Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors
Abstract
:1. Introduction
2. Apoptosis and Immune System Dysregulation Are Hallmarks of SLE Pathogenesis
2.1. Dysregulation of Innate Immune Response
2.2. Dysregulation of Adaptive Immune Response
3. The Role of Genetic Predisposition in the Pathogenesis of SLE
3.1. Human Leukocyte Antigen (HLA)-Associated Genetic Variations in SLE
3.2. The Role of Non-HLA-Associated Genetic Variations in the Pathogenesis of SLE
4. The Role of Environmental Triggers in the Pathogenesis of SLE
4.1. Pathogenic Microorganism Infection
4.2. UV-B Radiation Exposure
4.3. Oral Contraceptives and Hormonal Therapy
4.4. Silica Dust Exposure
4.5. Smoking and Cigarette Smoke Exposure
4.6. Poisons, Drugs and Other Toxic Substances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Justiz Vaillant, A.A.; Goyal, A.; Varacallo, M. Systemic Lupus Erythematosus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tian, J.; Zhang, D.; Yao, X.; Huang, Y.; Lu, Q. Global Epidemiology of Systemic Lupus Erythematosus: A Comprehensive Systematic Analysis and Modelling Study. Ann. Rheum. Dis. 2022, 82, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Weckerle, C.E.; Niewold, T.B. The Unexplained Female Predominance of Systemic Lupus Erythematosus: Clues from Genetic and Cytokine Studies. Clin. Rev. Allergy Immunol. 2011, 40, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Jawad, A.S. Systemic Lupus Erythematosus: Rarer in Men than Women but More Severe. Trends Urol. Men’s Health 2022, 13, 11–14. [Google Scholar] [CrossRef]
- Yuliasih, Y. Perkembangan Patogenesis Dan Tata Laksana Systemic Lupus Erythematosus; Airlangga University Press: Surabaya, Indonesia, 2020. [Google Scholar]
- Cervera, R.; Khamashta, M.A.; Font, J.; Sebastiani, G.D.; Gil, A.; Lavilla, P.; Mejía, J.C.; Aydintug, A.O.; Chwalinska-Sadowska, H.; de Ramón, E.; et al. Morbidity and Mortality in Systemic Lupus Erythematosus During a 10-Year Period: A Comparison of Early and Late Manifestations in a Cohort of 1000 Patients. Medicine 2003, 82, 299. [Google Scholar] [CrossRef]
- Barber, M.R.W.; Drenkard, C.; Falasinnu, T.; Hoi, A.; Mak, A.; Kow, N.Y.; Svenungsson, E.; Peterson, J.; Clarke, A.E.; Ramsey-Goldman, R. Global Epidemiology of Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2021, 17, 515–532. [Google Scholar] [CrossRef]
- Singh, R.R.; Yen, E.Y. SLE Mortality Remains Disproportionately High, despite Improvements over the Last Decade. Lupus 2018, 27, 1577–1581. [Google Scholar] [CrossRef]
- Ocampo-Piraquive, V.; Nieto-Aristizábal, I.; Cañas, C.A.; Tobón, G.J. Mortality in Systemic Lupus Erythematosus: Causes, Predictors and Interventions. Expert Rev. Clin. Immunol. 2018, 14, 1043–1053. [Google Scholar] [CrossRef]
- Smith, C.D.; Cyr, M. The History of Lupus Erythematosus. From Hippocrates to Osler. Rheum. Dis. Clin. N. Am. 1988, 14, 1–14. [Google Scholar] [CrossRef]
- Clark, D.N.; Poole, B.D.; Clark, D.N.; Poole, B.D. Interferon and Apoptosis in Systemic Lupus Erythematosus; IntechOpen: London, UK, 2012; ISBN 978-953-51-0266-3. [Google Scholar]
- Li, D.; Wu, M. Pattern Recognition Receptors in Health and Diseases. Sig. Transduct. Target Ther. 2021, 6, 291. [Google Scholar] [CrossRef]
- Psarras, A.; Alase, A.; Antanaviciute, A.; Carr, I.M.; Md Yusof, M.Y.; Wittmann, M.; Emery, P.; Tsokos, G.C.; Vital, E.M. Functionally Impaired Plasmacytoid Dendritic Cells and Non-Haematopoietic Sources of Type I Interferon Characterize Human Autoimmunity. Nat. Commun. 2020, 11, 6149. [Google Scholar] [CrossRef]
- Yu, C.-F.; Peng, W.-M.; Oldenburg, J.; Hoch, J.; Bieber, T.; Limmer, A.; Hartmann, G.; Barchet, W.; Eis-Hübinger, A.M.; Novak, N. Human Plasmacytoid Dendritic Cells Support Th17 Cell Effector Function in Response to TLR7 Ligation. J. Immunol. 2010, 184, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Ameer, M.A.; Chaudhry, H.; Mushtaq, J.; Khan, O.S.; Babar, M.; Hashim, T.; Zeb, S.; Tariq, M.A.; Patlolla, S.R.; Ali, J.; et al. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management. Cureus 2022, 14, e30330. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K. Pathogenesis of Systemic Lupus Erythematosus: Risks, Mechanisms and Therapeutic Targets. Ann. Rheum. Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Lu, M.-P.; Wang, J.-H.; Xu, M.; Yang, S.-R. Immunological Pathogenesis and Treatment of Systemic Lupus Erythematosus. World J. Pediatr. 2020, 16, 19–30. [Google Scholar] [CrossRef]
- Sifuentes Giraldo, W.A.; García Villanueva, M.J.; Boteanu, A.L.; Lois Iglesias, A.; Zea Mendoza, A.C. New Therapeutic Targets in Systemic Lupus. Reumatol. Clínica (Engl. Ed.) 2012, 8, 201–207. [Google Scholar] [CrossRef]
- Chen, L.; Cao, S.-Q.; Lin, Z.-M.; He, S.-J.; Zuo, J.-P. NOD-like Receptors in Autoimmune Diseases. Acta Pharmacol. Sin. 2021, 42, 1742–1756. [Google Scholar] [CrossRef]
- Pieterse, E.; van der Vlag, J. Breaking Immunological Tolerance in Systemic Lupus Erythematosus. Front Immunol. 2014, 5, 164. [Google Scholar] [CrossRef]
- Salemme, R.; Peralta, L.N.; Meka, S.H.; Pushpanathan, N.; Alexander, J.J. The Role of NETosis in Systemic Lupus Erythematosus. J. Cell. Immunol. 2019, 1, 33–42. [Google Scholar] [CrossRef]
- Sykes, M. Immune Tolerance: Mechanisms and Application in Clinical Transplantation. J. Intern. Med. 2007, 262, 288–310. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Lewis, E.E.; Shelden, E.A.; Somers, E.; Pavlic, R.; McCune, W.J.; Richardson, B.C. The Apoptotic Ligands TRAIL, TWEAK, and Fas Ligand Mediate Monocyte Death Induced by Autologous Lupus T Cells. J. Immunol. 2002, 169, 6020–6029. [Google Scholar] [CrossRef]
- Koga, T.; Ichinose, K.; Kawakami, A.; Tsokos, G.C. Current Insights and Future Prospects for Targeting IL-17 to Treat Patients With Systemic Lupus Erythematosus. Front. Immunol. 2021, 11, 624971. [Google Scholar] [CrossRef] [PubMed]
- Piantoni, S.; Andreoli, L.; Scarsi, M.; Zanola, A.; Dall’Ara, F.; Pizzorni, C.; Cutolo, M.; Airò, P.; Tincani, A. Phenotype Modifications of T-Cells and Their Shift toward a Th2 Response in Patients with Systemic Lupus Erythematosus Supplemented with Different Monthly Regimens of Vitamin D. Lupus 2015, 24, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Talaat, R.M.; Mohamed, S.F.; Bassyouni, I.H.; Raouf, A.A. Th1/Th2/Th17/Treg Cytokine Imbalance in Systemic Lupus Erythematosus (SLE) Patients: Correlation with Disease Activity. Cytokine 2015, 72, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Akahoshi, M.; Nakashima, H.; Tanaka, Y.; Kohsaka, T.; Nagano, S.; Ohgami, E.; Arinobu, Y.; Yamaoka, K.; Niiro, H.; Shinozaki, M.; et al. Th1/Th2 Balance of Peripheral T Helper Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol. 1999, 42, 1644–1648. [Google Scholar] [CrossRef]
- Chan, R.W.-Y.; Lai, F.M.-M.; Li, E.K.-M.; Tam, L.-S.; Chow, K.-M.; Li, P.K.-T.; Szeto, C.-C. Imbalance of Th1/Th2 Transcription Factors in Patients with Lupus Nephritis. Rheumatology 2006, 45, 951–957. [Google Scholar] [CrossRef]
- Dolff, S.; Bijl, M.; Huitema, M.G.; Limburg, P.C.; Kallenberg, C.G.M.; Abdulahad, W.H. Disturbed Th1, Th2, Th17 and T(Reg) Balance in Patients with Systemic Lupus Erythematosus. Clin. Immunol. 2011, 141, 197–204. [Google Scholar] [CrossRef]
- Yuliasih, Y.; Diah Rahmawati, L.; Maulidya Putri, R. Ratio of Th17/Treg and Disease Activity in Systemic Lupus Erythematosus. Caspian J. Intern. Med. 2019, 10, 65–72. [Google Scholar] [CrossRef]
- Muhammad Yusoff, F.; Wong, K.K.; Mohd Redzwan, N. Th1, Th2, and Th17 Cytokines in Systemic Lupus Erythematosus. Autoimmunity 2020, 53, 8–20. [Google Scholar] [CrossRef]
- Catalán, D.; Mansilla, M.A.; Ferrier, A.; Soto, L.; Oleinika, K.; Aguillón, J.C.; Aravena, O. Immunosuppressive Mechanisms of Regulatory B Cells. Front. Immunol. 2021, 12, 611795. [Google Scholar] [CrossRef]
- Karrar, S.; Cunninghame Graham, D.S. Abnormal B Cell Development in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2018, 70, 496–507. [Google Scholar] [CrossRef]
- Yap, D.Y.H.; Chan, T.M. B Cell Abnormalities in Systemic Lupus Erythematosus and Lupus Nephritis—Role in Pathogenesis and Effect of Immunosuppressive Treatments. Int. J. Mol. Sci. 2019, 20, 6231. [Google Scholar] [CrossRef]
- Mosaad, Y.M. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand. J. Immunol. 2015, 82, 283–306. [Google Scholar] [CrossRef]
- Dedhia, L.; Pradhan, V.; Ghosh, K.; Nadkar, M.; Parekh, S. Association of Human Leucocyte Antigen (HLA) Class II with Systemic Lupus Erythematosis (SLE) Patients from Western India. Meta Gene 2018, 16, 230–233. [Google Scholar] [CrossRef]
- Diaz-Gallo, L.-M.; Oke, V.; Lundström, E.; Elvin, K.; Ling Wu, Y.; Eketjäll, S.; Zickert, A.; Gustafsson, J.T.; Jönsen, A.; Leonard, D.; et al. Four Systemic Lupus Erythematosus Subgroups, Defined by Autoantibodies Status, Differ Regarding HLA-DRB1 Genotype Associations and Immunological and Clinical Manifestations. ACR Open Rheumatol. 2022, 4, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-C.; Chun, S.; Kim, K.; Mak, A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019, 8, 1180. [Google Scholar] [CrossRef]
- Kim, K.; Bang, S.-Y.; Lee, H.-S.; Okada, Y.; Han, B.; Saw, W.-Y.; Teo, Y.-Y.; Bae, S.-C. The HLA-DRβ1 Amino Acid Positions 11-13-26 Explain the Majority of SLE-MHC Associations. Nat. Commun. 2014, 5, 5902. [Google Scholar] [CrossRef] [PubMed]
- Molineros, J.E.; Looger, L.L.; Kim, K.; Okada, Y.; Terao, C.; Sun, C.; Zhou, X.-J.; Raj, P.; Kochi, Y.; Suzuki, A.; et al. Amino Acid Signatures of HLA Class-I and II Molecules Are Strongly Associated with SLE Susceptibility and Autoantibody Production in Eastern Asians. PLoS Genet. 2019, 15, e1008092. [Google Scholar] [CrossRef]
- Terao, C.; Ohmura, K.; Yamada, R.; Kawaguchi, T.; Shimizu, M.; Tabara, Y.; Takahashi, M.; Setoh, K.; Nakayama, T.; Kosugi, S.; et al. Association Between Antinuclear Antibodies and the HLA Class II Locus and Heterogeneous Characteristics of Staining Patterns: The Nagahama Study. Arthritis Rheumatol. 2014, 66, 3395–3403. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Jaffery, G.; Sabri, A.N.; Hasnain, S. HLA Association in SLE Patients from Lahore-Pakistan. Bosn. J. Basic Med. Sci. 2011, 11, 20–26. [Google Scholar] [CrossRef]
- Selvaraja, M.; Chin, V.K.; Abdullah, M.; Arip, M.; Amin-Nordin, S. HLA-DRB1*04 as a Risk Allele to Systemic Lupus Erythematosus and Lupus Nephritis in the Malay Population of Malaysia. Front. Med. 2021, 7, 598665. [Google Scholar] [CrossRef]
- Wadi, W.; Elhefny, N.e.A.M.; Mahgoub, E.H.; Almogren, A.; Hamam, K.D.; Al–hamed, H.A.; Gasim, G.I. Relation between HLA Typing and Clinical Presentations in Systemic Lupus Erythematosus Patients in Al-Qassim Region, Saudi Arabia. Int. J. Health Sci. (Qassim) 2014, 8, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Reveille, J.D.; Moulds, J.M.; Ahn, C.; Friedman, A.W.; Baethge, B.; Roseman, J.; Straaton, K.V.; Alarcón, G.S. Systemic Lupus Erythematosus in Three Ethnic Groups: I. The Effects of HLA Class II, C4, and CR1 Alleles, Socioeconomic Factors, and Ethnicity at Disease Onset. LUMINA Study Group. Lupus in Minority Populations, Nature versus Nurture. Arthritis Rheumatol. 1998, 41, 1161–1172. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Upreti, B.; Liu, S.; Cui, R.; Cheng, Y.; Tao, L.; Dong, J.; Li, L.; Xu, J. Association between HLA-B and HLA-DRB1 Polymorphisms and Systemic Lupus Erythematosus in Han Population in China. Rheumatol. Autoimmun. 2022, 2, 31–39. [Google Scholar] [CrossRef]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic Lupus Erythematosus. Nat. Rev. Dis. Prim. 2016, 2, 16039. [Google Scholar] [CrossRef]
- Brown, G.J.; Cañete, P.F.; Wang, H.; Medhavy, A.; Bones, J.; Roco, J.A.; He, Y.; Qin, Y.; Cappello, J.; Ellyard, J.I.; et al. TLR7 Gain-of-Function Genetic Variation Causes Human Lupus. Nature 2022, 605, 349–356. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Zhang, Y.; Lin, Z.; Zhang, H.; Wang, T.-Y.; Cao, Y.; Morris, D.L.; Sheng, Y.; Yin, X.; Zhong, S.-L.; et al. Identification of 38 Novel Loci for Systemic Lupus Erythematosus and Genetic Heterogeneity between Ancestral Groups. Nat. Commun. 2021, 12, 772. [Google Scholar] [CrossRef]
- Elghzaly, A.A.; Sun, C.; Looger, L.L.; Hirose, M.; Salama, M.; Khalil, N.M.; Behiry, M.E.; Hegazy, M.T.; Hussein, M.A.; Salem, M.N.; et al. Genome-Wide Association Study for Systemic Lupus Erythematosus in an Egyptian Population. Front. Genet. 2022, 13, 948505. [Google Scholar] [CrossRef]
- Yin, X.; Kim, K.; Suetsugu, H.; Bang, S.-Y.; Wen, L.; Koido, M.; Ha, E.; Liu, L.; Sakamoto, Y.; Jo, S.; et al. Meta-Analysis of 208370 East Asians Identifies 113 Susceptibility Loci for Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2021, 80, 632–640. [Google Scholar] [CrossRef]
- Hosseini, A.; Gharibi, T.; Marofi, F.; Babaloo, Z.; Baradaran, B. CTLA-4: From Mechanism to Autoimmune Therapy. Int. Immunopharmacol. 2020, 80, 106221. [Google Scholar] [CrossRef]
- Häcker, H.; Tseng, P.-H.; Karin, M. Expanding TRAF Function: TRAF3 as a Tri-Faced Immune Regulator. Nat. Rev. Immunol. 2011, 11, 457–468. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Z.; Liao, S.; Ye, L.; Lu, X.; Chen, X.; Li, Z.; Li, X.; Xu, Y.-Z.; Liu, H. Current Mechanistic Insights into the Role of Infection in Systemic Lupus Erythematosus. Biomed. Pharmacother. 2019, 117, 109122. [Google Scholar] [CrossRef] [PubMed]
- Cainelli, F.; Vento, S. Chapter 38—Malaria and Systemic Lupus Erythematosus: Complex Interactions and Reciprocal Influences. In Infection and Autoimmunity, 2nd ed.; Shoenfeld, Y., Agmon-Levin, N., Rose, N.R., Eds.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 657–668. ISBN 978-0-444-63269-2. [Google Scholar]
- Dörner, T. Hydroxychloroquine in SLE: Old Drug, New Perspectives. Nat. Rev. Rheumatol. 2010, 6, 10–11. [Google Scholar] [CrossRef]
- Wolf, S.J.; Estadt, S.N.; Theros, J.; Moore, T.; Ellis, J.; Liu, J.; Reed, T.J.; Jacob, C.O.; Gudjonsson, J.E.; Kahlenberg, J.M. Ultraviolet Light Induces Increased T Cell Activation in Lupus-Prone Mice via Type I IFN-Dependent Inhibition of T Regulatory Cells. J. Autoimmun. 2019, 103, 102291. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, F.; Yang, B.; Liang, J.; Qin, H.; Xu, J. Effects of Ultraviolet B Exposure on DNA Methylation in Patients with Systemic Lupus Erythematosus. Exp. Ther. Med. 2013, 5, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Kim, M.Y.; Kalunian, K.C.; Grossman, J.; Hahn, B.H.; Sammaritano, L.R.; Lockshin, M.; Merrill, J.T.; Belmont, H.M.; Askanase, A.D.; et al. Combined Oral Contraceptives in Women with Systemic Lupus Erythematosus. N. Engl. J. Med. 2005, 353, 2550–2558. [Google Scholar] [CrossRef] [PubMed]
- Bernier, M.; Mikaeloff, Y.; Hudson, M.; SuissA, S. Combined Oral Contraceptive Use and the Risk of Systemic Lupus Erythematosus. Arthritis Care Res. 2009, 61, 476–481. [Google Scholar] [CrossRef]
- Pollard, K.M. Silica, Silicosis, and Autoimmunity. Front. Immunol. 2016, 7, 97. [Google Scholar] [CrossRef]
- Brown, J.M.; Archer, A.J.; Pfau, J.C.; Holian, A. Silica Accelerated Systemic Autoimmune Disease in Lupus-Prone New Zealand Mixed Mice. Clin. Exp. Immunol. 2003, 131, 415–421. [Google Scholar] [CrossRef]
- Speyer, C.B.; Costenbader, K.H. Cigarette Smoking and the Pathogenesis of Systemic Lupus Erythematosus. Expert Rev. Clin. Immunol. 2018, 14, 481–487. [Google Scholar] [CrossRef]
- Costenbader, K.H.; Kim, D.J.; Peerzada, J.; Lockman, S.; Nobles-Knight, D.; Petri, M.; Karlson, E.W. Cigarette Smoking and the Risk of Systemic Lupus Erythematosus: A Meta-Analysis. Arthritis Rheumatol. 2004, 50, 849–857. [Google Scholar] [CrossRef]
- Jiang, F.; Li, S.; Jia, C. Smoking and the Risk of Systemic Lupus Erythematosus: An Updated Systematic Review and Cumulative Meta-Analysis. Clin. Rheumatol. 2015, 34, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Solhjoo, M.; Goyal, A.; Chauhan, K. Drug-Induced Lupus Erythematosus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bataille, P.; Lebrun-Vignes, B.; Tubach, F.; Aroux-Pavard, M.; Philibert, C.; Chasset, F.; Barbaud, A. Proton Pump Inhibitors Associated With Drug-Induced Lupus Erythematosus. JAMA Dermatol. 2022, 158, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sawalha, A.H. Drug-Induced Lupus Erythematosus: An Update on Drugs and Mechanisms. Curr. Opin. Rheumatol. 2018, 30, 490. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutanto, H.; Yuliasih, Y. Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors. Medicina 2023, 59, 1033. https://doi.org/10.3390/medicina59061033
Sutanto H, Yuliasih Y. Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors. Medicina. 2023; 59(6):1033. https://doi.org/10.3390/medicina59061033
Chicago/Turabian StyleSutanto, Henry, and Yuliasih Yuliasih. 2023. "Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors" Medicina 59, no. 6: 1033. https://doi.org/10.3390/medicina59061033
APA StyleSutanto, H., & Yuliasih, Y. (2023). Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors. Medicina, 59(6), 1033. https://doi.org/10.3390/medicina59061033