.; Patterson, C.C.; Green, A.; EURODIAB ACE Study Group. Europe and Diabetes Geographical Variation of Presentation at Diagnosis of Type I Diabetes in Children: The EURODIAB Study. European and Dibetes. Diabetologia 2001, 44 (Suppl. S3), B75–B80. [Google Scholar] [CrossRef] [PubMed]
- Kulaylat, N.A.; Narchi, H. Clinical Picture of Childhood Type 1 Diabetes Mellitus in the Eastern Province of Saudi Arabia. Pediatr. Diabetes 2001, 2, 43–47. [Google Scholar] [CrossRef]
- Umpierrez, G.; Korytkowski, M. Diabetic Emergencies—Ketoacidosis, Hyperglycaemic Hyperosmolar State and Hypoglycaemia. Nat. Rev. Endocrinol. 2016, 12, 222–232. [Google Scholar] [CrossRef]
- Stirparo, G.; Kacerik, E.; Andreassi, A.; Pausilli, P.; Cortellaro, F.; Coppo, A.; Migliari, M.; Albonico, A.; Sechi, G.M.; Zoli, A.; et al. Emergency Department Waiting-Time in the Post Pandemic Era: New Organizational Models, a Challenge for the Future. Acta Biomed. Atenei Parm. 2023, 94, e2023122. [Google Scholar] [CrossRef]
- Nijman, R.G.; Honeyford, K.; Farrugia, R.; Rose, K.; Bognar, Z.; Buonsenso, D.; Da Dalt, L.; De, T.; Maconochie, I.K.; Parri, N.; et al. Presentations of Children to Emergency Departments across Europe and the COVID-19 Pandemic: A Multinational Observational Study. PLoS Med. 2022, 19, e1003974. [Google Scholar] [CrossRef]
- Pines, J.M.; Zocchi, M.S.; Black, B.S.; Carlson, J.N.; Celedon, P.; Moghtaderi, A.; Venkat, A.; US Acute Care Solutions Research Group. Characterizing Pediatric Emergency Department Visits during the COVID-19 Pandemic. Am. J. Emerg. Med. 2021, 41, 201–204. [Google Scholar] [CrossRef]
- Baum, A.; Schwartz, M.D. Admissions to Veterans Affairs Hospitals for Emergency Conditions During the COVID-19 Pandemic. JAMA 2020, 324, 96. [Google Scholar] [CrossRef]
- Rahmati, M.; Keshvari, M.; Mirnasuri, S.; Yon, D.K.; Lee, S.W.; Il Shin, J.; Smith, L. The Global Impact of COVID-19 Pandemic on the Incidence of Pediatric New-Onset Type 1 Diabetes and Ketoacidosis: A Systematic Review and Meta-Analysis. J. Med. Virol. 2022, 94, 5112–5127. [Google Scholar] [CrossRef]
- Elgenidy, A.; Awad, A.K.; Saad, K.; Atef, M.; El-Leithy, H.H.; Obiedallah, A.A.; Hammad, E.M.; Ahmad, F.-A.; Ali, A.M.; Dailah, H.G.; et al. Incidence of Diabetic Ketoacidosis during COVID-19 Pandemic: A Meta-Analysis of 124,597 Children with Diabetes. Pediatr. Res. 2023, 93, 1149–1160. [Google Scholar] [CrossRef]
- Lawrence, C.; Seckold, R.; Smart, C.; King, B.R.; Howley, P.; Feltrin, R.; Smith, T.A.; Roy, R.; Lopez, P. Increased Paediatric Presentations of Severe Diabetic Ketoacidosis in an Australian Tertiary Centre during the COVID-19 Pandemic. Diabet. Med. J. Br. Diabet. Assoc. 2021, 38, e14417. [Google Scholar] [CrossRef]
- Alfayez, O.M.; Aldmasi, K.S.; Alruwais, N.H.; Bin Awad, N.M.; Al Yami, M.S.; Almohammed, O.A.; Almutairi, A.R. Incidence of Diabetic Ketoacidosis Among Pediatrics with Type 1 Diabetes Prior to and During COVID-19 Pandemic: A Meta-Analysis of Observational Studies. Front. Endocrinol. 2022, 13, 856958. [Google Scholar] [CrossRef]
- Kamrath, C.; Mönkemöller, K.; Biester, T.; Rohrer, T.R.; Warncke, K.; Hammersen, J.; Holl, R.W. Ketoacidosis in Children and Adolescents with Newly Diagnosed Type 1 Diabetes During the COVID-19 Pandemic in Germany. JAMA 2020, 324, 801–804. [Google Scholar] [CrossRef]
- McGlacken-Byrne, S.M.; Drew, S.E.V.; Turner, K.; Peters, C.; Amin, R. The SARS-CoV-2 Pandemic Is Associated with Increased Severity of Presentation of Childhood Onset Type 1 Diabetes Mellitus: A Multi-Centre Study of the First COVID-19 Wave. Diabet. Med. J. Br. Diabet. Assoc. 2021, 38, e14640. [Google Scholar] [CrossRef]
- Cherubini, V.; Marino, M.; Scaramuzza, A.E.; Tiberi, V.; Bobbio, A.; Delvecchio, M.; Piccinno, E.; Ortolani, F.; Innaurato, S.; Felappi, B.; et al. The Silent Epidemic of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents in Italy During the COVID-19 Pandemic in 2020. Front. Endocrinol. 2022, 13, 878634. [Google Scholar] [CrossRef]
- Vorgučin, I.; Savin, M.; Stanković, Đ.; Miljković, D.; Ilić, T.; Simić, D.; Vrebalov, M.; Milanović, B.; Barišić, N.; Stojanović, V.; et al. Incidence of Type 1 Diabetes Mellitus and Characteristics of Diabetic Ketoacidosis in Children and Adolescents during the First Two Years of the COVID-19 Pandemic in Vojvodina. Med. Kaunas Lith. 2022, 58, 1013. [Google Scholar] [CrossRef]
- Rusak, E.; Seget, S.; Macherski, M.; Furgał, N.; Dyś, P.; Jarosz-Chobot, P. Has the COVID-19 Pandemic Affected the Prevalence of Diabetic Ketoacidosis in Polish Children with Newly Diagnosed Type 1 Diabetes? An Example of the Largest Polish Pediatric Diabetes Center (Upper Silesia—Katowice, Poland). Healthcare 2022, 10, 348. [Google Scholar] [CrossRef]
- Boboc, A.A.; Novac, C.N.; Ilie, M.T.; Ieșanu, M.I.; Galoș, F.; Bălgrădean, M.; Berghea, E.C.; Ionescu, M.D. The Impact of SARS-CoV-2 Pandemic on the New Cases of T1DM in Children. A Single-Centre Cohort Study. J. Pers. Med. 2021, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Fignani, D.; Licata, G.; Brusco, N.; Nigi, L.; Grieco, G.E.; Marselli, L.; Overbergh, L.; Gysemans, C.; Colli, M.L.; Marchetti, P.; et al. SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Front. Endocrinol. 2020, 11, 596898. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.A.; Groß, R.; Conzelmann, C.; Krüger, J.; Merle, U.; Steinhart, J.; Weil, T.; Koepke, L.; Bozzo, C.P.; Read, C.; et al. SARS-CoV-2 Infects and Replicates in Cells of the Human Endocrine and Exocrine Pancreas. Nat. Metab. 2021, 3, 149–165. [Google Scholar] [CrossRef]
- Ng, S.M.; Woodger, K.; Regan, F.; Soni, A.; Wright, N.; Agwu, J.C.; Williams, E.; Timmis, A.; Kershaw, M.; Moudiotis, C.; et al. Presentation of Newly Diagnosed Type 1 Diabetes in Children and Young People during COVID-19: A National UK Survey. BMJ Paediatr. Open 2020, 4, e000884. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, V.; Gohil, A.; Addala, A.; Zanfardino, A.; Iafusco, D.; Hannon, T.; Maahs, D.M. Unintended Consequences of Coronavirus Disease-2019: Remember General Pediatrics. J. Pediatr. 2020, 223, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Bogale, K.T.; Urban, V.; Schaefer, E.; Bangalore Krishna, K. The Impact of COVID-19 Pandemic on Prevalence of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes: A Single-Centre Study in Central Pennsylvania. Endocrinol. Diabetes Metab. 2021, 4, e00235. [Google Scholar] [CrossRef] [PubMed]
- Rabbone, I.; Schiaffini, R.; Cherubini, V.; Maffeis, C.; Scaramuzza, A.; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Has COVID-19 Delayed the Diagnosis and Worsened the Presentation of Type 1 Diabetes in Children? Diabetes Care 2020, 43, 2870–2872. [Google Scholar] [CrossRef]
- Jalilova, A.; Ata, A.; Demir, G.; Işıklar, H.; Atik Altınok, Y.; Özen, S.; Darcan, Ş.; Gökşen, D. The Effect of the SARS-CoV-2 Pandemic on Presentation with Diabetic Ketoacidosis in Children with New Onset Type 1 Diabetes Mellitus. J. Clin. Res. Pediatr. Endocrinol. 2023, 15, 264–267. [Google Scholar] [CrossRef]
- Han, M.J.; Heo, J.H. Increased Incidence of Pediatric Diabetic Ketoacidosis After COVID-19: A Two-Center Retrospective Study in Korea. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 783–790. [Google Scholar] [CrossRef]
- Alaqeel, A.; Aljuraibah, F.; Alsuhaibani, M.; Huneif, M.; Alsaheel, A.; Dubayee, M.A.; Alsaedi, A.; Bakkar, A.; Alnahari, A.; Taha, A.; et al. The Impact of COVID-19 Pandemic Lockdown on the Incidence of New-Onset Type 1 Diabetes and Ketoacidosis Among Saudi Children. Front. Endocrinol. 2021, 12, 669302. [Google Scholar] [CrossRef]
- Leiva-Gea, I.; Fernández, C.A.; Cardona-Hernandez, R.; Lozano, M.F.; Bahíllo-Curieses, P.; Arroyo-Díez, J.; León, M.C.; Martín-Frías, M.; Barreiro, S.C.; Delgado, A.M.; et al. Increased Presentation of Diabetic Ketoacidosis and Changes in Age and Month of Type 1 Diabetes at Onset during the COVID-19 Pandemic in Spain. J. Clin. Med. 2022, 11, 4338. [Google Scholar] [CrossRef] [PubMed]
- Passanisi, S.; Salzano, G.; Basile, P.; Bombaci, B.; Caime, F.; Rulli, I.; Valenzise, M.; Gitto, E.; Lombardo, F. Prevalence and Clinical Features of Severe Diabetic Ketoacidosis Treated in Pediatric Intensive Care Unit: A 5-Year Monocentric Experience. Ital. J. Pediatr. 2023, 49, 58. [Google Scholar] [CrossRef] [PubMed]
- Kiral, E.; Kirel, B.; Havan, M.; Keskin, M.; Karaoglan, M.; Yildirim, A.; Kangin, M.; Talay, M.N.; Urun, T.; Altug, U.; et al. Increased Severe Cases and New-Onset Type 1 Diabetes Among Children Presenting with Diabetic Ketoacidosis During First Year of COVID-19 Pandemic in Turkey. Front. Pediatr. 2022, 10, 926013. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdulrazzaq, D.; Alkandari, A.; Alhusaini, F.; Alenazi, N.; Gujral, U.P.; Narayan, K.M.V.; Al-Kandari, H.; CODeR group. Higher Rates of Diabetic Ketoacidosis and Admission to the Paediatric Intensive Care Unit among Newly Diagnosed Children with Type 1 Diabetes in Kuwait during the COVID-19 Pandemic. Diabetes Metab. Res. Rev. 2022, 38, e3506. [Google Scholar] [CrossRef]
- McCluskey, C.K.; Zee-Cheng, J.E.; Klein, M.J.; Scanlon, M.C.; Rotta, A.T.; Remy, K.E.; Carroll, C.L.; Shein, S.L. The Temporal Relationship Between Local School Closure and Increased Incidence of Pediatric Diabetic Ketoacidosis. Front. Pediatr. 2022, 10, 812265. [Google Scholar] [CrossRef] [PubMed]
- Kanthimathinathan, H.K.; Buckley, H.; Davis, P.J.; Feltbower, R.G.; Lamming, C.; Norman, L.; Palmer, L.; Peters, M.J.; Plunkett, A.; Ramnarayan, P.; et al. In the Eye of the Storm: Impact of COVID-19 Pandemic on Admission Patterns to Paediatric Intensive Care Units in the UK and Eire. Crit. Care Lond. Engl. 2021, 25, 399. [Google Scholar] [CrossRef]
- Lah Tomulić, K.; Matko, L.; Verbić, A.; Milardović, A.; Severinski, S.; Kolić, I.; Baraba Dekanić, K.; Šerifi, S.; Butorac Ahel, I. Epidemiologic Characteristics of Children with Diabetic Ketoacidosis Treated in a Pediatric Intensive Care Unit in a 10-Year-Period: Single Centre Experience in Croatia. Med. Kaunas Lith. 2022, 58, 638. [Google Scholar] [CrossRef]
- Vinkovic, M.; Krnic, N.; Bogdanic, A.; Dumic Kubat, K.; Braovac, D.; Spehar Uroic, A. Ketoacidosis and Age Distribution in New-Onset Type 1 Diabetes During Covid-19 Pandemic. Horm. Res. Paediatr. 2022, 95 (Suppl. 2), 465. [Google Scholar]
- Burcul, I.; Arambasic, N.; Polic, B.; Kovacevic, T.; Bartulovic, I.; Catipovic Ardalic, T.; Markic, J. Characteristics of Children with Diabetic Ketoacidosis Treated in Pediatric Intensive Care Unit: Two-Center Cross-Sectional Study in Croatia. Med. Kaunas Lith. 2019, 55, 362. [Google Scholar] [CrossRef]
- Bonafide, C.P.; Brady, P.W.; Keren, R.; Conway, P.H.; Marsolo, K.; Daymont, C. Development of Heart and Respiratory Rate Percentile Curves for Hospitalized Children. Pediatrics 2013, 131, e1150–e1157. [Google Scholar] [CrossRef]
- Blood Pressure Levels for Boys and Girls by Age and Height Percentile. Available online: https://www.nhlbi.nih.gov/files/docs/guidelines/child_tbl.pdf (accessed on 4 October 2024).
- Lavik, A.R.; Ebekozien, O.; Noor, N.; Alonso, G.T.; Polsky, S.; Blackman, S.M.; Chen, J.; Corathers, S.D.; Demeterco-Berggren, C.; Gallagher, M.P.; et al. Trends in Type 1 Diabetic Ketoacidosis During COVID-19 Surges at 7 US Centers: Highest Burden on Non-Hispanic Black Patients. J. Clin. Endocrinol. Metab. 2022, 107, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Croatia—COVID-19 Overview—Johns Hopkins. Available online: https://Coronavirus.Jhu.Edu/Region/Croatia (accessed on 21 September 2024).
- Coronavirus Epidemic in the Republic of Croatia [in Croatian]. Available online: https://Civilna-Zastita.Gov.Hr/UserDocsImages/CIVILNA%20ZA%C5%A0TITA/PDF_ZA%20WEB/Bro%C5%A1ura-COVID2.Pdf (accessed on 21 September 2024).
- Azova, S.; Liu, E.; Wolfsdorf, J. Increased Use of Hyperosmolar Therapy for Suspected Clinically Apparent Brain Injury in Pediatric Patients with Diabetic Ketoacidosis during the Peak of the COVID-19 Pandemic. Pediatr. Diabetes 2023, 2023, 5123197. [Google Scholar] [CrossRef] [PubMed]
- Ordooei, M.; Karimi, M.; Akbarian, E.; Rasoulizadeh, Z. Diabetic Ketoacidosis in Children Before and During COVID-19 Pandemic: A Cross-Sectional Study. Int. J. Endocrinol. Metab. 2023, 21, e132809. [Google Scholar] [CrossRef] [PubMed]
- Choleau, C.; Maitre, J.; Filipovic Pierucci, A.; Elie, C.; Barat, P.; Bertrand, A.-M.; de Kerdanet, M.; Letallec, C.; Levy-Marchal, C.; Nicolino, M.; et al. Ketoacidosis at Diagnosis of Type 1 Diabetes in French Children and Adolescents. Diabetes Metab. 2014, 40, 137–142. [Google Scholar] [CrossRef]
- Hekkala, A.; Ilonen, J.; Knip, M.; Veijola, R. Finnish Paediatric Diabetes Register Family History of Diabetes and Distribution of Class II HLA Genotypes in Children with Newly Diagnosed Type 1 Diabetes: Effect on Diabetic Ketoacidosis. Eur. J. Endocrinol. 2011, 165, 813–817. [Google Scholar] [CrossRef]
- Kahveci, F.; Ocak, B.Ö.; Gün, E.; Gurbanov, A.; Uçmak, H.; Aslan, A.D.; Ceran, A.; Özen, H.; Balaban, B.; Botan, E.; et al. Impact of the COVID-19 Pandemic on Diabetic Ketoacidosis Management in the Pediatric Intensive Care Unit. Acute Crit. Care 2023, 38, 371–379. [Google Scholar] [CrossRef]
- Kamrath, C.; Rosenbauer, J.; Eckert, A.J.; Ohlenschläger, U.; Sydlik, C.; Nellen-Hellmuth, N.; Holl, R.W. Glycated Hemoglobin at Diagnosis of Type 1 Diabetes and at Follow-up in Children and Adolescents during the COVID-19 Pandemic in Germany. Pediatr. Diabetes 2022, 23, 749–753. [Google Scholar] [CrossRef]
- Verma, A.; Rajput, R.; Verma, S.; Balania, V.K.B.; Jangra, B. Impact of Lockdown in COVID 19 on Glycemic Control in Patients with Type 1 Diabetes Mellitus. Diabetes Metab. Syndr. 2020, 14, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Rodia, C.; Bertolotto, A.; Campi, F.; Coppelli, A.; Giannarelli, R.; Bianchi, C.; Dardano, A.; Del Prato, S. Type 1 Diabetes and COVID-19: The “Lockdown Effect”. Diabetes Res. Clin. Pract. 2020, 170, 108468. [Google Scholar] [CrossRef]
- Lombardo, F.; Salzano, G.; Bombaci, B.; Basile, P.; Lucania, G.; Alibrandi, A.; Passanisi, S. Has COVID-19 Lockdown Improved Glycaemic Control in Pediatric Patients with Type 1 Diabetes? An Analysis of Continuous Glucose Monitoring Metrics. Diabetes Res. Clin. Pract. 2021, 178, 108988. [Google Scholar] [CrossRef]
- Nwosu, B.U.; Al-Halbouni, L.; Parajuli, S.; Jasmin, G.; Zitek-Morrison, E.; Barton, B.A. COVID-19 Pandemic and Pediatric Type 1 Diabetes: No Significant Change in Glycemic Control During the Pandemic Lockdown of 2020. Front. Endocrinol. 2021, 12, 703905. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, E.; Varimo, T.; Tuomaala, A.-K.; Miettinen, P.J.; Pulkkinen, M.-A. The Effect of COVID-19 Lockdown on the Glycemic Control of Children with Type 1 Diabetes. BMC Pediatr. 2022, 22, 48. [Google Scholar] [CrossRef]
- Chobot, A.; Lanzinger, S.; Alkandari, H.; Todd Alonso, G.; Blauensteiner, N.; Coles, N.; De Sanctis, L.; Mul, D.; Saboo, B.; Smart, C.; et al. Diabetes Care Practices and Outcomes in 40.000 Children and Adolescents with Type 1 Diabetes from the SWEET Registry during the COVID-19 Pandemic. Diabetes Res. Clin. Pract. 2023, 202, 110809. [Google Scholar] [CrossRef]
- Patel, A.; Singh, D.; Bhatt, P.; Thakkar, B.; Akingbola, O.A.; Srivastav, S.K. Incidence, Trends, and Outcomes of Cerebral Edema Among Children with Diabetic Ketoacidosis in the United States. Clin. Pediatr. 2016, 55, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, S.E.; Cummings, E.A.; Gaboury, I.; Daneman, D. Population-Based Study of Incidence and Risk Factors for Cerebral Edema in Pediatric Diabetic Ketoacidosis. J. Pediatr. 2005, 146, 688–692. [Google Scholar] [CrossRef]
- Glaser, N.; Barnett, P.; McCaslin, I.; Nelson, D.; Trainor, J.; Louie, J.; Kaufman, F.; Quayle, K.; Roback, M.; Malley, R.; et al. Risk Factors for Cerebral Edema in Children with Diabetic Ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N. Engl. J. Med. 2001, 344, 264–269. [Google Scholar] [CrossRef]
- Wolfsdorf, J.I.; Glaser, N.; Agus, M.; Fritsch, M.; Hanas, R.; Rewers, A.; Sperling, M.A.; Codner, E. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic Ketoacidosis and the Hyperglycemic Hyperosmolar State. Pediatr. Diabetes 2018, 19 (Suppl. S27), 155–177. [Google Scholar] [CrossRef]
- Edge, J.A.; Ford-Adams, M.E.; Dunger, D.B. Causes of Death in Children with Insulin Dependent Diabetes 1990-96. Arch. Dis. Child. 1999, 81, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Azova, S.; Rapaport, R.; Wolfsdorf, J. Brain Injury in Children with Diabetic Ketoacidosis: Review of the Literature and a Proposed Pathophysiologic Pathway for the Development of Cerebral Edema. Pediatr. Diabetes 2021, 22, 148–160. [Google Scholar] [CrossRef]
- Rosenbloom, A.L. Intracerebral Crises during Treatment of Diabetic Ketoacidosis. Diabetes Care 1990, 13, 22–33. [Google Scholar] [CrossRef]
- Khunti, K.; Aroda, V.R.; Aschner, P.; Chan, J.C.N.; Del Prato, S.; Hambling, C.E.; Harris, S.; Lamptey, R.; McKee, M.; Tandon, N.; et al. The Impact of the COVID-19 Pandemic on Diabetes Services: Planning for a Global Recovery. Lancet Diabetes Endocrinol. 2022, 10, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Cerovečki, I.; Švajda, M. COVID-19 Pandemic Influence on Diabetes Management in Croatia. Front. Clin. Diabetes Healthc. 2021, 2, 704807. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, V.; Marino, M.; Carle, F.; Zagaroli, L.; Bowers, R.; Gesuita, R. Effectiveness of Ketoacidosis Prevention Campaigns at Diagnosis of Type 1 Diabetes in Children: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2021, 175, 108838. [Google Scholar] [CrossRef] [PubMed]
- Šimunović, M.; Škrabić, R.; Vulić, L.; Unić, I.; Škrabić, V. Preliminary Results of Public Health Prevention Program for Diabetic Ketoacidosis in Children and Adolescent. Horm. Res. Paediatr. 2019, 91 (Suppl. 1), 1–682. [Google Scholar] [CrossRef]
No. (%) | Overall (n = 91) | Pre-Pandemic (n = 68) | Pandemic (n = 23) | p-Value |
---|---|---|---|---|
Sex | ||||
Male | 44 (48.4) | 33 (48.5) | 11 (47.8) | 0.953 |
Female | 47 (51.6) | 35 (51.5) | 12 (52.2) | |
Median age (IQR), years | 10 (7, 13) | 10 (6.75, 12) | 11 (9, 14) | 0.126 |
Age group, years | ||||
0–5 | 18 (19.8) | 16 (23.5) | 2 (8.7) | 0.404 * |
6–10 | 34 (37.4) | 25 (36.8) | 9 (39.1) | |
11–15 | 31 (34.1) | 22 (32.4) | 9 (39.1) | |
16–18 | 8 (8.8) | 5 (7.4) | 3 (13) | |
Area of residence | ||||
Coastal | 47 (51.6) | 35 (51.5) | 12 (52.2) | 0.692 * |
Dalmatian Hinterland | 21 (23.1) | 17 (25) | 4 (17.4) | |
Islands | 8 (8.8) | 5 (7.4) | 3 (13) | |
Other parts of Croatia | 2 (2.2) | 1 (1.5) | 1 (4.3) | |
Abroad | 13 (14.3) | 10 (14.7) | 3 (13) | |
Season of the year | ||||
Winter | 20 (22) | 16 (23.5) | 4 (17.4) | 0.002 * |
Spring | 15 (16.5) | 7 (10.3) | 8 (34.8) | |
Summer | 40 (44) | 36 (52.9) | 4 (17.4) | |
Fall | 16 (17.6) | 9 (13.2) | 7 (30.4) | |
Diabetes status | ||||
Newly diagnosed | 68 (74.7) | 51 (75) | 17 (73.9) | 0.917 |
Previously diagnosed | 23 (25.3) | 17 (25) | 6 (26.1) | |
Family history of diabetes † | ||||
Negative | 49 (55.7) | 36 (55.4) | 13 (56.5) | 0.925 |
Positive | 39 (44.3) | 29 (44.6) | 10 (43.5) |
Symptom/Sign | Total No. of Patients † | No. with Symptom/Sign (%) | p-Value | ||||
---|---|---|---|---|---|---|---|
Overall | Pre-Pandemic | Pandemic | Overall | Pre-Pandemic | Pandemic | ||
Polydipsia | 90 | 67 | 23 | 57 (63.3) | 42 (62.7) | 15 (65.2) | 0.828 |
Polyuria | 90 | 67 | 23 | 50 (55.6) | 38 (56.7) | 12 (52.2) | 0.705 |
Polyphagia | 90 | 67 | 23 | 13 (14.4) | 7 (10.4) | 6 (26.1) | 0.066 |
Nocturia | 89 | 66 | 23 | 37 (41.6) | 26 (39.4) | 11 (47.8) | 0.480 |
Nausea | 90 | 67 | 23 | 11 (12.2) | 6 (9) | 5 (21.7) | 0.106 |
Vomiting | 90 | 67 | 23 | 64 (71.1) | 52 (77.6) | 12 (52.2) | 0.02 |
Abdominal pain | 90 | 67 | 23 | 40 (44.4) | 25 (37.3) | 15 (65.2) | 0.02 |
Diarrhea | 90 | 67 | 23 | 8 (8.9) | 8 (11.9) | 0 (0) | 0.108 * |
Fatigue | 90 | 67 | 23 | 45 (50) | 33 (49.3) | 12 (52.2) | 0.809 |
Headache | 90 | 67 | 23 | 5 (5.6) | 3 (4.5) | 2 (8.7) | 0.599 * |
Weight loss | 86 | 63 | 23 | 47 (54.7) | 34 (54) | 13 (56.5) | 0.833 |
Kussmaul breathing | 87 | 64 | 23 | 51 (58.6) | 36 (56.3) | 15 (65.2) | 0.454 |
Acetone breath | 90 | 67 | 23 | 36 (40) | 28 (41.8) | 8 (34.8) | 0.554 |
Dehydration | 89 | 66 | 23 | 81 (91) | 59 (89.4) | 22 (95.7) | 0.675 * |
Paleness | 90 | 67 | 23 | 46 (51.1) | 35 (52.2) | 11 (47.8) | 0.715 |
Axillary temperature | |||||||
Afebrile | 84 | 61 | 23 | 68 (81) | 49 (80.3) | 19 (82.6) | 1 * |
Subfebrile/febrile | 16 (19) | 12 (19.7) | 4 (17.4) | ||||
Tachycardia | 90 | 67 | 23 | 41 (45.6) | 32 (47.8) | 9 (39.1) | 0.473 |
Tachypnea | 69 | 48 | 21 | 34 (49.3) | 25 (52.1) | 9 (42.9) | 0.481 |
Hypertension | 73 | 52 | 21 | 37 (50.7) | 23 (44.2) | 14 (66.7) | 0.083 |
Disorder of consciousness: | |||||||
Yes | 90 | 68 | 22 | 39 (43.3) | 29 (42.6) | 10 (45.5) | 0.817 |
No | 51 (56.7) | 39 (57.4) | 12 (54.5) | ||||
Somnolence | 32 (35.6) | 25 (36.8) | 7 (31.8) | 0.487 * | |||
Sopor | 6 (6.7) | 3 (4.4) | 3 (13.6) | ||||
Coma | 1 (1.1) | 1 (1.5) | 0 (0) | ||||
Previous infection | 90 | 67 | 23 | 36 (40) | 26 (38.8) | 10 (43.5) | 0.693 |
Laboratory Parameter | Total No. of Patients † | Median (IQR) Laboratory Value | p-Value | ||||
---|---|---|---|---|---|---|---|
Overall | Pre-Pandemic | Pandemic | Overall | Pre-Pandemic | Pandemic | ||
Blood glucose, mmol/L | 90 | 67 | 23 | 28.35 (23.55, 35.4) | 29.7 (23.7, 38.9) | 24.7 (23.1, 28.8) | 0.022 |
Blood ketones, mmol/L | 72 | 55 | 17 | 5.95 (5.6, 6.73) | 6.2 (5.65, 6.9) | 5.6 (5.1, 6.1) | 0.011 |
HbA1c, % * | 77 | 55 | 22 | 11.46 ± 2.03 | 11.02 ± 1.85 | 12.56 ± 2.1 | 0.002 |
pH * | 91 | 68 | 23 | 7.09 ± 0.12 | 7.09 ± 0.12 | 7.09 ± 0.12 | 0.779 |
pCO2, kPa | 86 | 63 | 23 | 2.02 (1.6, 2.77) | 2 (1.6, 2.74) | 2.05 (1.65, 2.68) | 0.992 |
pO2, kPa | 82 | 59 | 23 | 10.7 (8.45, 12.45) | 11.2 (8.85, 12.75) | 9.6 (8.32, 10.95) | 0.058 |
HCO3, mmol/L | 90 | 68 | 22 | 4.4 (3.1, 7) | 4.35 (3.1, 7.2) | 4.75 (3.15, 6.28) | 0.940 |
BE, mmol/L | 82 | 62 | 20 | −23.3 (−24.88, −19.93) | −23.4 (−9.8, −19.6) | −23.2 (−24.4, −21.08) | 0.966 |
Anion gap, mmol/L | 88 | 67 | 21 | 26.8 (22.43, 29.6) | 26.5 (21.9, 29.6) | 29 (25.2, 32.7) | 0.082 |
Na, mmol/L | 89 | 67 | 22 | 134 (131, 137) | 134 (130, 136) | 135 (134, 137) | 0.025 |
K, mmol/L | 90 | 67 | 23 | 4.5 (4, 5) | 4.6 (4.1, 5.05) | 4.3 (3.85, 4.75) | 0.071 |
Cl, mmol/L | 90 | 67 | 23 | 102 (97, 105) | 102 (96, 105) | 101 (99, 104) | 0.93 |
Ca, mmol/L * | 87 | 65 | 22 | 2.44 ± 0.18 | 2.45 ± 0.18 | 2.42 ± 0.19 | 0.398 |
P, mmol/L | 86 | 64 | 22 | 1.25 (1.077, 1.58) | 1.31 (1.07, 1.57) | 1.19 (1.05, 1.42) | 0.342 |
BUN, mmol/L | 87 | 64 | 23 | 5.4 (4.3, 7.2) | 5.7 (4.68, 7.58) | 4.3 (3.4, 6.8) | 0.044 |
Creatinine, µmol/L | 87 | 64 | 23 | 69 (46.5, 98) | 74 (54, 99.25) | 46 (38, 85) | 0.02 |
Leukocytes, ×109/L | 89 | 66 | 23 | 17.5 (11.4, 24.2) | 17.4 (13.13, 24.43) | 17.6 (10.57, 23.5) | 0.866 |
Cholesterol, mmol/L * | 74 | 52 | 22 | 5.37 ± 1.54 | 5.16 ± 1.34 | 5.85 ± 1.88 | 0.081 |
Triglycerides, mmol/L | 74 | 52 | 22 | 3.65 (2.2, 5.58) | 2.8 (2.18, 5.13) | 4.95 (2.65, 8.38) | 0.022 |
HDL, mmol/L | 73 | 52 | 21 | 1 (0.8, 1.3) | 0.9 (0.8, 1.3) | 1 (0.8, 1.2) | 0.633 |
LDL, mmol/L | 73 | 52 | 21 | 2.6 (1.9, 3.1) | 2.68 (1.98, 3.2) | 2.5 (1.8, 2.97) | 0.374 |
No. (%) | Overall (n = 91) | Pre-Pandemic (n = 68) | Pandemic (n = 23) | p-Value |
---|---|---|---|---|
Severe DKA | 58 (63.7) | 42 (61.8) | 16 (69.6) | 0.501 |
Severe DKA by age groups, years | ||||
0–5 | 12 (20.7) | 10 (23.8) | 2 (12.5) | 0.386 * |
6–10 | 22 (37.9) | 16 (38.1) | 6 (37.5) | |
11–15 | 19 (32.8) | 14 (33.3) | 5 (31.3) | |
16–18 | 5 (8.6) | 2 (4.8) | 3 (18.8) |
No. (%) | Overall (n = 91) | Pre-Pandemic (n = 68) | Pandemic (n = 23) | p-Value |
---|---|---|---|---|
Complications of DKA | ||||
Yes | 7 (7.7) | 6 (8.8) † | 1 (4.3) † | 0.674 * |
No | 84 (92.3) | 62 (91.2) | 22 (95.7) | |
Cerebral injury | 4 (4.4) | 3 (4.4) | 1 (4.3) | - |
Acute kidney injury | 1 (1.1) | 0 (0) | 1 (4.3) | - |
Pneumomediastinum | 1 (1.1) | 1 (1.5) | 0 (0) | - |
Acute pancreatitis | 1 (1.1) | 1 (1.5) | 0 (0) | - |
Pulmonary edema | 2 (2.2) | 1 (1.5) | 1 (4.3) | - |
Acute respiratory insufficiency | 2 (2.2) | 1 (1.5) | 1 (4.3) | - |
Nonspecific seizure attack | 1 (1.1) | 1 (1.5) | 0 (0) | - |
Transitory cataract | 1 (1.1) | 1 (1.5) | 0 (0) | - |
Death | 1 (1.1) | 1 (1.5) | 0 (0) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perak, E.; Mrcela, D.; Markic, J. Impact of the COVID-19 Pandemic on Diabetic Ketoacidosis Patients Treated in a Pediatric Intensive Care Unit: A Single-Center Cross-Sectional Study. Medicina 2024, 60, 1775. https://doi.org/10.3390/medicina60111775
Perak E, Mrcela D, Markic J. Impact of the COVID-19 Pandemic on Diabetic Ketoacidosis Patients Treated in a Pediatric Intensive Care Unit: A Single-Center Cross-Sectional Study. Medicina. 2024; 60(11):1775. https://doi.org/10.3390/medicina60111775
Chicago/Turabian StylePerak, Eva, Dina Mrcela, and Josko Markic. 2024. "Impact of the COVID-19 Pandemic on Diabetic Ketoacidosis Patients Treated in a Pediatric Intensive Care Unit: A Single-Center Cross-Sectional Study" Medicina 60, no. 11: 1775. https://doi.org/10.3390/medicina60111775
APA StylePerak, E., Mrcela, D., & Markic, J. (2024). Impact of the COVID-19 Pandemic on Diabetic Ketoacidosis Patients Treated in a Pediatric Intensive Care Unit: A Single-Center Cross-Sectional Study. Medicina, 60(11), 1775. https://doi.org/10.3390/medicina60111775