Laboratory Findings in Children with Excess Body Weight in Romania
Abstract
:1. Introduction
2. Methods
3. Results
3.1. General Data Analysis
3.2. Analysis of Data According to Sex and Age Group
3.3. Data Analysis: Overweight vs. Obesity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.-P.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar]
- Jha, S.; Mehendale, A.M. Increased Incidence of Obesity in Children and Adolescents Post-COVID-19 Pandemic: A Review Article. Cureus 2022, 14, e29348. [Google Scholar]
- Palermi, S.; Vecchiato, M.; Pennella, S.; Marasca, A.; Spinelli, A.; De Luca, M.; De Martino, L.; Fernando, F.; Sirico, F.; Biffi, A. The Impact of the COVID-19 Pandemic on Childhood Obesity and Lifestyle-A Report from Italy. Pediatr. Rep. 2022, 14, 410–418. [Google Scholar] [CrossRef]
- Valenzise, M.; D’Amico, F.; Cucinotta, U.; Lugarà, C.; Zirilli, G.; Zema, A.; Wasniewska, M.; Pajno, G.B. The lockdown effects on a pediatric obese population in the COVID-19 era. Ital. J. Pediatr. 2021, 47, 209. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Childhood Obesity Facts 2022. Available online: https://www.cdc.gov/obesity/data/childhood.html (accessed on 20 December 2022).
- Europe WHO. Childhood Obesity in European Region Remains High: New WHO Report Presents Latest Country Data 2022. Available online: https://www.who.int/europe/news/item/08-11-2022-childhood-obesity-in-european-region-remains-high--new-who-report-presents-latest-country-data (accessed on 20 December 2022.).
- Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: Causes and consequences. J. Fam. Med. Prim. Care 2015, 4, 187–192. [Google Scholar]
- Fang, K.; Mu, M.; Liu, K.; He, Y. Screen time and childhood overweight/obesity: A systematic review and meta-analysis. Child Care Health Dev. 2019, 45, 744–753. [Google Scholar]
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Miron, V.D.; Bar, G.; Filimon, C.; Gaidamut, V.A.; Craiu, M. Monitoring of Excess Body Weight in Children in the Emergency Department of a Tertiary Pediatric Hospital in Bucharest, Romania. Maedica 2021, 16, 389–393. [Google Scholar] [CrossRef]
- Barbu, C.G.; Teleman, M.D.; Albu, A.I.; Sirbu, A.E.; Martin, S.C.; Bancescu, A.; Fica, S.V. Obesity and eating behaviors in school children and adolescents -data from a cross sectional study from Bucharest, Romania. BMC Public Health 2015, 15, 206. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. BMI Percentile Calculator for Child and Teen 2022. Available online: https://www.cdc.gov/healthyweight/bmi/calculator.html (accessed on 14 December 2022).
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar]
- Uribe-Querol, E.; Rosales, C. Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells 2022, 11, 1883. [Google Scholar]
- Herishanu, Y.; Rogowski, O.; Polliack, A.; Marilus, R. Leukocytosis in obese individuals: Possible link in patients with unexplained persistent neutrophilia. Eur. J. Haematol. 2006, 76, 516–520. [Google Scholar] [CrossRef]
- Weir, A.B.; Lewis, J.B., Jr.; Arteta-Bulos, R. Chronic idiopathic neutrophilia: Experience and recommendations. South Med. J. 2011, 104, 99–504. [Google Scholar] [CrossRef]
- Kim, J.A.; Park, H.S. White blood cell count and abdominal fat distribution in female obese adolescents. Metabolism 2008, 57, 1375–1379. [Google Scholar] [CrossRef]
- Dixon, J.B.; O’Brien, P.E. Obesity and the white blood cell count: Changes with sustained weight loss. Obes. Surg. 2006, 16, 251–257. [Google Scholar]
- Ohshita, K.; Yamane, K.; Hanafusa, M.; Mori, H.; Mito, K.; Okubo, M.; Hara, H.; Kohno, N. Elevated White Blood Cell Count in Subjects with Impaired Glucose Tolerance. Diabetes Care 2004, 27, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Marginean, C.O.; Melit, L.E.; Ghiga, D.V.; Marginean, M.O. Early Inflammatory Status Related to Pediatric Obesity. Front. Pediatr. 2019, 7, 241. [Google Scholar]
- Samocha-Bonet, D.; Justo, D.; Rogowski, O.; Saar, N.; Abu-Abeid, S.; Shenkerman, G.; Shapira, I.; Berliner, S.; Tomer, A. Platelet Counts and Platelet Activation Markers in Obese Subjects. Mediat. Inflamm. 2008, 2008, 834153. [Google Scholar]
- Marquardt, L.; Ruf, A.; Mansmann, U.; Winter, R.; Schuler, M.; Buggle, F.; Mayer, H.; Grau, A.J. Course of Platelet Activation Markers After Ischemic Stroke. Stroke 2002, 33, 2570–2574. [Google Scholar]
- Jeong, H.R.; Lee, H.S.; Shim, Y.S.; Hwang, J.S. Positive Associations between Body Mass Index and Hematological Parameters, Including RBCs, WBCs, and Platelet Counts, in Korean Children and Adolescents. Children 2022, 9, 109. [Google Scholar]
- Ausk, K.J.; Ioannou, G.N. Is obesity associated with anemia of chronic disease? A population-based study. Obesity 2008, 16, 2356–2361. [Google Scholar]
- Pinhas-Hamiel, O.; Newfield, R.S.; Koren, I.; Agmon, A.; Lilos, P.; Phillip, M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 416–418. [Google Scholar] [CrossRef]
- de Dios, O.; Gavela-Pérez, T.; Aguado-Roncero, P.; Pérez-Tejerizo, G.; Ricote, M.; González, N.; Garcés, C.; Soriano-Guillén, L. C-reactive protein expression in adipose tissue of children with acute appendicitis. Pediatr. Res. 2018, 84, 564–567. [Google Scholar]
- Rumińska, M.; Witkowska-Sędek, E.; Artemniak-Wojtowicz, D.; Krajewska, M.; Majcher, A.; Sobol, M.; Pyrżak, B. Changes in leukocyte profile and C-reactive protein concentration in overweight and obese adolescents after reduction of body weight. Central Eur. J. Immunol. 2019, 44, 307–315. [Google Scholar] [CrossRef]
- Shin, S.H.; Lee, Y.J.; Lee, Y.A.; Kim, J.H.; Lee, S.Y.; Shin, C.H. High-Sensitivity C-Reactive Protein Is Associated with Prediabetes and Adiposity in Korean Youth. Metab. Syndr. Relat. Disord. 2020, 18, 47–55. [Google Scholar] [CrossRef]
- Pérez-Segura, P.; de Dios, O.; Herrero, L.; Vales-Villamarín, C.; Aragón-Gómez, I.; Gavela-Pérez, T.; Garcés, C.; Soriano-Guillén, L. Children with type 1 diabetes have elevated high-sensitivity C-reactive protein compared with a control group. BMJ Open Diabetes Res. Care 2020, 8, e001424. [Google Scholar] [CrossRef]
- Cayres, S.U.; Werneck, A.O.; Urban, J.B.; Turi-Lynch, B.C.; Barbosa, M.F.; Fernandes, R.A. Sports participation is inversely associated with C-reactive protein levels in adolescents: ABCD Growth Study. Scand J. Med. Sci. Sports 2019, 29, 1000–1005. [Google Scholar] [CrossRef]
- Fang, X.; Zuo, J.; Zhou, J.; Cai, J.; Chen, C.; Xiang, E.; Li, H.; Cheng, X.; Chen, P. Childhood obesity leads to adult type 2 diabetes and coronary artery diseases: A 2-sample mendelian randomization study. Medicine 2019, 98, e16825. [Google Scholar]
- Sadeghian, M.; Vafadar, M.; Torabi, A.; Torabi, S.; Fazel, M. Prevalence of fatty liver and its related factors in children. J. Fam. Med. Prim. Care 2022, 11, 5604–5608. [Google Scholar]
- Duan, Y.; Luo, J.; Pan, X.; Wei, J.; Xiao, X.; Li, J.; Luo, M. Association between inflammatory markers and non-alcoholic fatty liver disease in obese children. Front. Public Health 2022, 10, 991393. [Google Scholar] [CrossRef]
- Putri, R.R.; Casswall, T.; Hagman, E. Prevalence of increased transaminases and its association with sex, age, and metabolic parameters in children and adolescents with obesity-a nationwide cross-sectional cohort study. BMC Pediatr. 2021, 21, 271. [Google Scholar]
- Feldstein, A.E.; Patton-Ku, D.; Boutelle, K.N. Obesity, nutrition, and liver disease in children. Clin. Liver Dis. 2014, 18, 219–231. [Google Scholar]
- Rospleszcz, S.; Dermyshi, D.; Muller-Peltzer, K.; Strauch, K.; Bamberg, F.; Peters, A. Association of serum uric acid with visceral, subcutaneous and hepatic fat quantified by magnetic resonance imaging. Sci. Rep. 2020, 10, 442. [Google Scholar] [CrossRef]
- Li, F.; Chen, S.; Qiu, X.; Wu, J.; Tan, M.; Wang, M. Serum Uric Acid Levels and Metabolic Indices in an Obese Population: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2021, 14, 627–635. [Google Scholar]
- Kwiterovich, P.O., Jr. Recognition and management of dyslipidemia in children and adolescents. J. Clin. Endocrinol. Metab. 2008, 93, 4200–4209. [Google Scholar]
- Cook, S.; Kavey, R.E. Dyslipidemia and pediatric obesity. Pediatr. Clin. N. Am. 2011, 58, 1363–1373. [Google Scholar] [CrossRef]
- Brzezinski, M.; Metelska, P.; Mysliwiec, M.; Szlagatys-Sidorkiewicz, A. Lipid disorders in children living with overweight and obesity- large cohort study from Poland. Lipids Health Dis. 2020, 19, 47. [Google Scholar] [CrossRef]
- Radaelli, G.; Sausen, G.; Cesa, C.C.; Portal, V.L.; Pellanda, L.C. Secondary Dyslipidemia In Obese Children-Is There Evidence For Pharmacological Treatment? Arq. Bras Cardiol. 2018, 111, 356–361. [Google Scholar]
- Ruminska, M.; Witkowska-Sedek, E.; Majcher, A.; Pyrzak, B. Thyroid Function in Obese Children and Adolescents and Its Association with Anthropometric and Metabolic Parameters. Adv. Exp. Med. Biol. 2016, 912, 33–41. [Google Scholar]
- Ghergherehchi, R.; Hazhir, N. Thyroid hormonal status among children with obesity. Ther. Adv. Endocrinol. Metab. 2015, 6, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Nogueira-de-Almeida, C.A.; Del Ciampo, L.A.; Ferraz, I.S.; Del Ciampo, I.R.L.; Contini, A.A.; Ued, F.D.V. COVID-19 and obesity in childhood and adolescence: A clinical review. J. Pediatr. 2020, 96, 546–558. [Google Scholar] [CrossRef]
- Thompson, D.L.; Jungk, J.; Hancock, E.; Smelser, C.; Landen, M.; Nichols, M.; Selvage, D.; Baumbach, J.; Sewell, M. Risk factors for 2009 pandemic influenza A (H1N1)-related hospitalization and death among racial/ethnic groups in New Mexico. Am. J. Public Health 2011, 101, 1776–1784. [Google Scholar]
- Hsu, P.C.; Chen, S.J. Obesity and risk of urinary tract infection in young children presenting with fever. Medicine 2018, 97, e13006. [Google Scholar]
- Miron, V.D.; Toma, A.R.; Filimon, C.; Bar, G.; Craiu, M. Optional Vaccines in Children-Knowledge, Attitudes, and Practices in Romanian Parents. Vaccines 2022, 10, 404. [Google Scholar]
- Clarke, M.; Mathew, S.M.; Giles, L.C.; Pena, A.S.; Barr, I.G.; Richmond, P.C.; Marshall, H.S. A Prospective Study Investigating the Impact of Obesity on the Immune Response to the Quadrivalent Influenza Vaccine in Children and Adolescents. Vaccines 2022, 10, 699. [Google Scholar] [CrossRef]
Lab Analysis | Results | Unit Lab | |
---|---|---|---|
WBC | increased, n (%) | 2 (0.7) | |
value, median (IQR) | 8.82 (6.08, 10.0) | ×103/μL | |
Neutrophils | increased, n (%) | 34 (12.7) | |
value, median (IQR) | 5.08 (3.53, 6.01) | ×103/μL | |
Hemoglobin | decreased, n (%) | 41 (15.3) | |
value, median (IQR) | 12.8 (12.4, 13.0) | g/mL | |
Platelets | increased, n (%) | 24 (9.0) | |
value, median (IQR) | 347 (323, 389) | ×103 μL | |
Blood glucose | increased, n (%) | 9 (3.4) | |
value, median (IQR) | 85 (79, 89) | mg/dL | |
AST | increased, n (%) | 23 (8.6) | |
value, median (IQR) | 28 (23, 32) | U/L | |
ALT | increased, n (%) | 20 (7.5) | |
value, median (IQR) | 27 (21, 34) | U/L | |
ALP | increased, n (%) | 36 (13.4) | |
value, median (IQR) | 303 (235, 352) | mg/dL | |
Urea | increased, n (%) | 27 (10.0) | |
value, median (IQR) | 23 (17, 31) | mg/dL | |
Creatinine | increased, n (%) | 0 (0.0) | |
value, median (IQR) | 0.5 (0.5, 0.6) | mg/dL | |
Uric acid | increased, n (%) | 95 (35.4) | |
value, median (IQR) | 4.7 (4.1, 5.3) | mg/dL | |
Cholesterol | increased, n (%) | 48 (17.9) | |
value, median (IQR) | 141 (126, 176) | mg/dL | |
LDL | increased, n (%) | 134 (50.0) | |
value, median (IQR) | 90 (69, 112) | mg/dL | |
HDL | decreased, n (%) | 158 (58.9) | |
value, median (IQR) | 47 (41, 54) | mg/dL | |
Triglycerides | increased, n (%) | 34 (12.7) | |
value, median (IQR) | 92 (64, 129) | mg/dL | |
TSH | increased, n (%) | 55 (20.5) | |
value, median (IQR) | 2.74 (2.34, 5.54) | μIU/dL | |
T4 | decreased, n (%) | 36 (13.4) | |
value, median (IQR) | 1.06 (0.84, 1.13) | ng/dL | |
CRP | increased, n (%) | 44 (16.4) | |
value, median (IQR) | 0.22 (0.06, 0.33) | mg/dL | |
ESR | increased, n (%) | 61 (22.8) | |
value, median (IQR) | 10 (8, 14) | mm/h |
Age Group | Sex | p-Value | Type of Excess Body Weight | p-Value | ||
---|---|---|---|---|---|---|
Female, N = 138, n (%) | Male, N = 130, n (%) | Overweight N = 84, n (%) | Obesity, N = 202, n (%) | |||
2–5 years | 10 (7.2) | 5 (3.8) | 0.226 | 2 (2.4) | 13 (6.4) | 0.245 |
5–14 years | 97 (70.3) | 105 (80.8) | 0.046 * | 62 (73.8) | 140 (69.3) | 0.446 |
14–18 years | 31 (22.5) | 20 (15.4) | 0.139 | 20 (23.8) | 31 (15.3) | 0.088 |
Lab Analysis | Sex | p-Value | Age Group | p-Value | |||
---|---|---|---|---|---|---|---|
Female, N = 138, n (%) | Male, N = 130, n (%) | 2–5 yrs N = 15, n (%) | 5–14 yrs, N = 202, n (%) | 14–18 yrs, N = 51, n (%) | |||
WBC increase | 1 (0.7) | 1 (0.7) | NA | 1 (6.7) | 1 (0.5) | 0 (0.0) | NA |
Neutrophils increase | 21 (15.2) | 13 (10.0) | 0.198 | 4 (26.7) | 19 (9.4) | 11 (21.6) | 0.075 |
Anemia | 22 (15.9) | 19 (14.6) | 0.764 | 0 (0.0) | 30 (14.9) | 11 (21.6) | 0.117 |
Platelets increase | 13 (9.4) | 11 (8.5) | 0.777 | 3 (20.0) | 17 (8.4) | 4 (7.8) | 0.302 |
High blood glucose | 3 (2.2) | 6 (4.6) | 0.286 | 0 (0.0) | 8 (4.0) | 1 (2.0) | 0.588 |
AST increase | 9 (6.5) | 14 (10.8) | 0.214 | 4 (26.7) | 15 (7.4) | 4 (7.8) | 0.203 |
ALT increase | 7 (5.1) | 13 (10.0) | 0.125 | 2 (13.3) | 10 (5.0) | 8 (15.7) | 0.689 |
ALP increase | 16 (12.0) | 20 (15.4) | 0.362 | 0 (0.0) | 30 (14.9) | 6 (11.8) | 0.765 |
Urea increase | 10 (7.2) | 17 (13.1) | 0.113 | 2 (13.3) | 21 (10.4) | 4 (7.8) | 0.759 |
Uric acid increase | 42 (30.4) | 53 (40.8) | 0.077 | 1 (6.7) | 60 (29.7) | 34 (66.7) ‡ | <0.001 |
High cholesterol | 27 (19.6) | 21 (16.2) | 0.466 | 1 (6.7) | 36 (17.8) | 11 (21.6) | 0.526 |
High LDL | 70 (50.7) | 64 (49.2) | 0.806 | 5 (33.3) | 106 (52.5) | 23 (45.1) | 0.315 |
Low HDL | 74 (53.6) | 84 (64.6) | 0.067 | 9 (60.0) | 115 (56.9) | 34 (66.7) | 0.549 |
High TG | 18 (13.0) | 16 (12.3) | 0.862 | 1 (6.7) | 26 (12.9) | 7 (13.7) | 0.926 |
TSH increase | 28 (20.3) | 27 (20.8) | 0.920 | 1 (6.7) | 41 (20.3) | 13 (25.5) | 0.378 |
Low T4 level | 28 (20.3) ‡ | 8 (6.2) | <0.001 | 0 (0.0) | 26 (12.9) | 10 (19.6) | 0.535 |
CRP increase | 25 (18.1) | 19 (14.6) | 0.438 | 3 (20.0) | 33 (29.2) | 8 (15.7) | 0.877 |
ESR increase | 40 (29.0) ‡ | 21 (16.2) | 0.012 | 0 (0.0) | 48 (23.8) | 13 (25.5) | 0.541 |
Lab Analysis | Overweight, N = 84, n (%) | Obesity, N = 184, n (%) | p-Value |
---|---|---|---|
WBC increase | 0 (0.0) | 0.0 (1.1) | N/A |
Neutrophils increase | 8 (9.5) | 26 (14.1) | 0.450 |
Anemia | 10 (11.9) | 31 (16.8) | 0.297 |
Platelets increase | 5 (6.0) | 19 (10.3) | 0.245 |
High blood glucose | 2 (2.4) | 7 (3.8) | 0.639 |
AST increase | 6 (7.1) | 17 (9.2) | 0.571 |
ALT increase | 4 (4.8) | 16 (8.7) | 0.256 |
ALP increase | 6 (7.1) | 30 (16.3) ‡ | 0.041 |
Urea increase | 10 (11.9) | 17 (9.2) | 0.502 |
Uric acid increase | 13 (15.5) | 82 (44.6) ‡ | <0.001 |
High cholesterol | 13 (15.5) | 35 (19.0) | 0.483 |
High LDL | 33 (39.3) | 101 (54.9) ‡ | 0.017 |
Low HDL | 39 (46.2) | 119 (64.7) ‡ | 0.004 |
High TG | 7 (8.3) | 27 (14.7) | 0.148 |
TSH increase | 15 (17.9) | 40 (21.7) | 0.466 |
Low T4 level | 10 (11.9) | 26 (14.1) | 0.617 |
CRP increase | 7 (8.3) | 37 (20.1) ‡ | 0.015 |
ESR increase | 19 (22.6) | 42 (22.8) | 0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascu, B.M.; Miron, V.D.; Matei, E.R.; Craiu, M. Laboratory Findings in Children with Excess Body Weight in Romania. Medicina 2023, 59, 319. https://doi.org/10.3390/medicina59020319
Pascu BM, Miron VD, Matei ER, Craiu M. Laboratory Findings in Children with Excess Body Weight in Romania. Medicina. 2023; 59(2):319. https://doi.org/10.3390/medicina59020319
Chicago/Turabian StylePascu, Bogdan Mihai, Victor Daniel Miron, Emanuela Rachel Matei, and Mihai Craiu. 2023. "Laboratory Findings in Children with Excess Body Weight in Romania" Medicina 59, no. 2: 319. https://doi.org/10.3390/medicina59020319