Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Surgical Technique and Rehabilitation
2.3. Radiographic Evaluation
2.4. Clinical Evaluation
2.5. Second-Look Arthroscopy and Graft Evaluation Method
2.6. Statistical Analysis
3. Results
3.1. Radiologic Outcomes
3.2. Clinical Outcomes
3.3. Second-Look Arthroscopic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barrow, A.E.; Pilia, M.; Guda, T.; Kadrmas, W.R.; Burns, T.C. Femoral suspension devices for anterior cruciate ligament reconstruction: Do adjustable loops lengthen? Am. J. Sports Med. 2014, 42, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Mayr, R.; Heinrichs, C.H.; Eichinger, M.; Coppola, C.; Schmoelz, W.; Attal, R. Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: Adjustable-length loop cortical button or interference screw. Am. J. Sports Med. 2015, 43, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Rodeo, S.A.; Kawamura, S.; Kim, H.J.; Dynybil, C.; Ying, L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: An effect of graft-tunnel motion? Am. J. Sports Med. 2006, 34, 1790–1800. [Google Scholar] [CrossRef]
- Lee, D.H.; Son, D.W.; Seo, Y.R.; Lee, I.G. Comparison of femoral tunnel widening after anterior cruciate ligament reconstruction using cortical button fixation versus transfemoral cross-pin fixation: A systematic review and meta-analysis. Knee Surg. Relat. Res. 2020, 32, 11. [Google Scholar] [CrossRef]
- Mayr, R.; Smekal, V.; Koidl, C.; Coppola, C.; Fritz, J.; Rudisch, A.; Kranewitter, C.; Attal, R. Tunnel widening after ACL reconstruction with aperture screw fixation or all-inside reconstruction with suspensory cortical button fixation: Volumetric measurements on CT and MRI scans. Knee 2017, 24, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Medeiros, J.V.; Nunes, G.R.S.; de Oliveira, G.T.; Nicolini, A.P. Tibial-graft fixation methods on anterior cruciate ligament reconstructions: A literature review. Knee Surg. Relat. Res. 2021, 33, 7. [Google Scholar] [CrossRef]
- Noonan, B.C.; Bachmaier, S.; Wijdicks, C.A.; Bedi, A. Intraoperative Preconditioning of Fixed and Adjustable Loop Suspensory Anterior Cruciate Ligament Reconstruction With Tibial Screw Fixation-An In Vitro Biomechanical Evaluation Using a Porcine Model. Arthroscopy 2018, 34, 2668–2674. [Google Scholar] [CrossRef]
- Onggo, J.R.; Nambiar, M.; Pai, V. Fixed- Versus Adjustable-Loop Devices for Femoral Fixation in Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthroscopy 2019, 35, 2484–2498. [Google Scholar] [CrossRef]
- Kamitani, A.; Hara, K.; Arai, Y.; Atsumi, S.; Takahashi, T.; Nakagawa, S.; Fuji, Y.; Inoue, H.; Takahashi, K. Adjustable-Loop Devices Promote Graft Revascularization in the Femoral Tunnel After ACL Reconstruction: Comparison With Fixed-Loop Devices Using Magnetic Resonance Angiography. Orthop. J. Sports Med. 2021, 9, 2325967121992134. [Google Scholar] [CrossRef]
- Asif, N.; Khan, M.J.; Haris, K.P.; Waliullah, S.; Sharma, A.; Firoz, D. A prospective randomized study of arthroscopic ACL reconstruction with adjustable- versus fixed-loop device for femoral side fixation. Knee Surg. Relat. Res. 2021, 33, 42. [Google Scholar] [CrossRef]
- Choi, N.H.; Yang, B.S.; Victoroff, B.N. Clinical and Radiological Outcomes After Hamstring Anterior Cruciate Ligament Reconstructions: Comparison Between Fixed-Loop and Adjustable-Loop Cortical Suspension Devices. Am. J. Sports Med. 2017, 45, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.R.; Sambandam, B.; Singh, A.; Rajagopalakrishnan, R.; Rajasekaran, S. Does Second-Generation Suspensory Implant Negate Tunnel Widening of First-Generation Implant Following Anterior Cruciate Ligament Reconstruction? Knee Surg. Relat. Res. 2018, 30, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Buelow, J.U.; Siebold, R.; Ellermann, A. A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: Extracortical versus anatomical fixation. Knee Surg. Sports Traumatol. Arthrosc. 2002, 10, 80–85. [Google Scholar] [CrossRef]
- Fauno, P.; Kaalund, S. Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: A prospective randomized study. Arthroscopy 2005, 21, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Baumfeld, J.A.; Diduch, D.R.; Rubino, L.J.; Hart, J.A.; Miller, M.D.; Barr, M.S.; Hart, J.M. Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: A comparison between double cross-pin and suspensory graft fixation. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 1108–1113. [Google Scholar] [CrossRef]
- Lind, M.; Feller, J.; Webster, K.E. Bone tunnel widening after anterior cruciate ligament reconstruction using EndoButton or EndoButton continuous loop. Arthroscopy 2009, 25, 1275–1280. [Google Scholar] [CrossRef]
- Oh, J.Y.; Kim, K.T.; Park, Y.J.; Won, H.C.; Yoo, J.I.; Moon, D.K.; Cho, S.H.; Hwang, S.C. Biomechanical comparison of single-bundle versus double-bundle anterior cruciate ligament reconstruction: A meta-analysis. Knee Surg. Relat. Res. 2020, 32, 14. [Google Scholar] [CrossRef]
- Chalmers, P.N.; Mall, N.A.; Moric, M.; Sherman, S.L.; Paletta, G.P.; Cole, B.J.; Bach, B.R., Jr. Does ACL reconstruction alter natural history?: A systematic literature review of long-term outcomes. J. Bone Jt. Surg. Am. 2014, 96, 292–300. [Google Scholar] [CrossRef]
- Leiter, J.R.; Gourlay, R.; McRae, S.; de Korompay, N.; MacDonald, P.B. Long-term follow-up of ACL reconstruction with hamstring autograft. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1061–1069. [Google Scholar] [CrossRef]
- Kim, S.G.; Jung, J.H.; Song, J.H.; Bae, J.H. Evaluation parameters of graft maturation on second-look arthroscopy following anterior cruciate ligament reconstruction: A systematic review. Knee Surg. Relat. Res. 2019, 31, 2. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.H.; Kim, J.G.; Jang, K.M.; Lim, H.C.; Bae, J.H. Hamstring autograft maturation is superior to tibialis allograft following anatomic single-bundle anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1281–1287. [Google Scholar] [CrossRef]
- Fleiss, J.; levin, B.; Paik, M. The measurement of interrater agreement. In Statistical Methods for Rates and Proportions, 3rd ed.; Wiley Online Library: Hoboken, NJ, USA, 1987; Chapter 18. [Google Scholar] [CrossRef]
- Giorgio, N.; Moretti, L.; Pignataro, P.; Carrozzo, M.; Vicenti, G.; Moretti, B. Correlation between fixation systems elasticity and bone tunnel widening after ACL reconstruction. Muscles Ligaments Tendons J. 2016, 6, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Sabat, D.; Kundu, K.; Arora, S.; Kumar, V. Tunnel widening after anterior cruciate ligament reconstruction: A prospective randomized computed tomography—Based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy 2011, 27, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Feller, J.; Webster, K.E. Tibial bone tunnel widening is reduced by polylactate/hydroxyapatite interference screws compared to metal screws after ACL reconstruction with hamstring grafts. Knee 2009, 16, 447–451. [Google Scholar] [CrossRef]
- Chang, G.; Rajapakse, C.S.; Babb, J.S.; Honig, S.P.; Recht, M.P.; Regatte, R.R. In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J. Bone Miner Metab. 2012, 30, 243–251. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kuskucu, S.M. Comparison of short-term results of bone tunnel enlargement between EndoButton CL and cross-pin fixation systems after chronic anterior cruciate ligament reconstruction with autologous quadrupled hamstring tendons. J. Int. Med. Res. 2008, 36, 23–30. [Google Scholar] [CrossRef]
- Raj, M.A.V.; Ram, S.M.; Venkateswaran, S.R.; Manoj, J. Bone tunnel widening following arthroscopic reconstruction of anterior cruciate ligament (Acl) using hamstring tendon autograft and its functional consequences. Int. J. Orthop. Sci. 2018, 4, 160–163. [Google Scholar] [CrossRef][Green Version]
- Mayr, R.; Smekal, V.; Koidl, C.; Coppola, C.; Eichinger, M.; Rudisch, A.; Kranewitter, C.; Attal, R. ACL reconstruction with adjustable-length loop cortical button fixation results in less tibial tunnel widening compared with interference screw fixation. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Monaco, E.; Fabbri, M.; Redler, A.; Gaj, E.; De Carli, A.; Argento, G.; Saithna, A.; Ferretti, A. Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2577–2584. [Google Scholar] [CrossRef]
- Lopes, O.V., Jr.; de Freitas Spinelli, L.; Leite, L.H.C.; Buzzeto, B.Q.; Saggin, P.R.F.; Kuhn, A. Femoral tunnel enlargement after anterior cruciate ligament reconstruction using RigidFix compared with extracortical fixation. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1591–1597. [Google Scholar] [CrossRef]
- Karikis, I.; Ejerhed, L.; Sernert, N.; Rostgard-Christensen, L.; Kartus, J. Radiographic Tibial Tunnel Assessment After Anterior Cruciate Ligament Reconstruction Using Hamstring Tendon Autografts and Biocomposite Screws: A Prospective Study with 5-Year Follow-Up. Arthroscopy 2017, 33, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
Total (n = 92) | AL Group (n = 48) | IF Group (n = 44) | p-Value * | |
---|---|---|---|---|
Age (years) | 28.0 ± 11.1 | 29.8 ± 12.0 | 26.0 ± 9.5 | 0.081 |
Sex | 0.557 | |||
Male, n (%) | 79 (85.9) | 40 (83.3) | 39 (88.6) | |
Female, n (%) | 13 (14.1) | 8 (16.7) | 5 (11.4) | |
BMI (kg/m2) | 25.3 ± 3.3 | 25.7 ± 3.4 | 24.9 ± 3.3 | 0.259 |
Immediate Postoperative | 2-Year Postoperative | p-Value * | |
---|---|---|---|
Femur AP Proximal (mm) | 9.10 ± 1.23 | 9.86 ± 1.70 | <0.001 |
Femur AP Middle (mm) | 9.16 ± 1.17 | 10.30 ± 1.82 | <0.001 |
Femur AP Distal (mm) | 9.17 ± 1.15 | 10.45 ± 1.85 | <0.001 |
Tibia AP Proximal (mm) | 9.33 ± 1.05 | 10.63 ± 1.42 | <0.001 |
Tibia AP Middle (mm) | 9.53 ± 1.02 | 11.56 ± 1.60 | <0.001 |
Tibia AP Distal (mm) | 9.60 ± 1.07 | 11.12 ± 1.45 | <0.001 |
Femur Lat Proximal (mm) | 8.64 ± 1.10 | 9.62 ± 1.88 | <0.001 |
Femur Lat Middle (mm) | 8.70 ± 1.12 | 9.98 ± 1.90 | <0.001 |
Femur Lat Distal (mm) | 8.70 ± 1.09 | 9.94 ± 1.85 | <0.001 |
Tibia Lat Proximal (mm) | 9.09 ± 0.88 | 10.94 ± 1.42 | <0.001 |
Tibia Lat Middle (mm) | 9.34 ± 1.02 | 11.70 ± 1.62 | <0.001 |
Tibia Lat Distal (mm) | 9.33 ± 1.11 | 11.67 ± 1.61 | <0.001 |
Immediate Postoperative | 2-Year Postoperative | p-Value * | |
---|---|---|---|
Femur AP Proximal (mm) | 9.61 ± 1.42 | 10.54 ± 1.51 | <0.001 |
Femur AP Middle (mm) | 9.43 ± 1.44 | 10.79 ± 1.53 | <0.001 |
Femur AP Distal (mm) | 9.20 ± 1.18 | 10.76 ± 1.37 | <0.001 |
Tibia AP Proximal (mm) | 9.48 ± 0.85 | 10.81 ± 1.39 | <0.001 |
Tibia AP Middle (mm) | 9.58 ± 0.89 | 10.89 ± 1.06 | <0.001 |
Tibia AP Distal (mm) | 9.53 ± 0.84 | 10.37 ± 1.05 | <0.001 |
Femur Lat Proximal (mm) | 9.19 ± 1.30 | 9.74 ± 1.13 | <0.001 |
Femur Lat Middle (mm) | 8.95 ± 1.09 | 9.86 ± 1.10 | <0.001 |
Femur Lat Distal (mm) | 8.79 ± 0.89 | 9.99 ± 1.02 | <0.001 |
Tibia Lat Proximal (mm) | 9.38 ± 0.87 | 10.38 ± 1.17 | <0.001 |
Tibia Lat Middle (mm) | 9.47 ± 0.82 | 10.50 ± 0.99 | <0.001 |
Tibia Lat Distal (mm) | 9.45 ± 0.87 | 10.30 ± 1.08 | <0.001 |
AL Group (n = 48) | IF Group (n = 44) | p-Value * | |
---|---|---|---|
Femur AP Proximal (mm) | 0.76 ± 1.37 | 0.93 ± 1.59 | 0.574 |
Femur AP Middle (mm) | 1.14 ± 1.48 | 1.36 ± 1.46 | 0.459 |
Femur AP Distal (mm) | 1.27 ± 1.51 | 1.56 ± 1.45 | 0.355 |
Tibia AP Proximal (mm) | 1.30 ± 1.33 | 1.33 ± 1.61 | 0.914 |
Tibia AP Middle (mm) | 2.03 ± 1.45 | 1.32 ± 1.34 | 0.017 |
Tibia AP Distal (mm) | 1.52 ± 1.41 | 0.84 ± 1.09 | 0.012 |
Femur Lat Proximal (mm) | 0.98 ± 1.47 | 0.54 ± 1.73 | 0.198 |
Femur Lat Middle (mm) | 0.29 ± 1.59 | 0.91 ± 1.46 | 0.244 |
Femur Lat Distal (mm) | 1.23 ± 1.60 | 1.20 ± 1.16 | 0.905 |
Tibia Lat Proximal (mm) | 1.85 ± 1.25 | 1.00 ± 1.19 | 0.001 |
Tibia Lat Middle (mm) | 2.36 ± 1.46 | 1.03 ± 1.10 | <0.001 |
Tibia Lat Distal (mm) | 2.34 ± 1.25 | 0.85 ± 1.27 | <0.001 |
AL Group (n = 48) | IF Group (n = 44) | p-Value * | |
---|---|---|---|
Lysholm score | 82.5 ± 14.5 | 83.5 ± 19.3 | 0.766 |
IKDC subjective score | 75.3 ± 17.4 | 80.5 ± 13.6 | 0.121 |
Tegner activity level ** | 5 | 6 | 0.153 |
AL Group (n = 24) | IF Group (n = 24) | p-Value * | |
---|---|---|---|
Graft integrity ** | 2 | 2 | 1.000 |
Graft synovial coverage ** | 2 | 2 | 0.690 |
Graft tension ** | 2 | 2 | 0.931 |
Graft vascularization ** | 2 | 2 | 0.306 |
KUMC score ** | 8 | 7 | 0.741 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-J.; Jang, K.-M.; Kim, T.-J.; Lee, S.-M.; Bae, J.-H. Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction. Medicina 2022, 58, 1193. https://doi.org/10.3390/medicina58091193
Lee T-J, Jang K-M, Kim T-J, Lee S-M, Bae J-H. Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction. Medicina. 2022; 58(9):1193. https://doi.org/10.3390/medicina58091193
Chicago/Turabian StyleLee, Tae-Jin, Ki-Mo Jang, Tae-Jin Kim, Sang-Min Lee, and Ji-Hoon Bae. 2022. "Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction" Medicina 58, no. 9: 1193. https://doi.org/10.3390/medicina58091193
APA StyleLee, T.-J., Jang, K.-M., Kim, T.-J., Lee, S.-M., & Bae, J.-H. (2022). Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction. Medicina, 58(9), 1193. https://doi.org/10.3390/medicina58091193