A Meta-Analysis Showing the Quantitative Evidence Base of Preemptive Pregabalin for Postoperative Pain from Cancer-Related Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Extraction
2.4. Assessment of Methodological Quality and Risk of Bias
2.5. Primary and Secondary Outcomes
2.6. Analysis of Outcome Data
2.7. Statistical Analysis
2.8. Meta-Analysis
2.9. Interpretation of Outcome Results
2.10. Heterogeneity, Subgroup, and Sensitivity Analyses
2.11. Assessment of Publication Biases
3. Results
3.1. Characteristics of Included Studies
3.2. Risk of Bias
3.3. Primary Indicators
3.3.1. Resting Pain Scores at 24 h Postoperatively (cm)
3.3.2. Dynamic Pain Scores at 24 h Postoperatively (cm)
3.4. Secondary Indicators
3.4.1. Resting Pain Scores at Individual Time Points Postoperatively (cm)
3.4.2. Dynamic Pain Scores at Individual Time Points Postoperatively (cm)
3.5. Cumulative 12 to 48 h Morphine Equivalent Consumption (mg)
3.6. Time to First Analgesic Request (Hours)
3.7. Hemodynamic Parameters
3.7.1. Heart Rate at 2, 6, 12, and 24 h (beat/min)
3.7.2. SBP at 2, 6, 12, and 24 h (beat/min) (mm/Hg)
3.7.3. DBP at 2, 6, 12, and 24 h (beat/min) (mm/Hg)
3.8. The Safety Indicators
3.8.1. Pregabalin-Related Side Effects
- Dizziness
- Visual disturbance
- Pruritus
- Headache
- Sedation score at 12 h
- Sedation score at 24 h
3.8.2. Opioid-Related Side Effects
- PONV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horowitz, M.; Neeman, E.; Sharon, E.; Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 2015, 12, 213–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.H.; Mehta, V.; Langford, R.M. Acute and chronic pain following breast surgery. Acute Pain 2009, 11, 1–14. [Google Scholar] [CrossRef]
- Wu, C.L.; Naqibuddin, M.; Rowlingson, A.J.; Lietman, S.A.; Jermyn, R.M.; Fleisher, L.A. The effect of pain on health-related quality of life in the immediate postoperative period. Anesth. Analg. 2003, 97, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.K.; Baima, J.; Mayer, R.S. Impairment-driven cancer rehabilitation: An essential component of quality care and survivorship. CA Cancer J. Clin. 2013, 63, 295–317. [Google Scholar] [CrossRef]
- Trakimas, D.R.; Perez-Heydrich, C.; Mandal, R.; Tan, M.; Gourin, C.G.; Fakhry, C.; Koch, W.M.; Russell, J.O.; Tufano, R.P.; Eisele, D.W.; et al. Peri-Operative Pain and Opioid Use in Opioid-Naïve Patients Following Inpatient Head and Neck Surgery. Front. Psychiatry 2022, 13, 857083. [Google Scholar] [CrossRef]
- Karlsdottir, B.R.; Zhou, P.P.; Wahba, J.; Mott, S.L.; Goffredo, P.; Hrabe, J.; Hassan, I.; Kapadia, M.R.; Gribovskaja-Rupp, I. Male gender, smoking, younger age, and preoperative pain found to increase postoperative opioid requirements in 592 elective colorectal resections. Int. J. Colorectal Dis. 2022, 37, 1799–1806. [Google Scholar] [CrossRef]
- Wiffen, P.J.; Wee, B.; Derry, S.; Bell, R.F.; Moore, R.A. Opioids for cancer pain-an overview of Cochrane reviews. Cochrane Database Syst. Rev. 2017, 7, Cd012592. [Google Scholar] [CrossRef]
- Hill, M.V.; McMahon, M.L.; Stucke, R.S.; Barth, R.J., Jr. Wide Variation and Excessive Dosage of Opioid Prescriptions for Common General Surgical Procedures. Ann. Surg. 2017, 265, 709–714. [Google Scholar] [CrossRef]
- Brogi, E.; Forfori, F. Anesthesia and cancer recurrence: An overview. J. Anesth. Analg. Crit. Care 2022, 2, 33. [Google Scholar] [CrossRef]
- Moorthy, A.; Eochagáin, A.N.; Buggy, D.J. Can Acute Postoperative Pain Management After Tumour Resection Surgery Modulate Risk of Later Recurrence or Metastasis? Front. Oncol. 2021, 11, 802592. [Google Scholar] [CrossRef]
- Diaz-Cambronero, O.; Mazzinari, G.; Cata, J.P. Perioperative opioids and colorectal cancer recurrence: A systematic review of the literature. Pain Manag. 2018, 8, 353–361. [Google Scholar] [CrossRef]
- Richebé, P.; Capdevila, X.; Rivat, C. Persistent Postsurgical Pain: Pathophysiology and Preventative Pharmacologic Considerations. Anesthesiology 2018, 129, 590–607. [Google Scholar] [CrossRef]
- Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet 2006, 367, 1618–1625. [Google Scholar] [CrossRef]
- Chincholkar, M. Gabapentinoids: Pharmacokinetics, pharmacodynamics and considerations for clinical practice. Br. J. Pain 2020, 14, 104–114. [Google Scholar] [CrossRef]
- Fonseca, F.; Lenahan, W.; Dart, R.C.; Papaseit, E.; Dargan, P.I.; Wood, D.M.; Guareschi, M.; Maremmani, I.; Auriacombe, M.; Farré, M.; et al. Non-medical Use of Prescription Gabapentinoids (Gabapentin and Pregabalin) in Five European Countries. Front. Psychiatry 2021, 12, 676224. [Google Scholar] [CrossRef]
- Kremer, M.; Yalcin, I.; Nexon, L.; Wurtz, X.; Ceredig, R.A.; Daniel, D.; Hawkes, R.A.; Salvat, E.; Barrot, M. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol. Pain. 2016, 12, 1744806916633477. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, J.; Luo, R.; Jiang, J.; Xiang, Z. The preemptive effects of oral pregabalin on perioperative pain management in lower limb orthopedic surgery: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 237. [Google Scholar] [CrossRef]
- Fabritius, M.L.; Strøm, C.; Koyuncu, S.; Jæger, P.; Petersen, P.L.; Geisler, A.; Wetterslev, J.; Dahl, J.B.; Mathiesen, O. Benefit and harm of pregabalin in acute pain treatment: A systematic review with meta-analyses and trial sequential analyses. Br. J. Anaesth. 2017, 119, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Mishriky, B.M.; Waldron, N.H.; Habib, A.S. Impact of pregabalin on acute and persistent postoperative pain: A systematic review and meta-analysis. Br. J. Anaesth. 2015, 114, 10–31. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Cochrane Handbook for Systematic Reviews of Interventions Version 6.3. Cochrane. Available online: www.training.cochrane.org/handboo (accessed on 26 August 2022).
- Salah Abdelgalil, A.; Shoukry, A.A.; Kamel, M.A.; Heikal, A.M.Y.; Ahmed, N.A. Analgesic Potentials of Preoperative Oral Pregabalin, Intravenous Magnesium Sulfate, and their Combination in Acute Postthoracotomy Pain. Clin. J. Pain. 2019, 35, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. Bmj 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brozek, J.L.; Akl, E.A.; Alonso-Coello, P.; Lang, D.; Jaeschke, R.; Williams, J.W.; Phillips, B.; Lelgemann, M.; Lethaby, A.; Bousquet, J.; et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy 2009, 64, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Zhang, Y.; Coello, P.A.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences-inconsistency, imprecision, and other domains. J. Clin. Epidemiol. 2019, 111, 83–93. [Google Scholar] [CrossRef]
- Earsakul, A. Analgesic efficacy of preoperative administration of low-dose pregabalin in patients undergoing breast cancer surgery. Thai J. Anesthesiol. 2017, 43, 289–297. [Google Scholar]
- Ghoneim, A.A.; Hegazy, M.M. The analgesic effect of preoperative pregabalin in radical cystectomy for cancer bladder patients. Chin.-Ger. J. Clin. Oncol. 2013, 12, 113–117. [Google Scholar] [CrossRef]
- Hetta, D.F.; Mohamed, M.A.; Mohammad, M.F. Analgesic efficacy of pregabalin in acute postmastectomy pain: Placebo controlled dose ranging study. J. Clin. Anesth. 2016, 34, 303–309. [Google Scholar] [CrossRef]
- Lamsal, R.; Mahajan, C.; Chauhan, V.; Gupta, N.; Mishra, N.; Rath, G.P. Effect of Pregabalin on Postcraniotomy Pain in Patients Undergoing Supratentorial Tumor Surgery: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Neurosci. Rural. Pract. 2019, 10, 641–645. [Google Scholar] [CrossRef]
- Mahran, E.; Hassan, M.E. Comparison of pregabalin versus ketamine in postoperative pain management in breast cancer surgery. Saudi J. Anaesth. 2015, 9, 253–257. [Google Scholar] [CrossRef]
- Mansor, S.H.; Choy, C.Y. Effect of preoperative oral pregabalin on postoperative pain after mastectomy. Middle East. J. Anaesthesiol. 2015, 23, 63–68. [Google Scholar]
- Mohamed, M.A.; Othman, A.H.; Abd El-Rahman, A.M. Analgesic efficacy and safety of peri-operative pregabalin following radical cystectomy: A dose grading study. Egypt. J. Anaesth. 2016, 32, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.M.; Panchal, R.D.; Patel, B.M. A randomized placebo controlled trial on evaluation of the efficacy of two different doses of pregabalin as a pre-emptive analgesia in gynaecological surgeries. Indian J. Clin. Anaesth. 2016, 3, 576–582. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.F.; Liu, E.Y.; Wang, Y.L. The effect Pregabalin on post operative pain control after modified mastectomy. Chin. J. Curr. Adv. Gen. Surg. 2012, 15, 541–544. [Google Scholar] [CrossRef]
- Zhang, A.C. Curative Effects of Preoperative Oral Pregabalin on Plasma Substance P and Beta Endorphinin Breast Cancer. Pract. J. Cancer 2016, 31, 1438–1440. [Google Scholar] [CrossRef]
- Rivasi, G.; Menale, S.; Turrin, G.; Coscarelli, A.; Giordano, A.; Ungar, A. The Effects of Pain and Analgesic Medications on Blood Pressure. Curr. Hypertens. Rep. 2022, 24, 385–394. [Google Scholar] [CrossRef]
- Lee, C.R.; McTavish, D.; Sorkin, E.M. Tramadol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs 1993, 46, 313–340. [Google Scholar] [CrossRef]
- Poklis, A. Fentanyl: A review for clinical and analytical toxicologists. J. Toxicol. Clin. Toxicol. 1995, 33, 439–447. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Ye, X.; Ren, Y.F.; Hu, Y.C.; Tan, S.Y.; Jiang, H.; Zhang, L.F.; Shi, W.; Wang, Y.T. Dexamethasone Does Not Provide Additional Clinical Analgesia Effect to Local Wound Infiltration: A Comprehensive Systematic Review and Meta-analysis. Adv. Wound. Care 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Brull, R.; Noble, J.; Weaver, T.; Essandoh, M.; McCartney, C.J.; Abdallah, F.W. Statistically significant but clinically unimportant: A systematic review and meta-analysis of the analgesic benefits of erector spinae plane block following breast cancer surgery. Reg. Anesth. Pain Med. 2021, 46, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Doleman, B.; Leonardi-Bee, J.; Heinink, T.P.; Boyd-Carson, H.; Carrick, L.; Mandalia, R.; Lund, J.N.; Williams, J.P. Pre-emptive and preventive NSAIDs for postoperative pain in adults undergoing all types of surgery. Cochrane Database Syst. Rev. 2021, 6, Cd012978. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- SK, P.G.R.; Bhagyashree, A. Efficacy of Preemptive oral pregabalin for prolonging post-operative analgesia in modified radical mastectomies. Indian J. Clin. Anaesth. 2016, 3, 374–379. [Google Scholar] [CrossRef]
- Pushkarna, G.; Badhan, C.; Gupta, R.; Chawla, S.; Abbi, P. Evaluation of the postoperative morphine-sparing effect of oral premedicants used as pre-emptive analgesics in breast-conserving cancer surgeries: A randomised placebo-controlled trial. Indian J. Anaesth. 2022, 66, S95. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, Y.D.; Cheng, P.W.; Fang, Y.C.; Lai, C.C.; Tseng, C.J.; Pan, J.Y.; Yeh, T.C. Gabapentin Reduces Blood Pressure and Heart Rate through the Nucleus Tractus Solitarii. Acta Cardiol. Sin. 2019, 35, 627–633. [Google Scholar] [CrossRef]
- Chen, W.; Huang, H.; Yang, C.; Hu, X.; Bao, F.; Jiang, H. Preoperative Low-dose and High-dose Pregabalin and Cardiovascular Response to Endotracheal Intubation: A Prospective, Randomized, Single-blind, Controlled Study in China. Clin. Ther. 2019, 41, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Sasso, F.C.; Cataldo, D.; Gruosso, D.; Giammarco, A.; Cavalli, A.; Di Maggio, C.; Renzo, G.; Salvatore, T.; Giugliano, D.; et al. Acute pressor and hormonal effects of beta-endorphin at high doses in healthy and hypertensive subjects: Role of opioid receptor agonism. J. Clin. Endocrinol. Metab. 2005, 90, 5167–5174. [Google Scholar] [CrossRef] [Green Version]
- Bugan, I.; Karagoz, Z.; Altun, S.; Djamgoz, M.B. Gabapentin, an Analgesic Used Against Cancer-Associated Neuropathic Pain: Effects on Prostate Cancer Progression in an In Vivo Rat Model. Basic Clin. Pharmacol Toxicol. 2016, 118, 200–207. [Google Scholar] [CrossRef]
- Pellegrino, M.; Ricci, E.; Ceraldi, R.; Nigro, A.; Bonofiglio, D.; Lanzino, M.; Morelli, C. From HDAC to Voltage-Gated Ion Channels: What’s Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers 2022, 14, 4401. [Google Scholar] [CrossRef]
- Grasso, A.; Orsaria, P.; Costa, F.; D’Avino, V.; Caredda, E.; Hazboun, A.; Carino, R.; Pascarella, G.; Altomare, M.; Buonomo, O.C.; et al. Ultrasound-guided Interfascial Plane Blocks for Non-anesthesiologists in Breast Cancer Surgery: Functional Outcomes and Benefits. Anticancer Res. 2020, 40, 2231–2238. [Google Scholar] [CrossRef]
- Costa, F.; Strumia, A.; Remore, L.M.; Pascarella, G.; Del Buono, R.; Tedesco, M.; Sepolvere, G.; Scimia, P.; Fusco, P. Breast surgery analgesia: Another perspective for PROSPECT guidelines. Anaesthesia 2020, 75, 1404–1405. [Google Scholar] [CrossRef]
- Fabio, C.; Giuseppe, P.; Chiara, P.; Antongiulio, V.; Enrico, D.S.; Filippo, R.; Federica, B.; Eugenio, A.F. Sufentanil sublingual tablet system (Zalviso(®)) as an effective analgesic option after thoracic surgery: An observational study. Saudi J. Anaesth. 2019, 13, 222–226. [Google Scholar] [CrossRef]
- Zhang, J.; Ho, K.Y.; Wang, Y. Efficacy of pregabalin in acute postoperative pain: A meta-analysis. Br. J. Anaesth. 2011, 106, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Engelman, E.; Cateloy, F. Efficacy and safety of perioperative pregabalin for post-operative pain: A meta-analysis of randomized-controlled trials. Acta Anaesthesiol. Scand. 2011, 55, 927–943. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, X. Effect of pre-emptive pregabalin on pain management in patients undergoing laparoscopic cholecystectomy: A systematic review and meta-analysis. Int. J. Surg. 2017, 44, 122–127. [Google Scholar] [CrossRef]
- Dong, J.; Li, W.; Wang, Y. The effect of pregabalin on acute postoperative pain in patients undergoing total knee arthroplasty: A meta-analysis. Int. J. Surg. 2016, 34, 148–160. [Google Scholar] [CrossRef]
- Chang, C.C.; Yen, W.T.; Lin, Y.T.; Wang, L.K.; Hung, K.C.; Wu, Z.F.; Chen, J.Y. Perioperative Pregabalin for Preventive Analgesia in Breast Cancer Surgery: A Meta-analysis of Randomized Controlled Trials. Clin. J. Pain 2020, 36, 968–977. [Google Scholar] [CrossRef]
- Rai, A.S.; Khan, J.S.; Dhaliwal, J.; Busse, J.W.; Choi, S.; Devereaux, P.J.; Clarke, H. Preoperative pregabalin or gabapentin for acute and chronic postoperative pain among patients undergoing breast cancer surgery: A systematic review and meta-analysis of randomized controlled trials. J. Plast. Reconstr. Aesthet. Surg. 2017, 70, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Verret, M.; Lauzier, F.; Zarychanski, R.; Perron, C.; Savard, X.; Pinard, A.M.; Leblanc, G.; Cossi, M.J.; Neveu, X.; Turgeon, A.F. Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain: A Systematic Review and Meta-analysis. Anesthesiology 2020, 133, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.B.; Goudas, L.C. Acute pain. Lancet 1999, 353, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Durkin, B.; Page, C.; Glass, P. Pregabalin for the treatment of postsurgical pain. Expert. Opin. Pharmacother. 2010, 11, 2751–2758. [Google Scholar] [CrossRef] [PubMed]
- Ben-Menachem, E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 2004, 45 (Suppl. 6), 13–18. [Google Scholar] [CrossRef]
Authors (Year) | Cancer Types | Surgical Site | Surgical Approach (Anesthesia Methods) | Groups (N): Treatment | Number of Interventions | Rescue Analgesia | Outcomes | |
---|---|---|---|---|---|---|---|---|
Intervention | Control | |||||||
Earsakul (2017) [27] | Breast cancer | Thorax | MRM or mastectomy with ALND (GA) | Pregabalin (16): 75 mg PO | Control (14): placebo PO | Single | Morphine PCA | (1) Resting and dynamic pain severity scores (2) Cumulative morphine equivalent consumption (3) Postoperative adverse effects and complications |
Ghoneim et al. (2013) [28] | Bladder cancer | Abdomen | Radical cystectomy with urinary diversion (GA) | Pregabalin (30): 75 mg PO | Control (30): no intervention | Multiple | MorphinePCA + Paracetamol IV | (1) Resting and dynamic pain severity scores (2) Time to first rescue analgesia (3) Cumulative morphine equivalent consumption (4) Postoperative adverse effects and complications |
Hetta et al. (2016) [29] | Breast cancer | Thorax | MRM (GA) | Pregabalin (28): 75 mg PO Pregabalin (27): 150 mg PO Pregabalin (26): 300 mg PO | Control (30): placebo PO | Single | Morphine PCA | (1) Resting and dynamic pain severity scores (2) Cumulative morphine equivalent consumption (3) Postoperative adverse effects and complications |
Lamsal et al. (2019) [30] | Supratentorial tumor | Head | Supratentorial craniotomy (GA) | Pregabalin (18): 75 mg PO Pregabalin (19): 150 mg PO | Control (18): placebo PO | Single | Fentanyl PCA | (1) Resting pain severity scores (2) Cumulative fentanyl equivalent consumption (3) Postoperative adverse effects and complications |
Mahran et al. (2015) [31] | Breast cancer | Thorax | MRM (GA) | Pregabalin (30): 150 mg PO | Control (30): placebo PO | Single | Morphine PCA | (1) Resting and dynamic pain severity scores (2) Cumulative morphine equivalent consumption (3) Postoperative adverse effects and complications |
Mansor et al. (2015) [32] | Breast cancer | Thorax | Mastectomy (GA+LA) | Pregabalin (25): 150 mg PO | Control (24): placebo PO | Single | Tramadol IV + Etoricoxib and Paracetamol PO | (1) Resting and dynamic pain severity scores (2) Postoperative adverse effects and complications |
Mohamed et al. (2016) [33] | Urinary bladder cancer | Abdomen | Radical cystectomy (GA) | Pregabalin (15): 300 mg PO Pregabalin (15): 600 mg PO | Control (15): placebo PO | Single | Morphine PCA | (1) Resting pain severity scores (2) Cumulative morphine equivalent consumption (3) Time to first rescue analgesia (4) Hemodynamic parameters (5) Postoperative adverse effects and complications |
Patel et al. (2016) [34] | Gynecological malignancies | Abdomen | Abdominal hysterectomy and bilateral salphyngo—oophorectomy (GA) | Pregabalin (30): 150 mg PO Pregabalin (30): 300 mg PO | Control (30): placebo PO | Single | Morphine IM | (1) Resting and dynamic pain severity scores (2) Time to first rescue analgesia (3) Cumulative morphine equivalent consumption (4) Hemodynamic parameters (5) Postoperative adverse effects and complications |
SK et al. (2016) [47] | Breast cancer | Thorax | MRM (GA) | Pregabalin (40): 150 mg PO | Control (40): placebo PO | Single | Morphine IV | (1) Resting pain severity scores (2) Cumulative morphine equivalent consumption (3) Postoperative adverse effects and complications |
Pushkarna et al. (2022) [48] | Breast cancer | Thorax | BCCS (GA) | Pregabalin (30): 75 mg PO | Control (30): placebo PO | Single | Morphine PCA + Diclofenac IV | (1) Cumulative morphine equivalent consumption (2) Time to first rescue analgesia (3) Postoperative adverse effects and complications |
Salah et al. (2018) [22] | Lung or pleural cancer | Thorax | Thoracic surgeries (GA) | Pregabalin (30): 300 mg PO | Control (30): placebo PO | Single | Morphine PCA | (1) Resting pain severity scores (2) Cumulative morphine equivalent consumption (3) Postoperative adverse effects and complications |
Zhang et al. (2012) [35] | Breast cancer | Thorax | MRM (GA) | Pregabalin (37): 150 mg PO | Control (38): placebo PO | Single | Morphine IM | (1) Resting pain severity scores (2) Cumulative morphine equivalent consumption (3) Postoperative adverse effects and complications |
Zhang (2016) [36] | Breast cancer | Thorax | MRM (GA) | Pregabalin (45): 150 mg PO | Control (45): placebo PO | Single | Morphine IM | (1) Dynamic pain severity scores (2) Cumulative morphine equivalent consumption |
Outcome | N of Studies | Pregabalin, Mean (SD) or n/N | Control, Mean (SD) or n/N | WMD or RR (95% CI or 97.5% CI) | p Value for Statistical Significance | p Value for Heterogeneity | I2 Test Forheterogeneity | Quality of Evidence (GRADE) |
---|---|---|---|---|---|---|---|---|
Primary indicators Pain scores at 24 h postoperatively (cm) | ||||||||
| 9 | 1.66 (1.23) | 2.09 (1.15) | −0.45 (−0.68 to −0.21) | <0.001 | 0.005 | 63.32% | ⊕⊕◯◯ |
| 7 | 2.53 (1.71) | 2.72 (1.58) | −0.31 (−0.83 to 0.22) | 0.19 | <0.001 | 93.62% | ⊕⊕◯◯ |
Secondary indicators | ||||||||
Resting pain scores postoperatively (cm) | ||||||||
| 2 | 1.97 (1.96) | 4.01 (1.45) | −1.56 (−3.63 to 0.52) | 0.14 | <0.001 | 97% | ⊕⊕⊕◯ |
| 7 | 1.80 (1.39) | 3.56 (4.53) | −1.53 (−2.30 to −0.77) | <0.001 | <0.001 | 97% | ⊕⊕⊕◯ |
| 7 | 2.22 (1.39) | 2.91 (1.16) | −0.53 (−0.98 to −0.08) | 0.02 | <0.001 | 92% | ⊕⊕◯◯ |
| 7 | 2.54 (1.43) | 3.44 (1.62) | −0.87 (−1.58 to −0.16) | 0.02 | <0.001 | 95% | ⊕⊕⊕◯ |
| 4 | 1.86 (1.17) | 2.72 (1.03) | −0.64 (−0.96 to −0.32) | <0.001 | 0.08 | 57% | ⊕⊕◯◯ |
| 8 | 2.76 (1.43) | 3.16 (1.25) | −0.59 (−1.06 to −0.12) | 0.01 | <0.001 | 88% | ⊕⊕◯◯ |
| 3 | 1.41 (1.08) | 2.57 (1.27) | −1.07 (−1.88 to −0.25) | 0.01 | <0.001 | 91% | ⊕⊕◯◯ |
| 2 | 1.47 (1.05) | 2.10 (0.82) | −0.61 (−1.18 to −0.05) | 0.03 | 0.03 | 78% | ⊕⊕◯◯ |
| 2 | 0.73 (0.89) | 0.87 (0.57) | −0.13 (−0.42 to 0.15) | 0.36 | 0.22 | 33% | ⊕⊕⊕◯ |
Dynamic pain scores postoperatively (cm) | ||||||||
| 5 | 2.94 (1.76) | 4.41 (1.90) | −1.16 (−2.22 to −0.11) | 0.03 | <0.001 | 98% | ⊕⊕⊕◯ |
| 4 | 3.04 (1.87) | 3.89 (1.83) | −0.53 (−0.97 to −0.10) | 0.02 | <0.001 | 85% | ⊕⊕◯◯ |
| 5 | 3.37 (2.02) | 4.31 (2.04) | −1.03 (−1.83 to −0.23) | 0.01 | <0.001 | 95% | ⊕⊕⊕◯ |
| 2 | 2.54 (1.19) | 3.19 (1.06) | −0.36 (−0.78 to 0.06) | 0.10 | 0.12 | 59% | ⊕⊕◯◯ |
| 5 | 3.68 (2.07) | 4.82 (1.57) | −0.85 (−1.49 to −0.21) | 0.01 | <0.001 | 90% | ⊕⊕◯◯ |
| 2 | 2.47 (1.16) | 2.97 (0.92) | −0.26 (−0.54 to 0.02) | 0.07 | 0.37 | 0% | ⊕⊕⊕◯ |
| 2 | 1.63 (1.31) | 1.98 (1.34) | −0.31 (−1.17 to 0.54) | 0.47 | 0.13 | 57% | ⊕⊕◯◯ |
Cumulative morphine equivalent consumption (mg) | ||||||||
| 2 | 8.46 (3.48) | 11.36 (4.64) | −1.77 (−6.77 to 3.24) | 0.49 | 0.001 | 90% | ⊕⊕⊕◯ |
| 10 | 14.14 (12.71) | 23.69 (22.17) | −7.45 (−9.30 to −5.60) | <0.001 | <0.001 | 96% | ⊕◯◯◯ |
| 2 | 23.01 (20.73) | 63.70 (48.14) | −29.93 (−81.99 to 22.13) | 0.26 | <0.001 | 97% | ⊕◯◯◯ |
Time to first analgesic request (hours) | ||||||||
| 4 | 5.02 (3.68) | 1.97 (1.50) | 2.28 (0.79 to 3.77) | 0.003 | <0.001 | 100% | ⊕◯◯◯ |
Hemodynamic parameters | ||||||||
Heart rate (beat/min) | ||||||||
| 2 | 84.05 (11.98) | 87.02 (14.80) | −2.81 (−7.71 to 2.08) | 0.26 | 0.79 | 0% | ⊕⊕⊕⊕ |
| 2 | 83.25 (11.08) | 86.06 (15.79) | −2.53 (−7.59 to 2.53) | 0.33 | 0.64 | 0% | ⊕⊕⊕⊕ |
| 2 | 83.20 (10.34) | 87.37 (15.00) | −3.83 (−8.59 to 0.92) | 0.11 | 0.56 | 0% | ⊕⊕⊕⊕ |
| 2 | 82.70 (11.24) | 85.62 (14.45) | −2.73 (−7.44 to 1.98) | 0.26 | 0.74 | 0% | ⊕⊕⊕⊕ |
SBP (mm/Hg) | ||||||||
| 2 | 105.62 (25.56) | 116.33 (24.64) | −9.14 (−19.88 to 1.59) | 0.10 | 0.15 | 51% | ⊕⊕⊕◯ |
| 2 | 122.31 (12.56) | 123.96 (12.74) | −1.79 (−6.31 to 2.72) | 0.44 | 0.65 | 0% | ⊕⊕⊕⊕ |
| 2 | 127.13 (15.10) | 122.98 (12.46) | 3.31 (−5.59 to 12.22) | 0.47 | 0.09 | 66% | ⊕⊕⊕◯ |
| 2 | 114.70 (15.68) | 114.50 (14.23) | 0.25 (−4.59 to 5.08) | 0.92 | 0.52 | 0% | ⊕⊕⊕⊕ |
DBP (mm/Hg) | ||||||||
| 2 | 76.03 (10.58) | 76.33 (11.22) | −0.13 (−4.06 to 3.81) | 0.95 | 0.29 | 9% | ⊕⊕⊕⊕ |
| 2 | 78.51 (10.85) | 80.82 (9.93) | −2.26 (−5.45 to 0.93) | 0.16 | 0.73 | 0% | ⊕⊕⊕⊕ |
| 2 | 82.70 (12.09) | 79.18 (10.32) | 1.99 (−8.60 to 12.58) | 0.71 | 0.004 | 88% | ⊕⊕⊕◯ |
| 2 | 73.93 (10.34) | 74.59 (9.78) | −1.55 (−6.59 to 3.50) | 0.55 | 0.13 | 57% | ⊕⊕⊕◯ |
The safety indicators | ||||||||
| ||||||||
Dizziness | 7 | 70/293 | 18/197 | 2.81 (1.75 to 4.53) | <0.001 | 0.47 | 0% | ⊕⊕⊕◯ |
Visual disturbance | 6 | 43/256 | 6/159 | 3.04 (1.37 to 6.73) | 0.006 | 0.64 | 0% | ⊕⊕⊕◯ |
Pruritus | 4 | 0/127 | 4/93 | 0.14 (0.02 to 1.02) | 0.05 | 0.49 | 0% | ⊕⊕⊕◯ |
Headache | 4 | 33/196 | 11/99 | 1.71 (0.88 to 3.31) | 0.25 | 0.11 | 26% | ⊕⊕⊕⊕ |
Sedation score at 12 h | 3 | 1.35 (1.00) | 1.18 (0.87) | 0.35 (0.15 to 0.55) | <0.001 | N/A | N/A | ⊕⊕⊕⊕ |
Sedation score at 24 h | 3 | 1.21 (1.07) | 0.99 (0.92) | 0.50 (0.15 to 0.86) | 0.006 | 0.13 | 57% | ⊕⊕⊕◯ |
| ||||||||
PONV | 10 | 86/393 | 103/277 | 0.59 (0.39 to 0.87) | 0.008 | 0.01 | 60% | ⊕⊕◯◯ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Dong, J.; Ye, X.; Ren, Y.-F. A Meta-Analysis Showing the Quantitative Evidence Base of Preemptive Pregabalin for Postoperative Pain from Cancer-Related Surgery. Medicina 2023, 59, 280. https://doi.org/10.3390/medicina59020280
Wang Q, Dong J, Ye X, Ren Y-F. A Meta-Analysis Showing the Quantitative Evidence Base of Preemptive Pregabalin for Postoperative Pain from Cancer-Related Surgery. Medicina. 2023; 59(2):280. https://doi.org/10.3390/medicina59020280
Chicago/Turabian StyleWang, Qian, Jing Dong, Xin Ye, and Yi-Feng Ren. 2023. "A Meta-Analysis Showing the Quantitative Evidence Base of Preemptive Pregabalin for Postoperative Pain from Cancer-Related Surgery" Medicina 59, no. 2: 280. https://doi.org/10.3390/medicina59020280
APA StyleWang, Q., Dong, J., Ye, X., & Ren, Y.-F. (2023). A Meta-Analysis Showing the Quantitative Evidence Base of Preemptive Pregabalin for Postoperative Pain from Cancer-Related Surgery. Medicina, 59(2), 280. https://doi.org/10.3390/medicina59020280