A Case of Milk-Alkali Syndrome Caused by Diuretic-Induced Alkalosis and Polypharmacy
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Satoh, F.; Okado, T.; Iwamoto, M.; Akita, W.; Wakabayashi, M.; Ohta, A.; Sohara, E.; Noda, Y.; Rai, T.; Uchida, S.; et al. Calcium-alkali syndrome-like symptoms manifested by daily alphacalcidol and thiazide. Intern. Med. 2010, 49, 837–840. [Google Scholar] [CrossRef]
- Kleinig, T.J.; Torpy, D.J. Milk-alkali syndrome: Broadening the spectrum of causes to allow early recognition. Intern. Med. J. 2004, 34, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Hanada, S.; Iwamoto, M.; Kobayashi, N.; Ando, R.; Sasaki, S. Calcium-alkali syndrome due to vitamin D administration and magnesium oxide administration. Am. J. Kidney Dis. 2009, 53, 711–714. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. The use of selected urine chemistries in the diagnosis of kidney disorders. Clin. J. Am. Soc. Nephrol. 2019, 14, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Khow, K.S.; Lau, S.Y.; Li, J.Y.; Yong, T.Y. Diuretic-associated electrolyte disorders in the elderly: Risk factors, impact, management and prevention. Curr. Drug Saf. 2014, 9, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Lamberg, B.A.; Kuhlback, B. Effect of chlorothiazide and hydrochlorothiazide on the excretion of calcium in urine. Scand. J. Clin. Lab. Investig. 1959, 11, 351–357. [Google Scholar] [CrossRef]
- Parfitt, A.M. Chlorothiazide-induced hypercalcemia in juvenile osteoporosis and hyperparathyrxoidism. N. Engl. J. Med. 1969, 281, 55–59. [Google Scholar] [CrossRef]
- Paillard, M.; Bichara, M. Peptide hormone effects on urinary acidification and acid-base balance: PTH, ADH, and glucagon. Am. J. Physiol. 1989, 256, F973–F985. [Google Scholar] [CrossRef]
- Girardi, A.C.; Titan, S.M.; Malnic, G.; Reboucas, N.A. Chronic effect of parathyroid hormone on NHE3 expression in rat renal proximal tubules. Kidney Int. 2000, 58, 1621–1631. [Google Scholar] [CrossRef]
- Sutton, R.A.; Wong, N.L.; Dirks, J.H. Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int. 1979, 15, 520–533. [Google Scholar] [CrossRef]
- Peraino, R.A.; Suki, W.N. Urine HCO3− augments renal Ca2+ absorption independent of systemic acid-base changes. Am. J. Physiol. 1980, 238, F394–F398. [Google Scholar] [CrossRef] [PubMed]
- Punsar, S.; Somer, T. The milk-alkali syndrome. A report of three illustrative cases and a review of the literature. Acta Med. Scand. 1963, 173, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Böhmig, G.A.; Schmaldienst, S.; Hörl, W.H.; Mayer, G. Iatrogenic hypercalcaemia, hypokalaemia and metabolic alkalosis in a lady with vena cava thrombosis—Beware of overzealous diuretic treatment. Nephrol. Dial. Transplant. 1999, 14, 782–784. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Bae, E.H. Hypercalcemia associated with acute kidney injury and metabolic alkalosis. Electrolyte Blood Press. 2010, 8, 92–94. [Google Scholar] [CrossRef]
- Homler, H. Use of furosemide for milk-alkali syndrome. Mayo Clin. Proc. 2009, 84, 562. [Google Scholar] [CrossRef]
- Picolos, M.K.; Lavis, V.R.; Orlander, P.R. Milk-alkali syndrome is a major cause of hypercalcaemia among non-end-stage renal disease (non-ESRD) inpatients. Clin. Endocrinol. 2005, 63, 566–576. [Google Scholar] [CrossRef]
- Vassallo, P.; Green, N.; Courtney, E. Hypercalcemia secondary to excessive self-medication with antacids causing acute pancreatitis: A case report. Croat. Med. J. 2019, 60, 42–45. [Google Scholar] [CrossRef]
- Parvataneni, S.; Essrani, R.; Mehershahi, S.; Essrani, R.; Lohana, A.K.; Mehmood, A. Over-the-counter drug causing acute pancreatitis. J. Investig. Med. High Impact Case Rep. 2020, 8, 2324709620922724. [Google Scholar] [CrossRef]
- Vu, K.; Becker, G.; Eagerton, D. A 39-year-old woman with milk-alkali syndrome complicated by posterior reversible encephalopathy syndrome. Bone Rep. 2020, 12, 100278. [Google Scholar] [CrossRef]
- The 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 updated AGS beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- O’Mahony, D.; O’Sullivan, D.; Byrne, S.; O’Connor, M.N.; Ryan, C.; Gallagher, P. STOPP/START Criteria for Potentially Inappropriate Prescribing in Older People: Version 2. Age Ageing 2015, 44, 213–218. [Google Scholar] [CrossRef]
- Hamano, J.; Tokuda, Y. Risk factors and specific prescriptions related to inappropriate prescribing among Japanese elderly home care patients. Gen. Med. 2014, 15, 117–125. [Google Scholar] [CrossRef]
- Bories, M.; Bouzillé, G.; Cuggia, M.; Le Corre, P. Drug-drug interactions in elderly patients with potentially inappropriate medications in primary care, nursing home and hospital settings: A systematic review and a preliminary study. Pharmaceutics 2021, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Fushiki, Y.; Kinoshita, K.; Tokuda, Y. Polypharmacy and adverse drug events leading to acute care hospitalization in Japanese elderly. Gen. Med. 2014, 15, 110–116. [Google Scholar] [CrossRef]
- Mangin, D.; Bahat, G.; Golomb, B.A.; Mallery, L.H.; Moorhouse, P.; Onder, G.; Petrovic, M.; Garfinkel, D. International Group for Reducing Inappropriate Medication Use & Polypharmacy (IGRIMUP): Position statement and 10 recommendations for action. Drugs Aging 2018, 35, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, H.E.; Greer, N.; Linsky, A.M.; Bolduc, J.; Naidl, T.; Vardeny, O.; MacDonald, R.; McKenzie, L.; Wilt, T.J. Deprescribing for community-dwelling older adults: A systematic review and meta-analysis. J. Gen. Intern. Med. 2020, 35, 3323–3332. [Google Scholar] [CrossRef] [PubMed]


| Parameter | Recorded Value | Standard Value/Reference Range |
|---|---|---|
| White blood cell count | 9100/µL | 4500–7500/µL |
| Hemoglobin | 9.3 g/dL | 11.3–15.2 g/dL |
| Platelet count | 7.5 × 104/µL | 13–35 × 103/µL |
| C-reactive protein | 0.24 mg/L | ≤0.60 mg/dL |
| Total protein | 6.9 g/dL | 6.9–8.4 g/dL |
| Albumin | 4.2 g/dL | 3.9–5.1 g/dL |
| Total bilirubin | 0.7 mg/dL | 0.2–1.2 mg/dL |
| Aspartate aminotransferase | 30 U/L | 11–30 U/L |
| Alanine aminotransferase | 9 U/L | 4–30 U/L |
| Lactase dehydrogenase | 226 U/L | 109–216 U/L |
| Creatine kinase | 273 U/L | 40–150 U/L |
| Blood urea nitrogen | 42.3 mg/dL | 8–20 mg/dL |
| Creatinine | 1.49 mg/dL | 0.63–1.03 mg/dL |
| Sodium | 145 mEq/L | 136–148 mEq/L |
| Potassium | 1.7 mEq/L | 3.6–5.0 mEq/L |
| Chloride | 91 mEq/L | 98–108 mEq/L |
| Calcium | 15.2 mg/dL | 8.8–10.1 mg/dL |
| Phosphorus | 1.5 mg/dL | 2.7–4.6 mg/dL |
| Magnesium | 1.5 mg/dL | 1.8–2.6 mg/dL |
| Glucose | 144 mg/dL | 70–109 mg/dL |
| Hemoglobin A1c | 5.1% | 5.6–5.9% |
| Tests related to hypercalcemia (day 2) | ||
| Angiotensin-converting enzyme | 6.8 U/L | 7.0–25.0 U/L |
| 1,25-dihydroxyvitamin D3 | 27 pg/mL | 20.0–60.0 pg/mL |
| Intact parathyroid hormone | 14 pg/mL | 15.0–65.0 pg/mL |
| Parathyroid hormone-related protein-C | <1.1 pmol/L | <1.1 pmol/L |
| Venous blood gas analysis | ||
| pH | 7.546 | |
| pCO2 | 50.3 mmHg | |
| HCO3− | 43.6 mEq/L | |
| Base excess | 19.0 mEq/L | |
| Urinalysis | ||
| pH | 7.0 | |
| Specific gravity | 1.011 | |
| Protein | +/− | |
| Occult blood | 2+ | |
| Sodium | 37 mEq/L | |
| Potassium | 18.5 mEq/L | |
| Chloride | 30 mEq/L | |
| Calcium | 15.7 mg/dL | |
| Phosphorus | 22.0 mg/dL | |
| Magnesium | 3.1 mg/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizutani, N.; Goda, K.; Kenzaka, T. A Case of Milk-Alkali Syndrome Caused by Diuretic-Induced Alkalosis and Polypharmacy. Medicina 2023, 59, 1345. https://doi.org/10.3390/medicina59071345
Mizutani N, Goda K, Kenzaka T. A Case of Milk-Alkali Syndrome Caused by Diuretic-Induced Alkalosis and Polypharmacy. Medicina. 2023; 59(7):1345. https://doi.org/10.3390/medicina59071345
Chicago/Turabian StyleMizutani, Naoya, Ken Goda, and Tsuneaki Kenzaka. 2023. "A Case of Milk-Alkali Syndrome Caused by Diuretic-Induced Alkalosis and Polypharmacy" Medicina 59, no. 7: 1345. https://doi.org/10.3390/medicina59071345
APA StyleMizutani, N., Goda, K., & Kenzaka, T. (2023). A Case of Milk-Alkali Syndrome Caused by Diuretic-Induced Alkalosis and Polypharmacy. Medicina, 59(7), 1345. https://doi.org/10.3390/medicina59071345

