Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Published Study Search and Selection Criteria
2.2. Data Extraction
2.3. Statistical Analyses
3. Results
3.1. Selection and Characteristics of the Studies
3.2. Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Ng, K.F.; Yeh, T.S.; Cheng, C.T.; Lin, J.S.; Liu, Y.J.; Chuang, H.C.; Chen, T.C. Subtraction of Epstein-Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined molecular and histologic subtyping with clinicopathological and prognostic significance validated in a cohort of 1248 cases. Int. J. Cancer 2019, 145, 3218–3230. [Google Scholar] [CrossRef]
- Burke, A.P.; Yen, T.S.; Shekitka, K.M.; Sobin, L.H. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod. Pathol. 1990, 3, 377–380. [Google Scholar] [PubMed]
- Biesma, H.D.; Soeratram, T.T.D.; Sikorska, K.; Caspers, I.A.; van Essen, H.F.; Egthuijsen, J.M.P.; Mookhoek, A.; van Laarhoven, H.W.M.; van Berge Henegouwen, M.I.; Nordsmark, M.; et al. Response to neoadjuvant chemotherapy and survival in molecular subtypes of resectable gastric cancer: A post hoc analysis of the D1/D2 and CRITICS trials. Gastric Cancer 2022, 25, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Li, P.; Cheng, H.; Zhao, X.; Dong, M.; Zhang, Y.; Zhao, P.; Chen, J.; Shao, C. Prognostic Value of Tumor-Infiltrating Lymphocytes and Tertiary Lymphoid Structures in Epstein-Barr Virus-Associated and -Negative Gastric Carcinoma. Front. Immunol. 2021, 12, 692859. [Google Scholar] [CrossRef]
- Pinto, M.P.; Córdova-Delgado, M.; Retamal, I.N.; Muñoz-Medel, M.; Bravo, M.L.; Durán, D.; Villanueva, F.; Sanchez, C.; Acevedo, F.; Mondaca, S.; et al. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863. [Google Scholar] [CrossRef]
- Ramos, M.F.K.P.; Pereira, M.A.; de Mello, E.S.; Cirqueira, C.D.S.; Zilberstein, B.; Alves, V.A.F.; Ribeiro-Junior, U.; Cecconello, I. Gastric cancer molecular classification based on immunohistochemistry and in situ hybridization: Analysis in western patients after curative-intent surgery. World J. Clin. Oncol. 2021, 12, 688–701. [Google Scholar] [CrossRef]
- Yang, N.; Wu, Y.; Jin, M.; Jia, Z.; Wang, Y.; Cao, D.; Qin, L.; Wang, X.; Zheng, M.; Cao, X.; et al. Microsatellite instability and Epstein-Barr virus combined with PD-L1 could serve as a potential strategy for predicting the prognosis and efficacy of postoperative chemotherapy in gastric cancer. PeerJ 2021, 9, 11481. [Google Scholar] [CrossRef]
- Birkman, E.M.; Mansuri, N.; Kurki, S.; Ålgars, A.; Lintunen, M.; Ristamäki, R.; Sundström, J.; Carpén, O. Gastric cancer: Immunohistochemical classification of molecular subtypes and their association with clinicopathological characteristics. Virchows Arch. 2018, 472, 369–382. [Google Scholar] [CrossRef]
- Bösch, F.; Todorova, R.; Link, H.; Westphalen, C.B.; Boeck, S.; Heinemann, V.; Werner, J.; Kirchner, T.; Angele, M.K.; Neumann, J. Molecular subtyping of gastric cancer with respect to the growth pattern of lymph-node metastases. J. Cancer Res. Clin. Oncol. 2019, 145, 2689–2697. [Google Scholar] [CrossRef]
- Boysen, T.; Friborg, J.; Stribolt, K.; Hamilton-Dutoit, S.; Goertz, S.; Wohlfahrt, J.; Melbye, M. Epstein-Barr virus-associated gastric carcinoma among patients with pernicious anemia. Int. J. Cancer 2011, 129, 2756–2760. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalli, A.M.; Feltri, M.; Bertolini, V.; Bagnoli, E.; Furlan, D.; Cerutti, R.; Novario, R.; Capella, C. Intratumour T cells, their activation status and survival in gastric carcinomas characterised for microsatellite instability and Epstein-Barr virus infection. Virchows Arch. 2006, 448, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.J.; Kang, H.; Ryu, Y.M.; Park, Y.S.; Jeong, H.J.; Park, Y.M.; Lim, H.; Lee, J.H.; Song, H.J.; Jung, H.Y.; et al. Poor prognosis in Epstein-Barr virus-negative gastric cancer with lymphoid stroma is associated with immune phenotype. Gastric Cancer 2018, 21, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.H.; Swanson, C.A.; Lissowska, J.; Groves, F.D.; Sobin, L.H.; Nasierowska-Guttmejer, A.; Radziszewski, J.; Regula, J.; Hsing, A.W.; Jagannatha, S.; et al. Risk of stomach cancer in relation to consumption of cigarettes, alcohol, tea and coffee in Warsaw, Poland. Int. J. Cancer 1999, 81, 871–876. [Google Scholar] [CrossRef]
- Corvalan, A.; Koriyama, C.; Akiba, S.; Eizuru, Y.; Backhouse, C.; Palma, M.; Argandoña, J.; Tokunaga, M. Epstein-Barr virus in gastric carcinoma is associated with location in the cardia and with a diffuse histology: A study in one area of Chile. Int. J. Cancer 2001, 94, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.L.; Chen, M.H.; Huang, K.H.; Lin, C.H.; Chao, Y.; Lo, S.S.; Li, A.F.; Wu, C.W.; Shyr, Y.M. The Clinicopathological Features and Genetic Alterations in Epstein-Barr Virus-Associated Gastric Cancer Patients after Curative Surgery. Cancers 2020, 12, 1517. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hu, N.; Han, X.; Giffen, C.; Ding, T.; Goldstein, A.; Taylor, P. Family history of cancer and risk for esophageal and gastric cancer in Shanxi China. BMC Cancer 2009, 9, 269. [Google Scholar] [CrossRef]
- Gasenko, E.; Isajevs, S.; Camargo, M.C.; Offerhaus, G.J.A.; Polaka, I.; Gulley, M.L.; Skapars, R.; Sivins, A.; Kojalo, I.; Kirsners, A.; et al. Clinicopathological characteristics of Epstein-Barr virus-positive gastric cancer in Latvia. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1328–1333. [Google Scholar] [CrossRef]
- Gonzalez, C.A.; Pera, G.; Agudo, A.; Palli, D.; Krogh, V.; Vineis, P.; Tumino, R.; Panico, S.; Berglund, G.; Simán, H.; et al. Smoking and the risk of gastric cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC). Int. J. Cancer 2003, 107, 629–634. [Google Scholar] [CrossRef]
- Grogg, K.L.; Lohse, C.M.; Pankratz, V.S.; Halling, K.C.; Smyrk, T.C. Lymphocyte-rich gastric cancer: Associations with Epstein-Barr virus, microsatellite instability, histology, and survival. Mod. Pathol. 2003, 16, 641–651. [Google Scholar] [CrossRef]
- Gulley, M.L.; Pulitzer, D.R.; Eagan, P.A.; Schneider, B.G. Epstein-Barr virus infection is an early event in gastric carcinogenesis and is independent of bcl-2 expression and p53 accumulation. Hum. Pathol. 1996, 27, 20–27. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, X.; Gao, J.; Fan, L.; Yang, G.; Cho, W.C.; Chen, H. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer. Int. J. Mol. Sci. 2012, 13, 13764–13780. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Goepfert, R.; Akiba, S.; Koriyama, C.; Ding, S.; Reyes, E.; Itoh, T.; Minakami, Y.; Eizuru, Y. Epstein-Barr virus-associated gastric carcinoma: Evidence of age-dependence among a Mexican population. World J. Gastroenterol. 2005, 11, 6096–6103. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Ng, K.F.; Chen, K.H.; Hsu, J.T.; Liu, K.H.; Yeh, T.S.; Chen, T.C. Prognostic factors in Epstein-Barr virus-associated stage I-III gastric carcinoma: Implications for a unique type of carcinogenesis. Oncol. Rep. 2014, 32, 530–538. [Google Scholar] [CrossRef]
- Irkkan, C.; Balci, S.; Güler Tezel, G.; Akinci, B.; Yalcin, B.; Güler, G. Comparison of Clinicopathologic Parameters and Survivals Between Epstein-Barr Virus-positive and Her2-positive Gastric Cancers. Appl. Immunohistochem. Mol. Morphol. Aimm. 2017, 25, 609–614. [Google Scholar] [CrossRef]
- Jia, X.; Guo, T.; Li, Z.; Zhang, M.; Feng, Y.; Dong, B.; Li, Z.; Hu, Y.; Li, Z.; Xing, X.; et al. Clinicopathological and Immunomicroenvironment Characteristics of Epstein-Barr Virus-Associated Gastric Cancer in a Chinese Population. Front. Oncol. 2021, 10, 586752. [Google Scholar] [CrossRef]
- Kawazoe, A.; Kuwata, T.; Kuboki, Y.; Shitara, K.; Nagatsuma, A.K.; Aizawa, M.; Yoshino, T.; Doi, T.; Ohtsu, A.; Ochiai, A. Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 2017, 20, 407–415. [Google Scholar] [CrossRef]
- Kijima, Y.; Ishigami, S.; Hokita, S.; Koriyama, C.; Akiba, S.; Eizuru, Y.; Aikou, T. The comparison of the prognosis between Epstein-Barr virus (EBV)-positive gastric carcinomas and EBV-negative ones. Cancer Lett. 2003, 200, 33–40. [Google Scholar] [CrossRef]
- Kim, R.H.; Chang, M.S.; Kim, H.J.; Song, K.S.; Kim, Y.S.; Choi, B.Y.; Kim, W.H. Medical history and lifestyle factors contributing to Epstein-Barr virus-associated gastric carcinoma and conventional gastric carcinoma in Korea. Anticancer Res. 2010, 30, 2469–2475. [Google Scholar]
- Kim, Y.B.; Ahn, J.M.; Bae, W.J.; Sung, C.O.; Lee, D. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int. J. Cancer 2019, 145, 916–926. [Google Scholar] [CrossRef]
- Koh, J.; Ock, C.Y.; Kim, J.W.; Nam, S.K.; Kwak, Y.; Yun, S.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, W.H.; et al. Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 2017, 8, 26356–26367. [Google Scholar] [CrossRef]
- Koh, J.; Lee, K.W.; Nam, S.K.; Seo, A.N.; Kim, J.W.; Kim, J.W.; Park, D.J.; Kim, H.H.; Kim, W.H.; Lee, H.S. Development and Validation of an Easy-to-Implement, Practical Algorithm for the Identification of Molecular Subtypes of Gastric Cancer: Prognostic and Therapeutic Implications. Oncologist 2019, 24, e1321–e1330. [Google Scholar] [CrossRef] [PubMed]
- Koriyama, C.; Akiba, S.; Itoh, T.; Kijima, Y.; Sueyoshi, K.; Corvalan, A.; Herrera-Goepfer, R.; Eizuru, Y. Prognostic significance of Epstein-Barr virus involvement in gastric carcinoma in Japan. Int. J. Mol. Med. 2002, 10, 635–639. [Google Scholar]
- Koriyama, C.; Akiba, S.; Itoh, T.; Sueyoshi, K.; Minakami, Y.; Corvalan, A.; Yonezawa, S.; Eizuru, Y. E-cadherin and beta-catenin expression in Epstein-Barr virus-associated gastric carcinoma and their prognostic significance. World J. Gastroenterol. 2007, 13, 3925–3931. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Kim, K.C.; Nam, E.S.; Cho, S.J.; Park, H.R.; Min, S.K.; Seo, J.; Choe, J.Y.; Lee, H.K.; Kang, H.S.; et al. Programmed death ligand-1 and MET co-expression is a poor prognostic factor in gastric cancers after resection. Oncotarget 2017, 8, 82399–82414. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Chang, M.S.; Yang, H.K.; Lee, B.L.; Kim, W.H. Epstein-barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with epstein-barr virus-negative carcinoma. Clin. Cancer Res. 2004, 10, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lai, Y.; Sun, L.; Zhang, X.; Liu, R.; Feng, G.; Zhou, L.; Jia, L.; Huang, X.; Kang, Q.; et al. PD-L1 expression is associated with massive lymphocyte infiltration and histology in gastric cancer. Hum. Pathol. 2016, 55, 182–189. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, D.; Zhou, Q.; Lin, X.; Lin, J.; Peng, F. The fasting blood glucose and long non-coding RNA SNHG8 predict poor prognosis in patients with gastric carcinoma after radical gastrectomy. Aging 2018, 10, 2646–2656. [Google Scholar] [CrossRef]
- Ma, C.; Patel, K.; Singhi, A.D.; Ren, B.; Zhu, B.; Shaikh, F.; Sun, W. Programmed Death-Ligand 1 Expression Is Common in Gastric Cancer Associated with Epstein-Barr Virus or Microsatellite Instability. Am. J. Surg. Pathol. 2016, 40, 1496–1506. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Hao, Y.; Nie, Y.; Li, Z.; Qian, M.; Liang, Q.; Yu, J.; Zeng, M.; Wu, K. Differentiated tumor immune microenvironment of Epstein-Barr virus-associated and negative gastric cancer: Implication in prognosis and immunotherapy. Oncotarget 2017, 8, 67094–67103. [Google Scholar] [CrossRef]
- Martinez-Ciarpaglini, C.; Fleitas-Kanonnikoff, T.; Gambardella, V.; Llorca, M.; Mongort, C.; Mengual, R.; Nieto, G.; Navarro, L.; Huerta, M.; Rosello, S.; et al. Assessing molecular subtypes of gastric cancer: Microsatellite unstable and Epstein-Barr virus subtypes. Methods for detection and clinical and pathological implications. ESMO Open 2019, 4, e000470. [Google Scholar] [CrossRef] [PubMed]
- Martinson, H.A.; Mallari, D.; Richter, C.; Wu, T.T.; Tiesinga, J.; Alberts, S.R.; Olnes, M.J. Molecular Classification of Gastric Cancer among Alaska Native People. Cancers 2020, 12, 198. [Google Scholar] [CrossRef] [PubMed]
- Min, B.H.; Tae, C.H.; Ahn, S.M.; Kang, S.Y.; Woo, S.Y.; Kim, S.; Kim, K.M. Epstein-Barr virus infection serves as an independent predictor of survival in patients with lymphoepithelioma-like gastric carcinoma. Gastric Cancer 2016, 19, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Matsuo, K.; Ito, H.; Shitara, K.; Hosono, S.; Watanabe, M.; Ito, S.; Sawaki, A.; Iida, S.; Sato, S.; et al. ABO genotype and the risk of gastric cancer, atrophic gastritis, and Helicobacter pylori infection. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1665–1672. [Google Scholar] [CrossRef]
- Noh, J.H.; Shin, J.Y.; Lee, J.H.; Park, Y.S.; Lee, I.S.; Kim, G.H.; Na, H.K.; Ahn, J.Y.; Jung, K.W.; Kim, D.H.; et al. Clinical Significance of Epstein-Barr Virus and Helicobacter pylori Infection in Gastric Carcinoma. Gut Liver 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Osumi, H.; Kawachi, H.; Yoshio, T.; Ida, S.; Yamamoto, N.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Hiki, N.; et al. Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: Proposal of a novel therapeutic strategy. J. Gastroenterol. 2019, 54, 774–783. [Google Scholar] [CrossRef]
- Park, E.S.; Do, I.G.; Park, C.K.; Kang, W.K.; Noh, J.H.; Sohn, T.S.; Kim, S.; Kim, M.J.; Kim, K.M. Cyclooxygenase-2 is an independent prognostic factor in gastric carcinoma patients receiving adjuvant chemotherapy and is not associated with EBV infection. Clin. Cancer Res. 2009, 15, 291–298. [Google Scholar] [CrossRef]
- Pereira, M.A.; Ramos, M.; Faraj, S.F.; Dias, A.R.; Yagi, O.K.; Zilberstein, B.; Cecconello, I.; Alves, V.A.F.; de Mello, E.S.; Ribeiro, U., Jr. Clinicopathological and prognostic features of Epstein-Barr virus infection, microsatellite instability, and PD-L1 expression in gastric cancer. J. Surg. Oncol. 2018, 117, 829–839. [Google Scholar] [CrossRef]
- Ribeiro, J.; Oliveira, A.; Malta, M.; Oliveira, C.; Silva, F.; Galaghar, A.; Afonso, L.P.; Neves, M.C.; Medeiros, R.; Pimentel-Nunes, P.; et al. Clinical and pathological characterization of Epstein-Barr virus-associated gastric carcinomas in Portugal. World J. Gastroenterol. 2017, 23, 7292–7302. [Google Scholar] [CrossRef]
- Shen, H.; Zhong, M.; Wang, W.; Liao, P.; Yin, X.; Rotroff, D.; Knepper, T.C.; McLeod, H.L.; Zhou, C.; Xie, S.; et al. EBV infection and MSI status significantly influence the clinical outcomes of gastric cancer patients. Clin. Chim. Acta 2017, 471, 216–221. [Google Scholar] [CrossRef]
- Song, H.J.; Srivastava, A.; Lee, J.; Kim, Y.S.; Kim, K.M.; Kang, W.K.; Kim, M.; Kim, S.; Park, C.K.; Kim, S. Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology 2010, 139, 84–92.e2. [Google Scholar] [CrossRef] [PubMed]
- Sukawa, Y.; Yamamoto, H.; Nosho, K.; Kunimoto, H.; Suzuki, H.; Adachi, Y.; Nakazawa, M.; Nobuoka, T.; Kawayama, M.; Mikami, M.; et al. Alterations in the human epidermal growth factor receptor 2-phosphatidylinositol 3-kinase-v-Akt pathway in gastric cancer. World J. Gastroenterol. 2012, 18, 6577–6586. [Google Scholar] [CrossRef]
- Truong, C.D.; Feng, W.; Li, W.; Khoury, T.; Li, Q.; Alrawi, S.; Yu, Y.; Xie, K.; Yao, J.; Tan, D. Characteristics of Epstein-Barr virus-associated gastric cancer: A study of 235 cases at a comprehensive cancer center in USA. J. Exp. Clin. Cancer Res. 2009, 28, 14. [Google Scholar] [CrossRef]
- van Beek, J.; zur Hausen, A.; Klein Kranenbarg, E.; van de Velde, C.J.; Middeldorp, J.M.; van den Brule, A.J.; Meijer, C.J.; Bloemena, E. EBV-positive gastric adenocarcinomas: A distinct clinicopathologic entity with a low frequency of lymph node involvement. J. Clin. Oncol. 2004, 22, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, K.; Chen, Z.; Chen, L.; Guo, W.; Liao, P.; Rotroff, D.; Knepper, T.C.; Liu, Z.; Zhang, W.; et al. Immunoclassification characterized by CD8 and PD-L1 expression is associated with the clinical outcome of gastric cancer patients. Oncotarget 2018, 9, 12164–12173. [Google Scholar] [CrossRef]
- Xing, X.; Guo, J.; Ding, G.; Li, B.; Dong, B.; Feng, Q.; Li, S.; Zhang, J.; Ying, X.; Cheng, X.; et al. Analysis of PD1, PDL1, PDL2 expression and T cells infiltration in 1014 gastric cancer patients. Oncoimmunology 2017, 7, e1356144. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Sy, K.; Brezden-Masley, C.; Streutker, C.J. Histo- and immunohistochemistry-based estimation of the TCGA and ACRG molecular subtypes for gastric carcinoma and their prognostic significance: A single-institution study. PLoS ONE 2019, 14, e0224812. [Google Scholar] [CrossRef]
- Zhang, Y.W.; He, D.; Tan, C.; Dong, M.; Zhou, L.; Shao, C.K. Differential expression of HER2 and downstream proteins in prediction of advanced tumor phenotypes and overall survival of patients with Epstein-Barr virus-positive vs. negative gastric cancers. Pathol. Res. Pract. 2019, 215, 152675. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, H.; Cheung, K.F.; Tong, J.H.; Zhang, S.; Go, M.Y.; Tian, L.; Kang, W.; Leung, P.P.; Zeng, Z.; et al. Zinc finger E-box binding factor 1 plays a central role in regulating Epstein-Barr virus (EBV) latent-lytic switch and acts as a therapeutic target in EBV-associated gastric cancer. Cancer 2012, 118, 924–936. [Google Scholar] [CrossRef]
- Parmar, M.K.; Torri, V.; Stewart, L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 1998, 17, 2815–2834. [Google Scholar] [CrossRef]
- Yusuf, S.; Peto, R.; Lewis, J.; Collins, R.; Sleight, P. Beta blockade during and after myocardial infarction: An overview of the randomized trials. Prog. Cardiovasc. Dis. 1985, 27, 335–371. [Google Scholar] [CrossRef]
- Pyo, J.S.; Kim, N.Y.; Kang, D.W. Clinicopathological Significance of EBV-Infected Gastric Carcinomas: A Meta-Analysis. Medicina 2020, 56, 345. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Qiu, H.; Kong, P.; Chen, S.; Li, W.; Zhan, Y.; Li, Y.; Chen, Y.; Zhou, Z.; et al. Prognostic significance of Epstein-Barr virus infection in gastric cancer: A meta-analysis. BMC Cancer 2015, 15, 782. [Google Scholar] [CrossRef]
- Chen, Y.C.; Fang, W.L.; Wang, R.F.; Liu, C.A.; Yang, M.H.; Lo, S.S.; Wu, V.; Li, A.F.; Shyr, Y.; Huang, K. Clinicopathological variation of Lauren classification in gastric cancer. Pathol. Oncol. Res. 2016, 22, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Kohlruss, M.; Grosser, B.; Krenauer, M.; Slotta-Huspenina, J.; Jesinghaus, M.; Blank, S.; Novotny, A.; Reiche, M.; Schmidt, T.; Ismani, L.; et al. Prognostic implication of molecular subtypes and response to neoadjuvant chemotherapy in 760 gastric carcinomas: Role of Epstein–Barr virus infection and high- and low-microsatellite instability. J. Pathol. Clin. Res. 2019, 5, 227–239. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Location | No. of Patients | No. of EBV+ | First Author, Year | Location | No. of Patients | No. of EBV+ |
---|---|---|---|---|---|---|---|
Biesma 2022 [4] | Netherlands | Koriyama 2007 [34] | Japan | 149 | 49 | ||
(CRITICS Trial) (D1/D2 Trial) | 454 447 | 25 47 | Kwon 2017 [35] | Korea | 394 | 26 | |
Birkman 2018 [9] | Finland | 186 | 17 | Lee 2004 [36] | Korea | 1114 | 63 |
Bösch 2019 [10] | Germany | 189 | 11 | Li 2016 [37] | China | 137 | 30 |
Boysen 2011 [11] | Denmark | 186 | 18 | Lin 2018 [38] | China | 217 | 87 |
Cheng 2021 [5] | China | 846 | 42 | Ma 2016 [39] | USA | 44 | 7 |
Chiaravalli 2006 [12] | Italy | 113 | 17 | Ma 2017 [40] | China | 571 | 31 |
Cho 2018 [13] | Korea | 58 | 29 | Martinez-Ciarpaglini 2019 [41] | Spain | 209 | 13 |
Chow 1999 [14] | Poland | 87 | 11 | Martinson 2020 [42] | USA | 82 | 19 |
Corvalan 2001 [15] | Chile | 145 | 27 | Min 2016 [43] | Korea | 145 | 124 |
Fang 2020 [16] | Taiwan | 460 | 43 | Nakao 2011 [44] | Korea | 371 | 20 |
Gao 2009 [17] | China | 1039 | 21 | Noh 2022 [45] | Korea | 956 | 65 |
Gasenko 2019 [18] | Latvia | 302 | 26 | Osumi 2019 [46] | Japan | 898 | 71 |
Gonzalex 2003 [19] | Various, Europe | 87 | 4 | Park 2009 [47] | Korea | 457 | 50 |
Grogg 2003 [20] | USA | 110 | 7 | Pereira 2018 [48] | Brazil | 286 | 30 |
Gulley 1996 [21] | USA | 95 | 11 | Pinto 2020 [6] | Chile | 91 | 12 |
He 2012 [22] | China | 118 | 21 | Ramos 2021 [7] | Brazil | 287 | 30 |
Herrera-Goepfert 2005 [23] | Mexico | 135 | 8 | Ribeiro 2017 [49] | Turkey | 179 | 15 |
Huang 2014 [24] | Taiwan | 1020 | 52 | Shen 2017 [50] | China | 202 | 42 |
Huang 2019 [2] | Taiwan | 1248 | 65 | Song 2010 [51] | Korea | 528 | 123 |
Irkkan 2017 [25] | Turkey | 105 | 8 | Sukawa 2012 [52] | Japan | 222 | 18 |
Jia 2021 [26] | China | 1328 | 55 | Truong 2009 [53] | USA | 235 | 12 |
Kawazoe 2017 [27] | Japan | 487 | 25 | van Beek 2004 [54] | Netherlands | 566 | 41 |
Kijima 2003 [28] | Korea | 420 | 28 | Wang 2018 [55] | China | 147 | 35 |
Kim 2010 [29] | Korea | 247 | 18 | Xing 2017 [56] | Portugal | 966 | 33 |
Kim 2019 [30] | USA | 43 | 6 | Yang 2021 [8] | China | 226 | 13 |
Koh 2017 [31] | Korea | 392 | 25 | Yoon 2019 [57] | USA | 107 | 3 |
Koh 2019 [32] | Korea | 894 | 79 | Zhang 2019 [58] | China | 1013 | 58 |
Koriyama 2002 [33] | Japan | 192 | 64 | Zhao 2012 [59] | China | 711 | 80 |
Number of Subsets | Fixed Effect (95% CI) | Heterogeneity Test (p-Value) | Random Effect (95% CI) | Egger’s Test (p-Value) | |
---|---|---|---|---|---|
Overall | 55 | 0.103 (0.099, 0.108) | <0.001 | 0.104 (0.082, 0.131) | 0.860 |
Location | |||||
Asia | 31 | 0.106 (0.101, 0.111) | <0.001 | 0.114 (0.080, 0.158) | 0.484 |
America | 12 | 0.115 (0.100, 0.132) | <0.001 | 0.107 (0.079, 0.142) | 0.256 |
Europe | 12 | 0.084 (0.075, 0.095) | 0.026 | 0.084 (0.070, 0.100) | 0.667 |
Number of Subsets | Fixed Effect (95% CI) | Heterogeneity Test (p-Value) | Random Effect (95% CI) | Egger’s Test (p-Value) | |
---|---|---|---|---|---|
Overall | 59 | 0.901 (0.861, 0.944) | <0.001 | 0.882 (0.813, 0.957) | 0.297 |
GCLS | 2 | 0.178 (0.059, 0.537) | 0.799 | 0.178 (0.059, 0.537) | NA |
Non-GCLS | 1 | 0.870 (0.620, 1.222) | 1.000 | 0.870 (0.620, 1.222) | NA |
Lauren’s classification | |||||
Intestinal type | 2 | 1.274 (0.829, 1.960) | 0.007 | 1.364 (0.425, 4.379) | NA |
Diffuse type | 1 | 0.400 (0.300, 0.534) | 1.000 | 0.400 (0.300, 0.534) | NA |
Molecular classification | |||||
EBV+ vs. MSI high | 12 | 1.099 (0.885, 1.364) | 0.932 | 1.099 (0.885, 1.364) | 0.426 |
EBV+ vs. MSS/EBV− | 12 | 0.954 (0.872, 1.044) | 0.967 | 0.954 (0.872, 1.044) | 0.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyo, J.-S.; Kim, N.-Y.; Kang, D.-W. Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 834. https://doi.org/10.3390/medicina59050834
Pyo J-S, Kim N-Y, Kang D-W. Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis. Medicina. 2023; 59(5):834. https://doi.org/10.3390/medicina59050834
Chicago/Turabian StylePyo, Jung-Soo, Nae-Yu Kim, and Dong-Wook Kang. 2023. "Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis" Medicina 59, no. 5: 834. https://doi.org/10.3390/medicina59050834
APA StylePyo, J.-S., Kim, N.-Y., & Kang, D.-W. (2023). Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis. Medicina, 59(5), 834. https://doi.org/10.3390/medicina59050834