The Enhanced Effects of Swimming and Running Preconditioning in an Experimental Model of Myocardial Ischemia/Reperfusion Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Concerns
2.2. Experimental Animals
- CTRL group—a sedentary control group of rats that were not exposed to physical training;
- sAeT—a group that underwent aerobic swimming conditioning using a swimming protocol for 8 weeks;
- sAnT—a group that underwent anaerobic swimming conditioning for 8 weeks;
- rAeT—a group that underwent aerobic running conditioning using a running protocol for 8 weeks;
- rAnT—a group that underwent anaerobic running conditioning using a running protocol for 8 weeks.
2.3. Aerobic and Anaerobic Swimming Protocol
2.4. Swimming Pool for Experimental Animals
2.5. Aerobic and Anaerobic Running Protocol
2.6. Treadmill for Small Experimental Animals
2.7. Ex Vivo Estimating Myocardical Function of Wistar Rats
- Maximum rate of pressure development in LV (dp/dt max);
- Minimum rates of pressure development in LV (dp/dt min);
- Systolic left ventricle pressure (SLVP);
- Diastolic left ventricle pressure (DLVP);
- Heart rate (HR);
- Coronary flow (CF) was measured flowmetrically.
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Swimming vs. Running: The Effects on Heart Function and Cardiovascular Health
4.2. Aerobic vs. Anaerobic Exercise: The Effects on Heart Function and Cardiovascular Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016, 113, 600–609. [Google Scholar] [CrossRef]
- Nowbar, A.N.; Gitto, M.; Howard, J.P.; Francis, D.P.; Al-Lamee, R. Mortality From Ischemic Heart Disease. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005375. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.W.; Starling, E.H. On the mechanical factors which determine the output of the ventricles. J. Physiol. 1914, 48, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Pahavani, H.; Rajabi, H.; Nabiuni, M.; Motamedi, P.; Khaledi, N.; Tayanloo, A. The Effect of Aerobic Exercise with Medium and High Intensity on the Gene Expression of Bax (BCL2 Associated X) and Bcl-2 (B-Cell Lymphoma 2) Markers in Rat Myocard After Ischemic-Reperfusion. Sport Physiol. 2020, 12, 31–44. [Google Scholar]
- Von Harsdorf, R.; Li, P.F.; Dietz, R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999, 99, 2934–2941. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, H.; Gao, J.; Liu, Y.; Li, J.; Wang, J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell Cardiol. 2019, 136, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Liu, Y.; Cheng, Z. Signaling Pathways in Cardiac Myocyte Apoptosis. BioMed Res. Int. 2016, 2016, 9583268. [Google Scholar] [CrossRef]
- Ishida, T.; Yarimizu, K.; Gute, D.C.; Korthuis, R.J. Mechanisms of ischemic preconditioning. Shock 1997, 8, 86–94. [Google Scholar] [CrossRef]
- Gross, E.R.; Gross, G.J. Ischemic Preconditioning And Myocardial Infarction: An Update and Perspective. Drug Discov. Today Dis. Mech. 2007, 4, 165–174. [Google Scholar] [CrossRef]
- Wang, H.; Xie, Y.; Guan, L.; Elkin, K.; Xiao, J. Targets identified from exercised heart: Killing multiple birds with one stone. Npj Regen. Med. 2021, 6, 23. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Li, W.A.; Ding, Y. Cardiac preconditioning and cardiovascular diseases. Heart Mind 2017, 1, 17–21. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Yang, A.-L.; Lin, Y.-M.; Wu, F.-N.; Lin, J.A.; Chan, Y.-S.; Tsai, F.-J.; Tsai, C.-H.; Kuo, C.-H.; Lee, S.-D.; et al. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J. Appl. Physiol. 2012, 112, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sun, Y.; Tan, Y.; Zhang, Z.; Hou, Z.; Gao, C.; Feng, P.; Zhang, X.; Yi, W.; Gao, F. Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxid. Med. Cell. Longev. 2018, 2018, 4079041. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, J.H. Aerobic exercise and endurance: Improving fitness for health benefits. Phys. Sportsmed. 2003, 31, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Khot, U.N.; Khot, M.B.; Bajzer, C.T.; Sapp, S.K.; Ohman, E.M.; Brener, S.J.; Ellis, S.G.; Lincoff, A.M.; Topol, E.J. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003, 290, 898–904. [Google Scholar] [CrossRef]
- Gul, M.; Demircan, B.; Taysi, S.; Oztasan, N.; Gumustekin, K.; Siktar, E.; Polat, M.F.; Akar, S.; Akcay, F.; Dane, S. Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 143, 239–245. [Google Scholar] [CrossRef]
- Bowles, D.K.; Farrar, R.P.; Starnes, J.W. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am. J. Physiol. 1992, 263, H804–H809. [Google Scholar] [CrossRef]
- Liu, J.; Yeo, H.C.; Overvik-Douki, E.; Hagen, T.; Doniger, S.J.; Chyu, D.W.; Brooks, G.A.; Ames, B.N. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J. Appl. Physiol. 2002, 92, 34–43. [Google Scholar] [CrossRef]
- Yilmaz, N. Relationship between paraoxonase and homocysteine: Crossroads of oxidative diseases. Arch. Med. Sci. 2012, 8, 138–153. [Google Scholar] [CrossRef]
- Augustyniak, A.; Skrzydlewska, E. Zdolności antyoksydacyjne w starzejacym sie organizmie [Antioxidative abilities during aging]. Postepy Hig. Med. Dosw. 2004, 58, 194–201. [Google Scholar]
- Lubkowska, A.; Dołęgowska, B.; Szyguła, Z. Whole-body cryostimulation–potential beneficial treatment for improving antioxidant capacity in healthy men–significance of the number of sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef]
- Freimann, S.; Scheinowitz, M.; Yekutieli, D.; Feinberg, M.S.; Eldar, M.; Kessler-Icekson, G. Prior exercise training improves the outcome of acute myocardial infarction in the rat. Heart structure, function, and gene expression. J. Am. Coll. Cardiol. 2005, 45, 931–938. [Google Scholar] [CrossRef]
- Plecevic, S.; Jakovljevic, B.; Savic, M.; Zivkovic, V.; Nikolic, T.; Jeremic, J.; Milosavljevic, I.; Srejovic, I.; Tasic, N.; Djuric, D.; et al. Comparison of short-term and medium-term swimming training on cardiodynamics and coronary flow in high salt-induced hypertensive and normotensive rats. Mol. Cell Biochem. 2018, 447, 33–45. [Google Scholar] [CrossRef]
- Döring, H.J. The isolated perfused heart according to Langendorff technique--function--application. Physiol. Bohemoslov. 1990, 39, 481–504. [Google Scholar] [PubMed]
- Available online: https://www.oecd.org/chemicalsafety/testing/good-laboratory-practiceglp.htm (accessed on 21 October 2023).
- Godoy, G.; Travassos, P.B.; Antunes, M.M.; Iwanaga, C.C.; Sá-Nakanishi, A.B.; Curi, R.; Comar, J.F.; Bazotte, R.B. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats. Braz. J. Med. Biol. Res. 2022, 55, e11891. [Google Scholar] [CrossRef]
- Prokic, V.; Plecevic, S.; Bradic, J.; Petkovic, A.; Srejovic, I.; Bolevich, S.; Jeremic, J.; Bolevich, S.; Jakovljevic, V.; Zivkovic, V. The impact of nine weeks swimming exercise on heart function in hypertensive and normotensive rats: Role of cardiac oxidative stress. J. Sports Med. Phys. Fit. 2019, 59, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, T.; Zivkovic, V.; Jevdjevic, M.; Djuric, M.; Srejovic, I.; Djuric, D.; Jeremic, N.; Djuric, D.; Bolevich, S.; Jakovljevic, V. The effects of chronic administration of nandrolone decanoate on redox status in exercised rats. Mol. Cell Biochem. 2016, 411, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Rankovic, M.; Jakovljevic, V.; Bradic, J.; Jakovljevic, B.; Zivkovic, V.; Srejovic, I.; Bolevich, S.; Milosavljevic, I.; Jeremic, J.; Ravic, M.; et al. Effects of High Intensity Interval vs. Endurance Training on Cardiac Parameters in Ischemia/Reperfusion of Male Rats: Focus. on Oxidative Stress. Front. Physiol. 2021, 12, 534127. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, H.G. The Isolated Perfused Heart and Its Pioneers. News Physiol. Sci. 1998, 13, 203–210. [Google Scholar] [CrossRef]
- Hastings, M.H.; Herrera, J.J.; Guseh, J.S.; Atlason, B.; Houstis, N.E.; Kadir, A.A.; Li, H.; Sheffield, C.; Singh, A.P.; Roh, J.D.; et al. Animal Models of Exercise From Rodents to Pythons. Circ. Res. 2022, 130, 1994–2014. [Google Scholar] [CrossRef] [PubMed]
- Serra, L.; Petrosini, L.; Mandolesi, L.; Bonarota, S.; Balsamo, F.; Bozzali, M.; Caltagirone, C.; Gelfo, F. Walking, Running, Swimming: An Analysis of the Effects of Land and Water Aerobic Exercises on Cognitive Functions and Neural Substrates. Int. J. Environ. Res. Public Health 2022, 19, 16310. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Olson, T.P.; Lam, C.S.; Flood, K.S.; Lerman, A.; Johnson, B.D.; Redfield, M.M. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2010, 56, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; De Biase, N.; Conte, L.; Gargani, L.; Mazzola, M.; Fabiani, I.; Natali, A.; Dini, F.L.; Frumento, P.; Rosada, J.; et al. Cardiac reserve and exercise capacity: Insights from combined cardiopulmonary and exercise echocardiography stress testing. J. Am. Soc. Echocardiogr. 2021, 34, 38–50. [Google Scholar] [CrossRef]
- Portier, H.; Benaitreau, D.; Pallu, S. Does Physical Exercise Always Improve Bone Quality in Rats? Life 2020, 10, 217. [Google Scholar] [CrossRef]
- Zhou, Q.; Deng, J.; Yao, J.; Song, J.; Meng, D.; Zhu, Y.; Xu, M.; Liang, Y.; Xu, J.; Sluijter, J.P.; et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine 2021, 74, 103713. [Google Scholar] [CrossRef]
- Baptista, S.; Piloto, N.; Reis, F.; Teixeira-de-Lemos, E.; Garrido, A.P.; Dias, A.; Lourenço, M.; Palmeiro, A.; Ferrer-Antunes, C.; Teixeira, F. Treadmill running and swimming imposes distinct cardiovascular physiological adaptations in the rat: Focus on serotonergic and sympathetic nervous systems modulation. Acta Physiol. Hung. 2008, 95, 365–381. [Google Scholar] [CrossRef]
- Geenen, D.; Buttrick, P.; Scheuer, J. Cardiovascular and hormonal responses to swimming and running in the rat. J. Appl. Physiol. 1988, 65, 116–123. [Google Scholar] [CrossRef]
- Thu, V.T.; Kim, H.K.; Han, J. Acute and Chronic Exercise in Animal Models. Adv. Exp. Med. Biol. 2017, 999, 55–71. [Google Scholar]
- Kelly, S.A.; Rezende, E.L.; Chappell, M.A.; Gomes, F.R.; Kolb, E.M.; Malisch, J.L.; Rhodes, J.S.; Mitchell, G.S.; Garland, T., Jr. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running. Exp. Physiol. 2014, 99, 403–413. [Google Scholar] [CrossRef]
- Kent, J.A.; Ørtenblad, N.; Hogan, M.C.; Poole, D.C.; Musch, T.I. No muscle is an island: Integrative perspectives on muscle fatigue. Med. Sci. Sports Exerc. 2016, 48, 2281–2293. [Google Scholar] [CrossRef] [PubMed]
- Börzsei, D.; Szabó, R.; Hoffmann, A.; Harmath, A.; Sebestyén, J.; Osman, J.; Juhász, B.; Priksz, D.; Varga, C.; Pósa, A. Multiple Applications of Different Exercise Modalities with Rodents. Oxid. Med. Cell. Longev. 2021, 2021, 3898710. [Google Scholar] [CrossRef] [PubMed]
Group | sAeT | sAnT | rAeT | rAnT | p-Value |
---|---|---|---|---|---|
R1 | 35.80 | 44.93 | 39.20 | −22.57 | p < 0.05 a–f |
R5 | 6.63 | 14.35 | 2.23 | −17.02 | p < 0.05 a–f |
R10 | 14.17 | 26.53 | 58.28 | 3.65 | p < 0.05 a–f |
R15 | 30.48 | 36.90 | 83.96 | 15.03 | p < 0.05 a–f |
R20 | 11.45 | 41.99 | 113.00 | 28.43 | p < 0.05 a–f |
R25 | 18.32 | 48.58 | 131.00 | 4.58 | p < 0.05 a–f |
R30 | 21.92 | 58.36 | 161.28 | 9.15 | p < 0.05 a–f |
Group | sAeT | sAnT | rAeT | rAnT | p-Value |
---|---|---|---|---|---|
R1 | −23.14 | −39.30 | −5.03 | −45.67 | p < 0.05 a–f |
R5 | 1.34 | −7.72 | −11.16 | −27.95 | p < 0.05 a–f |
R10 | 11.41 | 16.83 | 62.03 | −10.82 | p < 0.05 a–f |
R15 | 20.89 | 29.56 | 88.47 | −16.69 | p < 0.05 a–f |
R20 | −1.75 | 31.86 | 127.31 | −2.09 | p < 0.05 a–f |
R25 | −3.26 | 32.35 | 115.90 | −8.57 | p < 0.05 a–f |
R30 | −4.07 | 28.41 | 147.36 | −34.50 | p < 0.05 a–f |
Group | sAeT | sAnT | rAeT | rAnT | p-Value |
---|---|---|---|---|---|
R1 | 12.23 | 18.26 | 107.15 | −19.61 | p < 0.05 a–f |
R5 | 3.66 | 2.68 | 4.87 | −1.66 | p > 0.05 |
R10 | 4.75 | 19.73 | 43.67 | 12.52 | p > 0.05 |
R15 | 39.11 | 22.75 | 62.49 | −0.54 | p < 0.05 a–f |
R20 | −14.81 | 24.50 | 72.93 | 9.91 | p < 0.05 a–f |
R25 | −18.12 | 24.05 | 72.93 | −11.90 | p < 0.05 a–f |
R30 | −19.11 | 19.38 | 80.38 | −20.30 | p < 0.05 a–e |
Group | aAeT | sAnT | rAeT | rAnT | p-Value |
---|---|---|---|---|---|
R1 | −59.31 | 8.14 | 160.87 | −23.88 | p < 0.05 a–f |
R5 | −46.90 | 5.16 | 137.50 | 6.34 | p < 0.05 a–d |
R10 | 381.38 | −4.47 | 141.85 | 28.90 | p < 0.05 a–f |
R15 | −62.76 | −6.77 | 154.35 | 9.55 | p < 0.05 a–f |
R20 | −66.90 | −11.35 | 139.67 | 16.91 | p < 0.05 a–f |
R25 | −48.28 | −13.88 | 100.54 | −5.64 | p < 0.05 a–f |
R30 | −47.59 | −18.92 | 113.04 | −12.61 | p < 0.05 a–f |
Group | aAeT | sAnT | rAeT | rAnT | p-Value |
---|---|---|---|---|---|
R1 | −9.13 | −12.47 | −23.55 | −52.97 | p < 0.05 d,e,f |
R5 | −5.03 | −6.32 | 16.24 | −7.75 | p < 0.05 e |
R10 | 0.47 | −15.07 | 4.51 | −28.41 | p < 0.05 a–f |
R15 | −8.74 | −18.20 | 0.20 | −17.09 | p < 0.05 a–f |
R20 | −0.46 | −20.83 | 1.12 | −1.22 | p < 0.05 a |
R25 | 0.47 | −18.53 | 4.01 | 1.88 | p < 0.05 a,b,e |
R30 | 1.67 | −12.47 | 2.31 | 7.84 | p < 0.05 a,b,e |
Group | aAeT | sAnT | rAeT | rAnT | p-Value |
---|---|---|---|---|---|
R1 | −8.33 | −14.89 | 14.29 | −12.07 | p < 0.05 b,e |
R5 | 10.00 | −4.26 | 11.43 | −6.90 | p < 0.05 b,e |
R10 | 16.67 | −4.26 | −30.00 | 0.00 | p < 0.05 b,e |
R15 | 20.00 | −12.77 | −28.57 | 3.45 | p < 0.05 b,e |
R20 | −6.67 | −10.64 | −35.71 | 3.45 | p < 0.05 b,d |
R25 | −8.33 | −10.64 | −28.54 | 3.41 | p < 0.05 b,d |
R30 | −6.67 | −4.26 | −28.57 | 3.39 | p < 0.05 b,d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glisic, M.; Nikolic Turnic, T.; Zivkovic, V.; Pindovic, B.; Chichkova, N.V.; Fisenko, V.P.; Nikolic, M.; Stijak, L.; Yurievna, L.E.; Veselinovic, M.; et al. The Enhanced Effects of Swimming and Running Preconditioning in an Experimental Model of Myocardial Ischemia/Reperfusion Injury. Medicina 2023, 59, 1995. https://doi.org/10.3390/medicina59111995
Glisic M, Nikolic Turnic T, Zivkovic V, Pindovic B, Chichkova NV, Fisenko VP, Nikolic M, Stijak L, Yurievna LE, Veselinovic M, et al. The Enhanced Effects of Swimming and Running Preconditioning in an Experimental Model of Myocardial Ischemia/Reperfusion Injury. Medicina. 2023; 59(11):1995. https://doi.org/10.3390/medicina59111995
Chicago/Turabian StyleGlisic, Milos, Tamara Nikolic Turnic, Vladimir Zivkovic, Bozidar Pindovic, Natalia Vasilievna Chichkova, Vladimir Petrovich Fisenko, Marina Nikolic, Lazar Stijak, Lemina Elena Yurievna, Mirjana Veselinovic, and et al. 2023. "The Enhanced Effects of Swimming and Running Preconditioning in an Experimental Model of Myocardial Ischemia/Reperfusion Injury" Medicina 59, no. 11: 1995. https://doi.org/10.3390/medicina59111995
APA StyleGlisic, M., Nikolic Turnic, T., Zivkovic, V., Pindovic, B., Chichkova, N. V., Fisenko, V. P., Nikolic, M., Stijak, L., Yurievna, L. E., Veselinovic, M., Jovicic, M., Mihajlovic, K., Bolevich, S., & Jakovljevic, V. (2023). The Enhanced Effects of Swimming and Running Preconditioning in an Experimental Model of Myocardial Ischemia/Reperfusion Injury. Medicina, 59(11), 1995. https://doi.org/10.3390/medicina59111995