Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report
Abstract
1. Introduction
2. Detailed Case Description
2.1. Timeline
2.2. Diagnostic Assessment
Manual Dexterity Tests
2.3. Technical Design
2.4. Results of Manual Dexterity Tests
3. Discussion
“The tactile feedback is a great help to me. I no longer have to constantly check whether I’m holding something with the prosthesis. In my spare time, I love building nest boxes for birds. FEELIX makes work processes safer and easier. I also get a better feel for my hands and can work with both hands again”, a summary of doctor’s visits (10/2022).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMU | Control module unit |
JASP | Jeffreys’s Amazing Statistics Program |
FEELIX | Name of the vibrotactile feedback add-on prototype |
FSR | Force sensitive resistor |
LAO | Lightweight Abstract Objects |
SHAP | Southampton Hand Assessment Procedure |
SMU | Sensor module unit |
TMR | Targeted muscle reinnervation |
TSR | Targeted sensory reinnervation |
References
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Dillingham, T.R.; Pezzin, L.E.; Mackenzie, E.J. Limb Amputation and Limb Deficiency: Epidemiology and Recent Trends in the United States. South. Med. J. 2002, 95, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Braza, D.W.; Yacub Martin, J.N. Upper Limb Amputations, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 651–657. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, X.; Wu, Q.; Zheng, Z.; Ying, J.; Zhang, M.N. Explosive eye injuries: Characteristics, traumatic mechanisms, and prognostic factors for poor visual outcomes. Mil. Med. Res. 2023, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Dahmen, G.; Remmele, R. Langzeiterfahrung mit der myoelektrischen Armprothese bei blinden Ohnhändern [Long-term experience with the myoelectrical arm prosthesis for blind hand-amputees]. Rehabilitation 1982, 21, 157–160. [Google Scholar]
- Sukkarieh, G.; Lahoud, C.; Ghorayeb, R.; Abi Karam, M.; Succarieh, Y.; Saleh, M.; Jalkh, A. Characteristics of open eye injuries in the Beirut Port explosion. Injury 2021, 52, 2601–2605. [Google Scholar] [CrossRef]
- Flaxman, A.D.; Wittenborn, J.S.; Robalik, T.; Gulia, R.; Gerzoff, R.B.; Lundeen, E.A.; Saaddine, J.; Rein, D.B. Prevalence of Visual Acuity Loss or Blindness in the US: A Bayesian Meta-analysis. JAMA Ophthalmol. 2021, 139, 717–723. [Google Scholar] [CrossRef]
- Pleis, J.R.; Lucas, J.W.; Ward, B.W. Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2008; Vital and Health Statistics; Series 10, Data from the National Health Survey; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2009; pp. 1–157.
- Carty, M.J.; Bueno, E.; Lehmann, L.S.; Pomahac, B. A position paper in support of hand transplantation in the blind. Plast. Reconstr. Surg. 2011, 128, 510–515. [Google Scholar] [CrossRef]
- Frank, R.P.; Oder, W.; Titze, W. Das Gutachten in der Gesetzlichen Unfallversicherung, 2nd ed.; Manz’sche Verlags- u. Universitätsbuchhandlung: Vienna, Austria, 2021. [Google Scholar]
- Svensson, P.; Wijk, U.; Björkman, A.; Antfolk, C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Devices 2017, 14, 439–447. [Google Scholar] [CrossRef]
- Antfolk, C.; Björkman, A.; Frank, S.; Sebelius, F.; Lundborg, G.; Rosen, B. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J. Rehabil. Med. 2012, 44, 702–707. [Google Scholar] [CrossRef]
- Fallahian, N.; Saeedi, H.; Mokhtarinia, H.; Tabatabai Ghomshe, F. Sensory feedback add-on for upper-limb prostheses. Prosthet. Orthot. Int. 2017, 41, 314–317. [Google Scholar] [CrossRef]
- Antfolk, C.; D’Alonzo, M.; Rosen, B.; Lundborg, G.; Sebelius, F.; Cipriani, C. Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices 2013, 10, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, M.A.; Tan, D.; Sidek, S.M.; Tyler, D.J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 2016, 13, 16001. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, B.T.; Sando, I.C.; Gillespie, R.B.; McLaughlin, B.L.; Gerling, G.J.; Langhals, N.B.; Urbanchek, M.G.; Cederna, P.S. Providing a Sense of Touch to Prosthetic Hands. Plast. Reconstr. Surg. 2015, 135, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Gardetto, A.; Baur, E.M.; Prahm, C.; Smekal, V.; Jeschke, J.; Peternell, G.; Pedrini, M.T.; Kolbenschlag, J. Reduction of phantom limb pain and improved proprioception through a TSR-based surgical technique: A case series of four patients with lower limb amputation. J. Clin. Med. 2021, 10, 4029. [Google Scholar] [CrossRef] [PubMed]
- Kerver, N.; Schuurmans, V.; van der Sluis, C.K.; Bongers, R.M. The multi-grip and standard myoelectric hand prosthesis compared: Does the multi-grip hand live up to its promise? J. Neuroeng. Rehabil. 2023, 20, 22. [Google Scholar] [CrossRef]
- Sensinger, J.W.; Dosen, S. A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Front. Neurosci. 2020, 14, 345. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.J.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.P.; Huang, H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.C.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Granata, G.; Vecchio, F.; Miraglia, F.; Raspopovic, S.; Petrini, F.M.; Micera, S.; Rossini, P.M. Sensory feedback generated by intraneural electrical stimulation of peripheral nerves drives cortical reorganization and relieves phantom limb pain: A case study. Clin. Neurophysiol. 2016, 127, e63. [Google Scholar] [CrossRef]
- Raspopovic, S.; Valle, G.; Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 2021, 20, 925–939. [Google Scholar] [CrossRef]
- Ghafoor, U.; Kim, S.; Hong, K.S. Selectivity and longevity of peripheral-nerve and machine interfaces: A review. Front. Neurorobot. 2017, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Chen, O.; Edmunds, J.L.; Piech, D.K.; Maharbiz, M.M. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat. Biomed. Eng. 2023, 7, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Walter-Walsh, K.; Preißler, S.; Hofmann, G.O.; Witte, O.W.; Miltner, W.H.R.; Weiss, T. Sensory feedback prosthesis reduces phantom limb pain: Proof of a principle. Neurosci. Lett. 2012, 507, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Hermansson, L.M.; Fisher, A.G.; Bernspång, B.; Eliasson, A.C. Assessmet of Capacity for Myoelectric Control: A new Rasch-built measure of prosthetic hand control. J. Rehabil. Med. 2005, 37, 166–171. [Google Scholar] [CrossRef][Green Version]
- Lewis, S.; Russold, M.F.; Dietl, H.; Kaniusas, E. User demands for sensory feedback in upper extremity prostheses. In Proceedings of the 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, Budapest, Hungary, 18–19 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Diers, M.; Flor, H. Phantomschmerz. Der Schmerz 2013, 27, 205–213. [Google Scholar] [CrossRef]
- Dietrich, C.; Nehrdich, S.; Seifert, S.; Blume, K.R.; Miltner, W.H.R.; Hofmann, G.O.; Weiss, T. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front. Neurol. 2018, 9, 270. [Google Scholar] [CrossRef]
- Flor, H. Phantom-limb pain: Characteristics, causes, and treatment. Lancet Neurol. 2002, 1, 182–189. [Google Scholar] [CrossRef]
- Penasso, H.; Petersen, F.; Peternell, G. Vascular and Neural Response to Focal Vibration, Sensory Feedback, and Piezo Ion Channel Signaling. J. Vasc. Dis. 2023, 2, 42–90. [Google Scholar] [CrossRef]
- Björkman, A.; Wijk, U.; Antfolk, C.; Björkman-Burtscher, I.; Rosén, B. Sensory qualities of the phantom hand map in the residual forearm of amputees. J. Rehabil. Med. 2016, 48, 365–370. [Google Scholar] [CrossRef]
- Spitzer, M. Phantom Limbs, Self-Organizing Feature Maps, and Noise-Driven Neuroplasticity. In Progress in Neural Processing, 6th ed.; World Scientific: Singapore, 1996; pp. 273–282. [Google Scholar] [CrossRef]
- Valle, G.; Preatoni, G.; Raspopovic, S. Connecting Residual Nervous System and Prosthetic Legs for Sensorimotor and Cognitive Rehabilitation; Academic Press: Cambridge, UK, 2021; pp. 293–320. [Google Scholar] [CrossRef]
- Wijk, U.; Svensson, P.; Antfolk, C.; Carlsson, I.K.; Björkman, A.; Rosén, B. Touch on predefined areas on the forearm can be associated with specific fingers: Towards a new principle for sensory feedback in hand prostheses. J. Rehabil. Med. 2019, 51, 209–216. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Marasco, P.D.; Lock, B.A.; Harden, R.N.; Dewald, J.P.A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl. Acad. Sci. USA 2007, 104, 20061–20066. [Google Scholar] [CrossRef] [PubMed]
- Pardo, L.A.; Markovic, M.; Schilling, A.F.; Wilke, M.A.; Ernst, J. Vibrotactile mapping of the upper extremity: Absolute perceived intensity is location-dependent; perception of relative changes is not. Front. Neurosci. 2022, 16, 958415. [Google Scholar] [CrossRef] [PubMed]
- Antfolk, C.; D’Alonzo, M.; Controzzi, M.; Lundborg, G.; Rosen, B.; Sebelius, F.; Cipriani, C. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 112–120. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Vasluian, E.; Bongers, R.; Reinders-Messelink, H.; Burgerhof, J.; Dijkstra, P.; Sluis, C. Learning effects of repetitive administration of the Southampton Hand Assessment Procedure in novice prosthetic users. J. Rehabil. Med. 2014, 46, 788–797. [Google Scholar] [CrossRef][Green Version]
- Kyberd, P.J.; Murgia, A.; Gasson, M.; Tjerks, T.; Metcalf, C.; Chappell, P.H.; Warwick, K.; Lawson, S.E.M.; Barnhill, T. Case studies to demonstrate the range of applications of the Southampton Hand Assessment Procedure. Br. J. Occup. Ther. 2009, 72, 212–218. [Google Scholar] [CrossRef]
- Desrosiers, J.; Bravo, G.; Hébert, R.; Dutil, E.; Mercier, L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 1994, 75, 751–755. [Google Scholar] [CrossRef]
- George, J.A.; Kluger, D.T.; Davis, T.S.; Wendelken, S.M.; Okorokova, E.V.; He, Q.; Duncan, C.C.; Hutchinson, D.T.; Thumser, Z.C.; Beckler, D.T.; et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 2019, 4, eaax2352. [Google Scholar] [CrossRef]
- Light, C.M.; Chappell, P.H.; Kyberd, P.J. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch. Phys. Med. Rehabil. 2002, 83, 776–783. [Google Scholar] [CrossRef]
- Resnik, L.; Borgia, M.; Cancio, J.M.; Delikat, J.; Ni, P. Psychometric evaluation of the Southampton hand assessment procedure (SHAP) in a sample of upper limb prosthesis users. J. Hand Ther. 2023, 36, 110–120. [Google Scholar] [CrossRef]
- Burgerhof, J.G.M.; Vasluian, E.; Dijkstra, P.U.; Bongers, R.M.; van der Sluis, C.K. The Southampton Hand Assessment Procedure revisited: A transparent linear scoring system, applied to data of experienced prosthetic users. J. Hand Ther. 2017, 30, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Valle, G.; Mazzoni, A.; Iberite, F.; D’Anna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; et al. Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis. Neuron 2018, 100, 37–45.e7. [Google Scholar] [CrossRef] [PubMed]
- Marasco, P.D.; Hebert, J.S.; Sensinger, J.W.; Beckler, D.T.; Thumser, Z.C.; Shehata, A.W.; Williams, H.E.; Wilson, K.R. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. Sci. Robot. 2021, 6, eabf3368. [Google Scholar] [CrossRef]
- Flor, H.; Denke, C.; Schaefer, M.; Grüsser, S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001, 357, 1763–1764. [Google Scholar] [CrossRef]
- Flor, H.; Diers, M.; Andoh, J. The neural basis of phantom limb pain. Trends Cogn. Sci. 2013, 17, 307–308. [Google Scholar] [CrossRef]
- Flor, H.; Nikolajsen, L.; Jensen, T.S. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef]
- Fung, S.J.; Chan, J.Y.H.; Manzoni, D.; White, S.R.; Lai, Y.Y.; Strahlendorf, H.K.; Zhuo, H.; Liu, R.H.; Reddy, V.K.; Barnes, C.D. Cotransmitter-mediated locus coeruleus action on motoneurons. Brain Res. Bull. 1994, 35, 423–432. [Google Scholar] [CrossRef]
- Llorca-Torralba, M.; Borges, G.; Neto, F.; Mico, J.A.; Berrocoso, E. Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016, 338, 93–113. [Google Scholar] [CrossRef]
- Tyler, M.E.; Kaczmarek, K.A.; Rust, K.L.; Subbotin, A.M.; Skinner, K.L.; Danilov, Y.P. Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: A randomized double blind controlled pilot trial. J. Neuroeng. Rehabil. 2014, 11, 79. [Google Scholar] [CrossRef]
- Ernst, M.O.; Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Chesler, A.T.; Szczot, M.; Bharucha-Goebel, D.; Čeko, M.; Donkervoort, S.; Laubacher, C.; Hayes, L.H.; Alter, K.; Zampieri, C.; Stanley, C.; et al. The Role of PIEZO2 in Human Mechanosensation. N. Engl. J. Med. 2016, 375, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Szczot, M.; Liljencrantz, J.; Ghitani, N.; Barik, A.; Lam, R.; Thompson, J.H.; Bharucha-Goebel, D.; Saade, D.; Necaise, A.; Donkervoort, S.; et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med. 2018, 10, eaat9892. [Google Scholar] [CrossRef]
- Jarrassé, N.; de Montalivet, E.; Richer, F.; Nicol, C.; Touillet, A.; Martinet, N.; Paysant, J.; de Graaf, J.B. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees without Surgical Reinnervation: A Preliminary Study. Front. Bioeng. Biotechnol. 2018, 6, 164. [Google Scholar] [CrossRef] [PubMed]
Timed Tasks | With (s) | Without (s) |
---|---|---|
Heavy abstract objects | 50.6 | 63.1 |
Light abstract objects | 45.4 | 75.0 |
Activities of daily living 1 | 270.2 | 276.3 |
Activities of daily living 2 | 71.8 | 173.5 |
Overall total time | 437.9 | 587.9 |
Functionality Profile | With (% Healthy Controls) | Without (% Healthy Controls) |
---|---|---|
Spherical | 65 | 43 |
Power | 57 | 34 |
Tip | 18 | 10 |
Tripod | 23 | 12 |
Lateral | 34 | 24 |
Extension | 45 | 47 |
Index of function | 43 | 30 |
With | Without | |||
---|---|---|---|---|
With Unaffected Hand Assist | Without Unaffected Hand Assist | With Unaffected Hand Assist | Without Unaffected Hand Assist | |
Cubes per minute | 11 | 6 | 11 | 4 |
Failed attempts per minute | 0 | 0 | 0 | 8 |
Comments | No checking with the unaffected hand necessary | Exact grasping is evident | Checking with the unaffected hand necessary | No exact grasping |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peternell, G.; Penasso, H.; Luttenberger, H.; Ronacher, H.; Schlintner, R.; Ashcraft, K.; Gardetto, A.; Ernst, J.; Kropiunig, U. Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report. Medicina 2023, 59, 1710. https://doi.org/10.3390/medicina59101710
Peternell G, Penasso H, Luttenberger H, Ronacher H, Schlintner R, Ashcraft K, Gardetto A, Ernst J, Kropiunig U. Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report. Medicina. 2023; 59(10):1710. https://doi.org/10.3390/medicina59101710
Chicago/Turabian StylePeternell, Gerfried, Harald Penasso, Henriette Luttenberger, Hildegard Ronacher, Roman Schlintner, Kara Ashcraft, Alexander Gardetto, Jennifer Ernst, and Ursula Kropiunig. 2023. "Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report" Medicina 59, no. 10: 1710. https://doi.org/10.3390/medicina59101710
APA StylePeternell, G., Penasso, H., Luttenberger, H., Ronacher, H., Schlintner, R., Ashcraft, K., Gardetto, A., Ernst, J., & Kropiunig, U. (2023). Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report. Medicina, 59(10), 1710. https://doi.org/10.3390/medicina59101710