Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection
Abstract
:1. Introduction
Measles Incidence
2. Measles Virus: Transmission and Infectious Cycle
3. Measles Virus: Structural and Functional Aspects
3.1. Pathophysiology
3.2. Clinical Variants of Measles
3.2.1. Modified Measles
3.2.2. Atypical Measles
4. Immunological Aspects of Measles Infection and Host Immunity
4.1. Innate Immunity Response to Measles Infection
4.2. Overwhelming of Innate Immune Response by Measles
4.3. Innate Immunity Responses at the Cellular Level to the Measles Virus
4.4. Measles Virus Evading the Host’s Immunity Mechanisms
4.5. Infection and Host Immunity
5. Diagnosis
6. Clinical Presentation
Secondary Complications
Management Strategies for Secondary Outcomes
7. Management
7.1. Advances in the Administration of the Measles Vaccine
7.1.1. Measles Vaccination Schedule
7.1.2. Laboratory Diagnostic Possibilities for Measuring the Effectiveness of Measles Vaccination
8. Eradication: Goals and Progress
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gay, N.J. The theory of measles elimination: Implications for the design of elimination strategies. J. Infect. Dis. 2004, 189, S27–S35. [Google Scholar] [PubMed]
- Nambulli, S.; Sharp, C.R.; Acciardo, A.S.; Drexler, J.F.; Duprex, W.P. Mapping the evolutionary trajectories of morbilliviruses: What, where and whither. Curr. Opin. Virol. 2016, 16, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibney, K.B.; Attwood, L.O.; Nicholson, S.; Tran, T.; Druce, J.; Healy, J.; Strachan, J.; Franklin, L.; Hall, R.; Cross, G.B. Emergence of attenuated measles illness among IgG-positive/IgM-negative measles cases: Victoria, Australia, 2008–2017. Clin. Infect. Dis. 2020, 70, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J.; Strebel, P. Biological feasibility of measles eradication. J. Infect. Dis. 2011, 204, S47–S53. [Google Scholar] [CrossRef]
- Dabbagh, A.; Laws, R.L.; Steulet, C.; Dumolard, L.; Mulders, M.N.; Kretsinger, K.; Alexander, J.P.; Rota, P.A.; Goodson, J.L. Progress toward regional measles elimination—Worldwide, 2000–2017. Morb. Mortal. Wkly. Rep. 2018, 67, 1323. [Google Scholar] [CrossRef]
- Patel, M.K.; Dumolard, L.; Nedelec, Y.; Sodha, S.V.; Steulet, C.; Gacic-Dobo, M.; Kretsinger, K.; McFarland, J.; Rota, P.A.; Goodson, J.L. Progress toward regional measles elimination—Worldwide, 2000–2018. Morb. Mortal. Wkly. Rep. 2019, 68, 1105. [Google Scholar] [CrossRef] [Green Version]
- Ayasoufi, K.; Pfaller, C.K. Seek and hide: The manipulating interplay of measles virus with the innate immune system. Curr. Opin. Virol. 2020, 41, 18–30. [Google Scholar] [CrossRef]
- Measles, Mumps, and Rubella (MMR) Vaccination: What Everyone Should Know. Available online: https://www.cdc.gov/vaccines/vpd/mmr/public/index.html (accessed on 16 March 2022).
- De Pietro, C.; Camenzind, P.; Sturny, I.; Crivelli, L.; Edwards-Garavoglia, S.; Spranger, A.; Wittenbecher, F.; Quentin, W.; World Health Organization. Switzerland: Health system review. In Health Systems in Transition; Regional Office for Europe, World Health Organization: Copenhagen, Denmark, 2015; Volume 17. [Google Scholar]
- Memish, Z.A.; Bamgboye, E.A.; Mohammed, M.; AlHakeem, R.; Al-Tawfiq, J.A.; Assiri, A. Secular trend and epidemiology of measles in the Kingdom of Saudi Arabia: 2009–2012. Travel Med. Infect. Dis. 2015, 13, 74–79. [Google Scholar] [CrossRef]
- Ferreira, C.S.A.; Frenzke, M.; Leonard, V.H.; Welstead, G.G.; Richardson, C.D.; Cattaneo, R. Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150). J. Virol. 2010, 84, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- Ludlow, M.; McQuaid, S.; Milner, D.; de Swart, R.L.; Duprex, W.P. Pathological consequences of systemic measles virus infection. J. Pathol. 2015, 235, 253–265. [Google Scholar] [CrossRef]
- Hope, K.; Boyd, R.; Conaty, S.; Maywood, P. Measles transmission in health care waiting rooms: Implications for public health response. West. Pac. Surveill. Response J. WPSAR 2012, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Lessler, J.; Reich, N.G.; Brookmeyer, R.; Perl, T.M.; Nelson, K.E.; Cummings, D.A. Incubation periods of acute respiratory viral infections: A systematic review. Lancet Infect. Dis. 2009, 9, 291–300. [Google Scholar] [CrossRef]
- Riddell, M.A.; Moss, W.J.; Hauer, D.; Monze, M.; Griffin, D.E. Slow clearance of measles virus RNA after acute infection. J. Clin. Virol. 2007, 39, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The basic reproduction number (R0) of measles: A systematic review. Lancet Infect. Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef]
- Griffin, D.E. Measles virus and the nervous system. In Handbook of Clinical Neurology; Elsevier: New York, NY, USA, 2014; Volume 123, pp. 577–590. [Google Scholar]
- Wallinga, J.; Heijne, J.C.M.; Kretzschmar, M. A measles epidemic threshold in a highly vaccinated population. PLoS Med. 2005, 2, e316. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J.; Ryon, J.J.; Monze, M.; Griffin, D.E. Differential regulation of interleukin (IL)–4, IL-5, and IL-10 during measles in Zambian children. J. Infect. Dis. 2002, 186, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Jones-Engel, L.; Engel, G.A.; Schillaci, M.A.; Lee, B.; Heidrich, J.; Chalise, M.; Kyes, R.C. Considering human–primate transmission of measles virus through the prism of risk analysis. Am. J. Primatol. 2006, 68, 868–879. [Google Scholar] [CrossRef]
- Ferrari, M.J.; Grais, R.F.; Bharti, N.; Conlan, A.J.; Bjørnstad, O.N.; Wolfson, L.J.; Guerin, P.J.; Djibo, A.; Grenfell, B.T. The dynamics of measles in sub-Saharan Africa. Nature 2008, 451, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Leuridan, E.; Hens, N.; Hutse, V.; Ieven, M.; Aerts, M.; Van Damme, P. Early waning of maternal measles antibodies in era of measles elimination: Longitudinal study. BMJ 2010, 340, c1626. [Google Scholar] [CrossRef] [Green Version]
- Waaijenborg, S.; Hahné, S.J.; Mollema, L.; Smits, G.P.; Berbers, G.A.; van der Klis, F.R.; de Melker, H.E.; Wallinga, J. Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J. Infect. Dis. 2013, 208, 10–16. [Google Scholar] [CrossRef]
- Durrheim, D.N.; Crowcroft, N.S.; Strebel, P.M. Measles–The epidemiology of elimination. Vaccine 2014, 32, 6880–6883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, R.D.; McQuaid, S.; Van Amerongen, G.; Yüksel, S.; Verburgh, R.J.; Osterhaus, A.D.; Duprex, W.P.; De Swart, R.L. Measles immune suppression: Lessons from the macaque model. PLoS Pathog. 2012, 8, e1002885. [Google Scholar] [CrossRef] [PubMed]
- Mühlebach, M.D.; Mateo, M.; Sinn, P.L.; Prüfer, S.; Uhlig, K.M.; Leonard, V.H.; Navaratnarajah, C.K.; Frenzke, M.; Wong, X.X.; Sawatsky, B. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011, 480, 530–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatsuo, H.; Ono, N.; Tanaka, K.; Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000, 406, 893–897. [Google Scholar] [CrossRef]
- Tahara, M.; Ohno, S.; Sakai, K.; Ito, Y.; Fukuhara, H.; Komase, K.; Brindley, M.A.; Rota, P.A.; Plemper, R.K.; Maenaka, K. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J. Virol. 2013, 87, 3583–3586. [Google Scholar] [CrossRef] [Green Version]
- Plattet, P.; Alves, L.; Herren, M.; Aguilar, H.C. Measles virus fusion protein: Structure, function and inhibition. Viruses 2016, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Qin, Y.; Chen, M. Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses 2016, 8, 308. [Google Scholar] [CrossRef]
- Penedos, A.R.; Myers, R.; Hadef, B.; Aladin, F.; Brown, K.E. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS ONE 2015, 10, e0143081. [Google Scholar] [CrossRef]
- Perry, R.T.; Murray, J.S.; Gacic-Dobo, M.; Dabbagh, A.; Mulders, M.N.; Strebel, P.M.; Okwo-Bele, J.-M.; Rota, P.A.; Goodson, J.L. Progress toward regional measles elimination—Worldwide, 2000–2014. Morb. Mortal. Wkly. Rep. 2015, 64, 1246–1251. [Google Scholar] [CrossRef]
- Fulton, B.O.; Sachs, D.; Beaty, S.M.; Won, S.T.; Lee, B.; Palese, P.; Heaton, N.S. Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep. 2015, 11, 1331–1338. [Google Scholar] [CrossRef] [Green Version]
- De Swart, R.L.; Ludlow, M.; De Witte, L.; Yanagi, Y.; Van Amerongen, G.; McQuaid, S.; Yüksel, S.; Geijtenbeek, T.B.H.; Duprex, W.P.; Osterhaus, A.D.E. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog. 2007, 3, e178. [Google Scholar] [CrossRef]
- Singh, B.K.; Li, N.; Mark, A.C.; Mateo, M.; Cattaneo, R.; Sinn, P.L. Cell-to-cell contact and nectin-4 govern spread of measles virus from primary human myeloid cells to primary human airway epithelial cells. J. Virol. 2016, 90, 6808–6817. [Google Scholar] [CrossRef] [Green Version]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.-T.; Sisson, G.; Tsao, M.-S.; Richardson, C.D. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011, 7, e1002240. [Google Scholar] [CrossRef] [PubMed]
- Nimmerjahn, F.; Ravetch, J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-Carneiro, D.; McKeating, J.A.; Bailey, D. The measles virus receptor SLAMF1 can mediate particle endocytosis. J. Virol. 2017, 91, e02216–e02255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, R.A. Paramyxoviridae: The viruses and their replication. In Fields Virology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Leonard, V.H.; Sinn, P.L.; Hodge, G.; Miest, T.; Devaux, P.; Oezguen, N.; Braun, W.; McCray, P.B.; McChesney, M.B.; Cattaneo, R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Investig. 2008, 118, 2448–2458. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-H.W.; Kouyos, R.D.; Adams, R.J.; Grenfell, B.T.; Griffin, D.E. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc. Natl. Acad. Sci. USA 2012, 109, 14989–14994. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.N.; Gupta, N.; Gupta, S. Modified measles versus rubella versus atypical measles: One and same thing. J. Fam. Med. Prim. Care 2015, 4, 566. [Google Scholar] [CrossRef]
- Mizumoto, K.; Kobayashi, T.; Chowell, G. Transmission potential of modified measles during an outbreak, Japan, March–May 2018. Eurosurveillance 2018, 23, 1800239. [Google Scholar] [CrossRef]
- Griffin, D.; Pan, C.-H. Measles: Old vaccines, new vaccines. Measles 2009, 330, 191–212. [Google Scholar]
- Barbosa, J.R.; Martins, A.S.; Ruivo, J.; Carvalho, L. Fever and rash: Revisiting measles. Acta Médica Port. 2018, 31, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, T.; Geeta, M.; Krishnakumar, P.; Sabitha, S.; Ajina, K. Clinical profile of measles in children with special reference to infants. Trop. Dr. 2019, 49, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Lemon, K.; de Vries, R.D.; Mesman, A.W.; McQuaid, S.; van Amerongen, G.; Yüksel, S.; Ludlow, M.; Rennick, L.J.; Kuiken, T.; Rima, B.K. Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog. 2011, 7, e1001263. [Google Scholar] [CrossRef] [PubMed]
- Devaux, P.; Hodge, G.; McChesney, M.B.; Cattaneo, R. Attenuation of V-or C-defective measles viruses: Infection control by the inflammatory and interferon responses of rhesus monkeys. J. Virol. 2008, 82, 5359–5367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, J.C.; Kehren, J.; Trescol-Biémont, M.-C.; Evlashev, A.; Valentin, H.; Walzer, T.; Tedone, R.; Loveland, B.; Nicolas, J.-F.; Rabourdin-Combe, C. Mechanism of measles virus–induced suppression of inflammatory immune responses. Immunity 2001, 14, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Erlenhöfer, C.; Duprex, W.P.; Rima, B.K.; Ter Meulen, V.; Schneider-Schaulies, J. Analysis of receptor (CD46, CD150) usage by measles virus. J. Gen. Virol. 2002, 83, 1431–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieback, K.; Lien, E.; Klagge, I.M.; Avota, E.; Schneider-Schaulies, J.R.; Duprex, W.P.; Wagner, H.; Kirschning, C.J.; Ter Meulen, V.; Schneider-Schaulies, S. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 2002, 76, 8729–8736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, M.; West, A.; Ghosh, S. NF-κB and the immune response. Oncogene 2006, 25, 6758–6780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Laksono, B.M.; de Vries, R.D.; Verburgh, R.J.; Visser, E.G.; de Jong, A.; Fraaij, P.L.; Ruijs, W.L.; Nieuwenhuijse, D.F.; van den Ham, H.-J.; Koopmans, M.P. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nat. Commun. 2018, 9, 4944. [Google Scholar] [CrossRef]
- Polack, F.P.; Hoffman, S.J.; Moss, W.J.; Griffin, D.E. Altered synthesis of interleukin-12 and type 1 and type 2 cytokinesin rhesus macaques during measles and atypical measles. J. Infect. Dis. 2002, 185, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.E. The immune response in measles: Virus control, clearance and protective immunity. Viruses 2016, 8, 282. [Google Scholar] [CrossRef] [PubMed]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-l.; Cheng, Y.-M.; Shi, B.-S.; Qian, F.-X.; Wang, F.-B.; Liu, X.-N.; Yang, H.-Y.; Xu, Q.-N.; Qi, T.-K.; Zha, L.-J. Measles virus infection in adults induces production of IL-10 and is associated with increased CD4+ CD25+ regulatory T cells. J. Immunol. 2008, 181, 7356–7366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider-Schaulies, S.; Schneider-Schaulies, J. Measles virus-induced immunosuppression. Measles 2009, 330, 243–269. [Google Scholar]
- Petrova, V.N.; Sawatsky, B.; Han, A.X.; Laksono, B.M.; Walz, L.; Parker, E.; Pieper, K.; Anderson, C.A.; de Vries, R.D.; Lanzavecchia, A. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci. Immunol. 2019, 4, eaay6125. [Google Scholar] [CrossRef] [PubMed]
- Stebegg, M.; Kumar, S.D.; Silva-Cayetano, A.; Fonseca, V.R.; Linterman, M.A.; Graca, L. Regulation of the germinal center response. Front. Immunol. 2018, 9, 2469. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.E. Measles virus-induced suppression of immune responses. Immunol. Rev. 2010, 236, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Tough, D.F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk. Lymphoma 2004, 45, 257–264. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Innate immunity to virus infection. Immunol. Rev. 2009, 227, 75–86. [Google Scholar] [CrossRef]
- Taniguchi, M.; Yanagi, Y.; Ohno, S. Both type I and type III interferons are required to restrict measles virus growth in lung epithelial cells. Arch. Virol. 2019, 164, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Schnepf, D.; Staeheli, P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019, 19, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Ikegame, S.; Takeda, M.; Ohno, S.; Nakatsu, Y.; Nakanishi, Y.; Yanagi, Y. Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells. J. Virol. 2010, 84, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mura, M.; Combredet, C.; Najburg, V.; Sanchez David, R.Y.; Tangy, F.; Komarova, A.V. Nonencapsidated 5′ copy-back defective interfering genomes produced by recombinant measles viruses are recognized by RIG-I and LGP2 but not MDA5. J. Virol. 2017, 91, e00617–e00643. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, K.; Kadota, S.-I.; Takeda, M.; Miyajima, N.; Nagata, K. Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett. 2003, 545, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Platanitis, E.; Demiroz, D.; Schneller, A.; Fischer, K.; Capelle, C.; Hartl, M.; Gossenreiter, T.; Müller, M.; Novatchkova, M.; Decker, T. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat. Commun. 2019, 10, 2921. [Google Scholar] [CrossRef]
- Kurokawa, C.; Iankov, I.D.; Galanis, E. A key anti-viral protein, RSAD2/VIPERIN, restricts the release of measles virus from infected cells. Virus Res. 2019, 263, 145–150. [Google Scholar] [CrossRef]
- Hartner, J.C.; Walkley, C.R.; Lu, J.; Orkin, S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009, 10, 109–115. [Google Scholar] [CrossRef]
- Liddicoat, B.J.; Piskol, R.; Chalk, A.M.; Ramaswami, G.; Higuchi, M.; Hartner, J.C.; Li, J.B.; Seeburg, P.H.; Walkley, C.R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 2015, 349, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, C.K.; Cattaneo, R.; Schnell, M.J. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015, 479, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Horvath, C.M. Dissociation of paramyxovirus interferon evasion activities: Universal and virus-specific requirements for conserved V protein amino acids in MDA5 interference. J. Virol. 2010, 84, 11152–11163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caignard, G.; Guerbois, M.; Labernardière, J.-L.; Jacob, Y.; Jones, L.M.; The Infectious Mapping Project I-MAP; Wild, F.; Tangy, F.; Vidalain, P.O. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-α/β signaling. Virology 2007, 368, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Parisien, J.-P.; Horvath, C.M. STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J. Virol. 2008, 82, 8330–8338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaux, P.; Priniski, L.; Cattaneo, R. The measles virus phosphoprotein interacts with the linker domain of STAT1. Virology 2013, 444, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Devaux, P.; von Messling, V.; Songsungthong, W.; Springfeld, C.; Cattaneo, R. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 2007, 360, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Yokota, S.-I.; Saito, H.; Kubota, T.; Yokosawa, N.; Amano, K.-I.; Fujii, N. Measles virus suppresses interferon-α signaling pathway: Suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-α receptor complex. Virology 2003, 306, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Childs, K.; Randall, R.; Goodbourn, S. Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction. J. Virol. 2012, 86, 3411–3421. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, K.R.; Horvath, C.M. Paramyxovirus V protein interaction with the antiviral sensor LGP2 disrupts MDA5 signaling enhancement but is not relevant to LGP2-mediated RLR signaling inhibition. J. Virol. 2014, 88, 8180–8188. [Google Scholar] [CrossRef] [Green Version]
- Nakatsu, Y.; Takeda, M.; Ohno, S.; Shirogane, Y.; Iwasaki, M.; Yanagi, Y. Measles virus circumvents the host interferon response by different actions of the C and V proteins. J. Virol. 2008, 82, 8296–8306. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, C.K.; Radeke, M.J.; Cattaneo, R.; Samuel, C.E. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R. J. Virol. 2014, 88, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Runge, S.; Sparrer, K.M.; Lässig, C.; Hembach, K.; Baum, A.; Garcia-Sastre, A.; Söding, J.; Conzelmann, K.-K.; Hopfner, K.-P. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 2014, 10, e1004081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.; Calis, J.J.; Wu, X.; Sun, T.; Yu, Y.; Sarbanes, S.L.; Thi, V.L.D.; Shilvock, A.R.; Hoffmann, H.-H.; Rosenberg, B.R. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 2018, 172, 811–824.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, W.J.; Helfand, R.F. The challenges and strategies for laboratory diagnosis of measles in an international setting. J. Infect. Dis. 2003, 187, S283–S290. [Google Scholar] [CrossRef] [PubMed]
- Young, M.K.; Nimmo, G.R.; Cripps, A.W.; Jones, M.A. Post-exposure passive immunisation for preventing measles. Cochrane Database Syst. Rev. 2014, 4, CD010056. [Google Scholar] [CrossRef] [Green Version]
- Permar, S.R.; Klumpp, S.A.; Mansfield, K.G.; Carville, A.A.; Gorgone, D.A.; Lifton, M.A.; Schmitz, J.E.; Reimann, K.A.; Polack, F.P.; Griffin, D.E. Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J. Infect. Dis. 2004, 190, 998–1005. [Google Scholar] [CrossRef]
- Moss, W.J.; Cutts, F.; Griffin, D.E. Implications of the human immunodeficiency virus epidemic for control and eradication of measles. Clin. Infect. Dis. 1999, 29, 106–112. [Google Scholar] [CrossRef]
- Leone, M.; Mönkäre, J.; Bouwstra, J.A.; Kersten, G. Dissolving microneedle patches for dermal vaccination. Pharm. Res. 2017, 34, 2223–2240. [Google Scholar] [CrossRef] [Green Version]
- Ludlow, M.; de Vries, R.D.; Lemon, K.; McQuaid, S.; Millar, E.; van Amerongen, G.; Yüksel, S.; Verburgh, R.J.; Osterhaus, A.D.; de Swart, R.L. Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. J. Gen. Virol. 2013, 94, 1933–1944. [Google Scholar] [CrossRef]
- Abt, M.; Gassert, E.; Schneider-Schaulies, S. Measles virus modulates chemokine release and chemotactic responses of dendritic cells. J. Gen. Virol. 2009, 90, 909–914. [Google Scholar] [CrossRef]
- De Vries, R.D.; de Swart, R.L. Measles immune suppression: Functional impairment or numbers game? PLoS Pathog. 2014, 10, e1004482. [Google Scholar] [CrossRef] [Green Version]
- Mina, M.J.; Kula, T.; Leng, Y.; Li, M.; De Vries, R.D.; Knip, M.; Siljander, H.; Rewers, M.; Choy, D.F.; Wilson, M.S. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 2019, 366, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mina, M.J.; Metcalf, C.J.E.; De Swart, R.L.; Osterhaus, A.; Grenfell, B.T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 2015, 348, 694–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasham, K.; Ahmed, N.; Zeshan, B. Circulating microRNAs in oncogenic viral infections: Potential diagnostic biomarkers. SN Appl. Sci. 2020, 2, 442. [Google Scholar] [CrossRef] [Green Version]
- Maltezou, H.C.; Wicker, S. Measles in health-care settings. Am. J. Infect. Control. 2013, 41, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Doblas, D.; Andrews, N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine 2008, 26, 6392–6397. [Google Scholar] [CrossRef]
- Dimech, W.; Mulders, M.N. A review of testing used in seroprevalence studies on measles and rubella. Vaccine 2016, 34, 4119–4122. [Google Scholar] [CrossRef]
- Mannion, N.M.; Greenwood, S.M.; Young, R.; Cox, S.; Brindle, J.; Read, D.; Nellåker, C.; Vesely, C.; Ponting, C.P.; McLaughlin, P.J. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014, 9, 1482–1494. [Google Scholar] [CrossRef] [Green Version]
- Choe, Y.J.; Hu, J.K.; Song, K.M.; Cho, H.; Yoon, H.S.; Kim, S.T.; Lee, H.J.; Kim, K.; Bae, G.-R.; Lee, J.-K. Evaluation of an expanded case definition for vaccine-modified measles in a school outbreak in South Korea in 2010. Jpn. J. Infect. Dis. 2012, 65, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Mulders, M.N.; Rota, P.A.; Icenogle, J.P.; Brown, K.E.; Takeda, M.; Rey, G.J.; Mamou, M.C.B.; Dosseh, A.R.; Byabamazima, C.R.; Ahmed, H.J. Global measles and rubella laboratory network support for elimination goals, 2010–2015. Morb. Mortal. Wkly. Rep. 2016, 65, 438–442. [Google Scholar] [CrossRef]
- Stevens, G.A.; Bennett, J.E.; Hennocq, Q.; Lu, Y.; De-Regil, L.M.; Rogers, L.; Danaei, G.; Li, G.; White, R.A.; Flaxman, S.R. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health 2015, 3, e528–e536. [Google Scholar] [CrossRef] [Green Version]
- Ogbuanu, I.U.; Zeko, S.; Chu, S.Y.; Muroua, C.; Gerber, S.; De Wee, R.; Kretsinger, K.; Wannemuehler, K.; Gerndt, K.; Allies, M. Maternal, fetal, and neonatal outcomes associated with measles during pregnancy: Namibia, 2009–2010. Clin. Infect. Dis. 2014, 58, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.R.; Albertyn, C.; Heckmann, J.M.; Smuts, H.E. Molecular characterisation of virus in the brains of patients with measles inclusion body encephalitis (MIBE). Virol. J. 2013, 10, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendorf, K.A.; Winter, K.; Zipprich, J.; Schechter, R.; Hacker, J.K.; Preas, C.; Cherry, J.D.; Glaser, C.; Harriman, K. Subacute sclerosing panencephalitis: The devastating measles complication that might be more common than previously estimated. Clin. Infect. Dis. 2017, 65, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M.; Solyman, S.M.; Mohamed, N.; Boseila, A.A.; Hanora, A. Antiviral activity of Ribavirin nano-particles against measles virus. Cell. Mol. Biol. 2018, 64, 24–32. [Google Scholar] [CrossRef]
- Kabra, S.K.; Lodha, R. Antibiotics for preventing complications in children with measles. Cochrane Database Syst. Rev. 2013, 8, CD001477. [Google Scholar] [CrossRef]
- Kauffmann, F.; Heffernan, C.; Meurice, F.; Ota, M.O.; Vetter, V.; Casabona, G. Measles, mumps, rubella prevention: How can we do better? Expert Rev. Vaccines 2021, 20, 811–826. [Google Scholar] [CrossRef]
- Danova, I. A review of measles virus. PROBLEMS Infect. Parasit. Dis. 2021, 49, 5–13. [Google Scholar]
- Roberts, L. How COVID hurt the fight against other dangerous diseases. Nature 2021, 502–504. [Google Scholar] [CrossRef]
- Al-Abdullah, N. A measles outbreak in a refugee community in Jeddah City, Saudi Arabia. J. Hosp. Infect. 2018, 100, e264–e265. [Google Scholar] [CrossRef]
- Mostafa, I.; Islam, S.F.; Mondal, P.; Faruque, A.; Ahmed, T.; Hossain, M.I. Factors affecting low coverage of the vitamin A supplementation program among young children admitted in an urban diarrheal treatment facility in Bangladesh. Glob. Health Action 2019, 12, 1588513. [Google Scholar] [CrossRef] [Green Version]
- Barnard, D.L. Inhibitors of measles virus. Antivir. Chem. Chemother. 2004, 15, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanderEnde, K.; Gacic-Dobo, M.; Diallo, M.S.; Conklin, L.M.; Wallace, A.S. Global routine vaccination coverage—2017. Morb. Mortal. Wkly. Rep. 2018, 67, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edens, C.; Collins, M.L.; Ayers, J.; Rota, P.A.; Prausnitz, M.R. Measles vaccination using a microneedle patch. Vaccine 2013, 31, 3403–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, J.C.; Carroll, T.D.; Collins, M.L.; Chen, M.-H.; Fritts, L.; Dutra, J.C.; Rourke, T.L.; Goodson, J.L.; McChesney, M.B.; Prausnitz, M.R. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J. Infect. Dis. 2018, 218, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgers, A.M.; Cordeiro, A.S.; Donnelly, R.F. Technology update: Dissolvable microneedle patches for vaccine delivery. Med. Devices 2019, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Edens, C.; Collins, M.L.; Goodson, J.L.; Rota, P.A.; Prausnitz, M.R. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015, 33, 4712–4718. [Google Scholar] [CrossRef] [Green Version]
- Lochlainn, L.M.N.; de Gier, B.; van der Maas, N.; Strebel, P.M.; Goodman, T.; van Binnendijk, R.S.; de Melker, H.E.; Hahné, S.J. Immunogenicity, effectiveness, and safety of measles vaccination in infants younger than 9 months: A systematic review and meta-analysis. Lancet Infect. Dis. 2019, 19, 1235–1245. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.L.; Bolotin, S.; Khan, S.; Li, Y.; Johnson, C.; Friedman, L.; Tricco, A.C.; Hahné, S.J.; Heffernan, J.M.; Dabbagh, A. The effect of time since measles vaccination and age at first dose on measles vaccine effectiveness–A systematic review. Vaccine 2020, 38, 460–469. [Google Scholar] [CrossRef]
- Carazo, S.; Billard, M.-N.; Boutin, A.; De Serres, G. Effect of age at vaccination on the measles vaccine effectiveness and immunogenicity: Systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 251. [Google Scholar] [CrossRef]
- Venekamp, R.P.; Sanders, S.L.; Glasziou, P.P.; Del Mar, C.B.; Rovers, M.M. Antibiotics for acute otitis media in children. Cochrane Database Syst. Rev. 2015, 1, CD000219. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.K.; Al-Mazrou, Y.Y.; AlHowasi, M.N.; Al-Jeffri, M. Measles in Saudi Arabia: From control to elimination. Ann. Saudi Med. 2005, 25, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Jahan, S.; Al Saigul, A.M.; Abu Baker, M.A.M.; Alataya, A.O.; Hamed, S.A.R. Measles outbreak in Qassim, Saudi Arabia 2007: Epidemiology and evaluation of outbreak response. J. Public Health 2008, 30, 384–390. [Google Scholar] [CrossRef] [PubMed]
WHO Region/Year (No. of Countries in Region) | % MCV1 Coverage | % Countries with ≥90% MCV1 Coverage | % MCV2 Coverage | % of Reporting Countries with <5 Measles Cases per 1 Million | No. of Reported Measles Cases | Measles Incidence per 1 Million | Estimated No. of Measles Cases (95% CI) | Estimated No. of Measles Deaths (95% CI) | Estimated % of Measles Mortality Reduction, 2000–2018 | Cumulative No. of Measles Deaths Averted by Vaccination, 2000–2018 |
---|---|---|---|---|---|---|---|---|---|---|
Africa | ||||||||||
2000 (46) | 53 | 9 | 5 | 8 | 520,102 | 836 | 10,723,800 (7,718,000–17,119,100) | 345,600 (236,300–562,100) | 85 | 12,146,900 |
2018 (47) | 74 | 30 | 26 | 47 | 125,426 | 118 | 1,759,000 (1,141,200–6,002,100) | 52,600 (32,000–173,400) | ||
Americas | ||||||||||
2000 (35) | 93 | 63 | 65 | 89 | 1754 | 2 | 8770 (4400–35,100) | NA | NA | 97,100 |
2018 (35) | 90 | 57 | 82 | 91 | 16,327 | 24 | 83,500 (41,800–334,200) | |||
Eastern Mediterranean | ||||||||||
2000 (21) | 71 | 57 | 28 | 17 | 38,592 | 90 | 2,427,900 (1,503,800–3,892,900) | 37,900 (21,700–64,000) | −29 | 2,820,600 |
2018 (21) | 82 | 57 | 74 | 35 | 64,722 | 93 | 2,852,700 (2,293,700–4,265,200) | 49,000 (36,700–72,500) | ||
Europe | ||||||||||
2000 (52) | 91 | 62 | 48 | 45 | 37,421 | 50 | 860,176 (227,200–6,668,300) | 400 (100–2200) | 50 | 95,600 |
2018 (53) | 95 | 89 | 91 | 34 | 82,523 | 98 | 861,800 (71,100–6,480,300) | 200 (0–1800) | ||
South-East Asia | ||||||||||
2000 (10) | 63 | 30 | 3 | 0 | 78,558 | 51 | 11,411,900 (8,764,600–15,572,100) | 141,700 (100,100–199,600) | 72 | 6,825,400 |
2018 (11) | 89 | 82 | 80 | 36 | 34,741 | 18 | 3,803,800 (2,856,700–6,702,900) | 39,100 (24,800–76,000) | ||
Western Pacific | ||||||||||
2000 (27) | 85 | 48 | 2 | 30 | 177,052 | 105 | 2,786,500 (1,923,900–22,167,600) | 10,000 (5200–74,200) | 87 | 1,213,200 |
2018 (27) | 95 | 59 | 91 | 77 | 29,497 | 15 | 408,400 (42,500–16,753,800) | 1300 (100–2,786,500) | ||
Total | ||||||||||
2000 (191) | 72 | 45 | 18 | 38 | 853,479 | 145 | 28,219,100 (20,141,900–65,455,000) | 535,600 (363,400–901,700) | 73 | 23,198,800 |
2018 (194) | 86 | 61 | 69 | 54 | 353,236 | 49 | 9,769,400 (6,446,900–40,538,500) | 142,300 (93,600–387,900) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabaan, A.A.; Mutair, A.A.; Alhumaid, S.; Garout, M.; Alsubki, R.A.; Alshahrani, F.S.; Alfouzan, W.A.; Alestad, J.H.; Alsaleh, A.E.; Al-Mozaini, M.A.; et al. Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection. Medicina 2022, 58, 680. https://doi.org/10.3390/medicina58050680
Rabaan AA, Mutair AA, Alhumaid S, Garout M, Alsubki RA, Alshahrani FS, Alfouzan WA, Alestad JH, Alsaleh AE, Al-Mozaini MA, et al. Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection. Medicina. 2022; 58(5):680. https://doi.org/10.3390/medicina58050680
Chicago/Turabian StyleRabaan, Ali A., Abbas Al Mutair, Saad Alhumaid, Mohammed Garout, Roua A. Alsubki, Fatimah S. Alshahrani, Wadha A. Alfouzan, Jeehan H. Alestad, Abdullah E. Alsaleh, Maha A. Al-Mozaini, and et al. 2022. "Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection" Medicina 58, no. 5: 680. https://doi.org/10.3390/medicina58050680