Minimally Invasive Spine Stabilization for Pyogenic Spondylodiscitis: A 23-Case Series and Review of Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Case
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gouliouris, T.; Aliyu, S.H.; Brown, N.M. Spondylodiscitis: Update on diagnosis and management. J. Antimicrob. Chemother. 2010, 65 (Suppl. 3), iii11–iii24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, W.Y.; Luk, K.D.K. Pyogenic spondylitis. Int. Orthop. 2012, 36, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsantes, A.G.; Papadopoulos, D.V.; Vrioni, G.; Sioutis, S.; Sapkas, G.; Benzakour, A.; Benzakour, T.; Angelini, A.; Ruggieri, P.; Mavrogenis, A.F.; et al. Spinal Infections: An Update. Microorganisms 2020, 8, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourbeti, I.S.; Tsiodras, S.; Boumpas, D.T. Spinal infections: Evolving concepts. Curr. Opin. Rheumatol. 2008, 20, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Rutges, J.P.H.J.; Kempen, D.H.; van Dijk, M.; Oner, F.C. Outcome of conservative and surgical treatment of pyogenic spondylodiscitis: A systematic literature review. Eur. Spine J. 2016, 25, 983–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerado, E.; Cerván, A.M. Surgical treatment of spondylodiscitis. An update. Int. Orthop. 2012, 36, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Cervan, A.M.; Colmenero, J.D.; Del Arco, A.; Villanueva, F.; Guerado, E. Spondylodiscitis in patients under haemodyalisis. Int. Orthop. 2012, 36, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Karchevsky, M.; Schweitzer, M.E.; Morrison, W.B.; Parellada, J.A. MRI findings of septic arthritis and associated osteomyelitis in adults. Am. J. Roentgenol. 2004, 182, 119–122. [Google Scholar] [CrossRef]
- Skaf, G.S.; Domloj, N.T.; Fehlings, M.G.; Bouclaous, C.H.; Sabbagh, A.S.; Kanafani, Z.A.; Kanj, S.S. Pyogenic spondylodiscitis: An overview. J. Infect. Public Health 2010, 3, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Zarghooni, K.; Rollinghoff, M.; Sobottke, R.; Eysel, P. Treatment of spondylodiscitis. Int. Orthop. 2012, 36, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Tsai, T.T.; Lu, M.L.; Niu, C.C.; Hsieh, M.K.; Fu, T.S.; Lai, P.L.; Chen, L.H.; Chen, W.J. Comparison of two-stage open versus percutaneous pedicle screw fixation in treating pyogenic spondylodiscitis. BMC Musculoskelet Disord. 2014, 15, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valancius, K.; Hansen, E.S.; Høy, K.; Helmig, P.; Niedermann, B.; Bünger, C. Failure modes in conservative and surgical management of infectious spondylodiscitis. Eur. Spine J. 2013, 22, 1837–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herren, C.; Jung, N.; Pishnamaz, M.; Breuninger, M.; Siewe, J.; Sobottke, R. Spondylodiscitis: Diagnosis and Treatment Options. Dtsch. Arztebl. Int. 2017, 114, 875–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özmen, D.; Özkan, N.; Guberina, N.; Fliessbach, K.; Suntharalingam, S.; Theysohn, J.; Büchter, M.; Forsting, M.; Buer, J.; Dudda, M.; et al. Computed-tomography-guided biopsy in suspected spondylodiscitis: Single-center experience including 201 biopsy procedures. Orthop. Rev. 2019, 11, 7793. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.T.; Yang, S.C.; Niu, C.C.; Lai, P.L.; Lee, M.H.; Chen, L.H.; Chen, W.J. Early surgery with antibiotics treatment had better clinical outcomes than antibiotics treatment alone in patients with pyogenic spondylodiscitis: A retrospective cohort study. BMC Musculoskelet Disord. 2017, 18, 175. [Google Scholar] [CrossRef]
- Guo, W.; Wang, M.; Chen, G.; Chen, K.H.; Wan, Y.; Chen, B.; Zou, X.; Peng, X. Early surgery with antibiotic medication was effective and efficient in treating pyogenic spondylodiscitis. BMC Musculoskelet Disord. 2021, 22, 288. [Google Scholar] [CrossRef]
- Butler, J.S.; Shelly, M.J.; Timlin, M.; Powderly, W.G.; O’Byrne, J.M.O. Nontuberculous pyogenic spinal infection in adults: A 12-year experience from a tertiary referral center. Spine 2006, 31, 2695–2700. [Google Scholar] [CrossRef]
- Flury, B.B.; Elzi, L.; Kolbe, M.; Frei, R.; Weisser, M.; Scharen, S.; Widmer, A.F.; Battegay, M. Is switching to an oral antibiotic regimen safe after 2 weeks of intravenous treatment for primary bacterial vertebral osteomyelitis? BMC Infect. Dis. 2014, 14, 226. [Google Scholar]
- Bettini, N.; Girardo, M.; Dema, E.; Cervellati, S. Evaluation of conservative treatment of non spcific spondylodiscitis. Eur. Spine J. 2009, 18 (Suppl. 1), 143–150. [Google Scholar] [CrossRef] [Green Version]
- O’Daly, B.J.; Morris, S.F.; O’Rourke, S.K. Long-term functional outcome in pyogenic spinal infection. Spine 2008, 33, E246–E253. [Google Scholar] [CrossRef]
- Cottle, L.; Riordan, T. Infectious spondylodiscitis. J. Infect. 2008, 56, 401–412. [Google Scholar] [CrossRef]
- Karadimas, E.J.; Bunger, C.; Lindblad, B.E.; Høy, K.; Helmig, P.; Kannerup, A.S.; Niedermann, B. Spondylodiscitis. A retrospective study of 163 patients. Acta Orthop. 2008, 79, 650–659. [Google Scholar] [CrossRef] [Green Version]
- Pee, Y.H.; Park, J.D.; Choi, Y.G.; Lee, S.H. Anterior debridement and fusion followed by posterior pedicle screw fixation in pyogenic spondylodiscitis: Autologous iliac bone strut versus cage. J. Neurosurg. Spine 2008, 8, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Gonzalvo, A.; Abdulla, I.; Riazi, A.; De La Harpe, D. Single- level/single-stage debridement and posterior instrumented fusion in the treatment of spontaneous pyogenic osteomyelitis/discitis: Long-term functional outcome and health-related quality of life. J. Spinal Disord. Tech. 2011, 24, 110–115. [Google Scholar] [CrossRef]
- Duan, K.; Qin, Y.; Ye, J.; Zhang, W.; Hu, X.; Zhou, J.; Gao, L.; Tang, Y. Percutaneous endoscopic debridement with percutaneous pedicle screw fixation for lumbar pyogenic spondylodiscitis: A preliminary study. Int. Orthop. 2020, 44, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.K.; Jörger, A.K.; Barz, M.; Sarkar, C.; Wostrack, M.; Meyer, B. Minimally invasive posterior pedicle screw fixation versus open instrumentation in patients with thoracolumbar spondylodiscitis. Acta Neurochir. 2021, 163, 1553–1560. [Google Scholar] [CrossRef]
- Farshad, M.; Aichmair, A.; Gerber, C.; Bauer, D.E. Classification of perioperative complications in spine surgery. Spine J. 2020, 20, 730–736. [Google Scholar] [CrossRef]
- Bernard, L.; Dinh, A.; Ghout, I.; Simo, D.; Zeller, V.; Issartel, B.; Le Moing, V.; Belmatoug, N.; Lesprit, P.; Bru, J.P.; et al. Antibiotic treatment for 6 weeks versus 12 weeks in patients with pyogenic vertebral osteomyelitis: An open-label, non-inferiority, randomised, controlled trial. Lancet 2015, 385, 875–882. [Google Scholar] [CrossRef]
- Loibl, M.; Stoyanov, L.; Doenitz, C.; Brawanski, A.; Wiggermann, P.; Krutsch, W.; Nerlich, M.; Oszwald, M.; Neumann, C.; Salzberger, B.; et al. Outcome-related co-factors in 105 cases of vertebral osteomyelitis in a tertiary care hospital. Infection 2014, 42, 503–510. [Google Scholar] [CrossRef]
- Roblot, F.; Besnier, J.M.; Juhel, L.; Vidal, C.; Ragot, S.; Bastides, F.; Le Moal, G.; Godet, C.; Mulleman, D.; Azais, I.; et al. Optimal duration of antibiotic therapy in vertebral osteomyelitis. Semin. Arthritis Rheum. 2007, 36, 269–277. [Google Scholar] [CrossRef]
- Park, K.H.; Chong, Y.P.; Kim, S.H.; Lee, S.O.; Choi, S.H.; Lee, M.S.; Jeong, J.Y.; Woo, J.H.; Kim, Y.S. Clinical characteristics and therapeutic outcomes of hematogenous vertebral osteomyelitis caused by methicillin-resistant Staphylococcus aureus. J. Infect. 2013, 67, 556–564. [Google Scholar] [CrossRef]
- Funao, H.; Kebaish, K.M.; Isogai, N.; Koyanagi, T.; Matsumoto, M.; Ishii, K. Utilization of a technique of percutaneous S2 alariliacfixation in immunocompromised patients with spondylodiscitis. World Neurosurg. 2017, 97, e11–e18. [Google Scholar] [CrossRef]
- Shinohara, A.; Ueno, Y.; Marumo, K. Weekly teriparatide therapy rapidly accelerates bone healing in pyogenic spondylitis with severe osteoporosis. Asian Spine J. 2014, 8, 498–501. [Google Scholar] [CrossRef]
- Morita, M.; Iwasaki, R.; Sato, Y.; Kobayashi, T.; Watanabe, R.; Oike, T.; Nakamura, S.; Keneko, Y.; Miyamoto, K.; Ishihara, K.; et al. Elevation of pro-inflammatory cytokine levels following anti-resorptive drug treatment is required for osteonecrosis development in infectious osteomyelitis. Sci. Rep. 2017, 7, 46322. [Google Scholar] [CrossRef]
Characteristic | N = 23 (%) |
---|---|
Gender | |
Male | 18 (78.3%) |
Female | 5 (21.7%) |
Comorbidities (including duplications) | |
Solid cancer | 8 (34.8%) |
Diabetes mellitus | 5 (21.7%) |
Renal failure | 3 (13.0%) |
Cerebrovascular disease | 3 (13.0%) |
Liver cirrhosis | 2 (8.7%) |
Angina pectoris | 1 (4.3%) |
Pancreatitis | 1 (4.3%) |
Depression | 1 (4.3%) |
Location (including 1 duplication) | |
Thoracic | 4 (17.4%) |
Thoracolumbar | 4 (17.4%) |
Lumbar | 11 (47.8%) |
Lumbosacral | 5 (21.7%) |
Bacterial Strain | N = 23 (%) |
---|---|
Staphylococcus aureus | 6 (26.1%) |
MRSA 1 | 3 (13.0%) |
Streptococcus dysgalactiae | 2 (8.7%) |
Streptococcus intermedius | 1 (4.3%) |
Streptococcus mutans | 1 (4.3%) |
Escherichia coli | 1 (4.3%) |
Enterobacter aerogens | 1 (4.3%) |
Corynebacterium | 1 (4.3%) |
Unknown | 7 (30.4%) |
Patient No. | Age | Sex | Involved Level | Fixed Vertebrae | Organism | Comorbidities | CRP Become Negative (Days) | Operative Time (min) | EBL (mL) | ADF | F-U (Month) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 64 | M | T7-8 | T5-10 | Unknown | 27 | 140 | 50 | No | 6 | |
2 | 66 | M | T8-9 | T6-11 | MRSA | Infectious endocarditis | 16 | 122 | 5 | No | 6 |
3 | 85 | F | T9-10 | T6-L1 | S. aureus | Prostate cancer | 28 | 258 | 70 | No | 24 |
4 | 78 | M | T9-10 | T7-12 | MRSA | Pancreatitis | 14 | 130 | 300 | No | 7 |
5 | 75 | F | T9-11 | T6-L2 | Unknown | 12 | 278 | 130 | No | 6 | |
6 | 84 | M | T10-11 | T7-L2 | S. aureus | DM | 28 | 265 | 384 | No | 26 |
7 | 69 | M | T10-11 | T7-L2 | Unknown | RF and CD | 25 | 282 | 67 | No | 18 |
8 | 64 | M | L1-2 | L1-3 | S. aureus | Liver Cancer | 39 | 65 | 20 | Yes | 6 |
9 | 60 | M | L2-3 | T12-L5 | S. aureus | 11 | 212 | 52 | No | 6 | |
10 | 62 | M | L2-3 L5-S1 | T12-S1 (Iliac) | S. dysgalactiae | RF | 56 | 364 | 260 | No | 6 |
11 | 55 | M | L3-4 | L1-S1 | E. aerogenes | Colon cancer | 47 | 183 | 158 | Yes | 43 |
12 | 57 | M | L3-4 | L1-5 | S. mutans | Liver cancer | 10 | 245 | 100 | No | 16 |
13 | 75 | M | L3-4 | L1-5 | S. dysgalactiae | DM | 51 | 154 | 280 | No | 15 |
14 | 50 | M | L3-5 | L3-5 | S. intermedius | DM and Liver cancer | 56 | 85 | 90 | No | 12 |
15 | 39 | F | L4-5 | L4-5 | S. aureus | Depression | 19 | 55 | 20 | No | 18 |
16 | 77 | M | L4-5 | L2-S1 (S2AI *) | S. aureus | Lung cancer | 20 | 193 | 26 | No | 6 |
17 | 72 | M | L4-5 | L2-S1 (S2AI *) | Unknown | Gastric cancer | 30 | 181 | 10 | Yes | 24 |
18 | 57 | F | L4-5 | L2-S1 (S2AI *) | Unknown | 30 | 215 | 43 | No | 18 | |
19 | 77 | M | L4-5 | L2-S1 (S2AI *) | Unknown | Lung cancer and angina | 30 | 188 | 26 | No | 6 |
20 | 77 | M | L5-S1 | L3-S1 (Illiac) | Unknown | DM | 14 | 265 | 340 | No | 13 |
21 | 59 | M | L5-S1 | L3-S1 (Illiac) | MRSA | CD | 30 | 399 | 550 | No | 24 |
22 | 69 | F | L5-S1 | L3-S1 (Illiac) | Coryne bacterium | Uterine cancer | 30 | 261 | 172 | No | 36 |
23 | 71 | M | L5-S1 | L3-S1 (S2AI *) | E. coli | DM, RF, and CD | 30 | 196 | 171 | Yes | 24 |
Numbers of fixed vertebrae | 4.1 vertebrae (2–6) |
Operative time | 205.1 min (55–399) |
Estimated blood loss | 145.0 mL (5–550) |
Anterior debridement and bone graft placement | 4 cases (17.4%) |
CRP becomes negative after surgery | 28.4 days (10–56 days) |
Major perioperative complication | none |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, S.; Funao, H.; Isogai, N.; Ishihara, M.; Saito, T.; Ishii, K. Minimally Invasive Spine Stabilization for Pyogenic Spondylodiscitis: A 23-Case Series and Review of Literature. Medicina 2022, 58, 754. https://doi.org/10.3390/medicina58060754
Ishihara S, Funao H, Isogai N, Ishihara M, Saito T, Ishii K. Minimally Invasive Spine Stabilization for Pyogenic Spondylodiscitis: A 23-Case Series and Review of Literature. Medicina. 2022; 58(6):754. https://doi.org/10.3390/medicina58060754
Chicago/Turabian StyleIshihara, Shinichi, Haruki Funao, Norihiro Isogai, Masayuki Ishihara, Takanori Saito, and Ken Ishii. 2022. "Minimally Invasive Spine Stabilization for Pyogenic Spondylodiscitis: A 23-Case Series and Review of Literature" Medicina 58, no. 6: 754. https://doi.org/10.3390/medicina58060754
APA StyleIshihara, S., Funao, H., Isogai, N., Ishihara, M., Saito, T., & Ishii, K. (2022). Minimally Invasive Spine Stabilization for Pyogenic Spondylodiscitis: A 23-Case Series and Review of Literature. Medicina, 58(6), 754. https://doi.org/10.3390/medicina58060754