Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abo El Enin, M.A.; Amin, I.E.; Abd El Aziz, A.S.; Mahdy, M.M.; Abo El Enin, M.A.; Mostafa, M.M. Effect of fentanyl addition to local anaesthetic in peribulbar block. Indian J. Anaesth. 2009, 53, 57–63. [Google Scholar]
- Gioia, L.; Fanelli, G.; Casati, A.; Nuti, U.; Mennella, R.; Scarioni, M.; Cerchierini, E.; Sciascia, A.; Garassino, A.; Torri, G.; et al. A prospective, randomized, double-blinded comparison of ropivacaine 0.5%, 0.75%, and 1% ropivacaine for peribulbar block. J. Clin. Anesth. 2004, 16, 184–188. [Google Scholar] [CrossRef]
- Luchetti, M.; Magni, G.; Marraro, G. A prospective randomized double-blinded controlled study of ropivacaine 0.75% versus bupivacaine 0.5%-mepivacaine 2% for peribulbar anesthesia. Reg. Anesth. Pain Med. 2000, 25, 195–200. [Google Scholar] [CrossRef]
- Fudickar, A.; Gruenewald, M.; Fudickar, B.; Hill, M.; Wallenfang, M.; Hüllemann, J.; Voss, D.; Caliebe, A.; Roider, J.B.; Steinfath, M.; et al. Immobilization during anesthesia for vitrectomy using a laryngeal mask without neuromuscular blockade versus endotracheal intubation and neuromuscular blockade. Minerva Anestesiol. 2018, 84, 820–828. [Google Scholar] [CrossRef]
- Licina, A.; Sidhu, S.; Xie, J.; Wan, C. Local versus general anaesthesia for adults undergoing pars plana vitrectomy surgery. Cochrane Database Syst. Rev. 2016, 9, CD009936. [Google Scholar] [CrossRef]
- Nicholson, A.D.; Singh, P.; Badrinath, S.S.; Murugesan, R.; Sundararaj, I.; Vardarajan, S.; Krishnan, M.; Nagarajan, K.; Gopal, L.; Sharma, T.; et al. Peribulbar anesthesia for primary vitreoretinal surgery. Ophthalmic Surg. 1992, 23, 657–661. [Google Scholar]
- Shende, D.; Sadhasivam, S.; Madan, R. Effects of peribulbar bupivacaine as an adjunct to general anaesthesia on peri-operative outcome following retinal detachment surgery. Anaesthesia 2000, 55, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Mandelcorn, M.; Taback, N.; Mandelcorn, E.; Ananthanarayan, C. Risk factors for pain and nausea following retinal and vitreous surgery under conscious sedation. Can. J. Ophthalmol. J. Can. Ophtalmol. 1999, 34, 281–285. [Google Scholar]
- Authors/Task Force Members; Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Bøtker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar] [CrossRef] [PubMed]
- Bharti, N.; Chari, P.; Kumar, P. Effect of sevoflurane versus propofol-based anesthesia on the hemodynamic response and recovery characteristics in patients undergoing microlaryngeal surgery. Saudi J. Anaesth. 2012, 6, 380–384. [Google Scholar] [CrossRef]
- Loriga, B.; Di Filippo, A.; Tofani, L.; Signorini, P.; Caporossi, T.; Barca, T.; De Gaudio, A.R.; Tizzo, S.; Adembri, C. Postoperative pain after vitreo-retinal surgery is influenced by surgery duration and anesthesia conduction. Minerva Anestesiol. 2019, 85, 731–737. [Google Scholar] [CrossRef]
- Misiołek, H.; Cettler, M.; Woroń, J.; Wordliczek, J.; Dobrogowski, J.; Mayzner-Zawadzka, E. The 2014 guidelines for post-operative pain management. Anaesthesiol. Intensive Ther. 2014, 46, 221–244. [Google Scholar] [CrossRef]
- Gruenewald, M.; Ilies, C. Monitoring the nociception-anti-nociception balance. Best Pract. Res. Clin. Anaesthesiol. 2013, 27, 235–247. [Google Scholar] [CrossRef]
- Kallio, H.; Lindberg, L.I.; Majander, A.S.; Uutela, K.H.; Niskanen, M.L.; Paloheimo, M.P.J. Measurement of surgical stress in anaesthetized children. Br. J. Anaesth. 2008, 101, 383–389. [Google Scholar] [CrossRef]
- Ahonen, J.; Jokela, R.; Uutela, K.; Huiku, M. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br. J. Anaesth. 2007, 98, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Struys, M.M.R.F.; Vanpeteghem, C.; Huiku, M.; Uutela, K.; Blyaert, N.B.K.; Mortier, E.P. Changes in a surgical stress index in response to standardized pain stimuli during propofol-remifentanil infusion. Br. J. Anaesth. 2007, 99, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wennervirta, J.; Hynynen, M.; Koivusalo, A.-M.; Uutela, K.; Huiku, M.; Vakkuri, A. Surgical stress index as a measure of nociception/antinociception balance during general anesthesia. Acta Anaesthesiol. Scand. 2008, 52, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T.; Pascoe, E.; Ang, B.; Schmarbeck, T.; Clarke, M.W.; Fuller, C.; Kapoor, V. Monitoring of intra-operative nociception: Skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia 2010, 65, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, I.; Göhner, A.; Crozier, T.A.; Hesjedal, B.; Wiese, C.H.; Popov, A.F.; Bauer, M.; Hinz, J.M. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br. J. Anaesth. 2013, 110, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, M.; Meybohm, P.; Ilies, C.; Höcker, J.; Hanss, R.; Scholz, J.; Bein, B. Influence of different remifentanil concentrations on the performance of the surgical stress index to detect a standardized painful stimulus during sevoflurane anaesthesia. Br. J. Anaesth. 2009, 103, 586–593. [Google Scholar] [CrossRef]
- Upton, H.D.; Ludbrook, G.L.; Wing, A.; Sleigh, J.W. Intraoperative “Analgesia Nociception Index”-Guided Fentanyl Administration During Sevoflurane Anesthesia in Lumbar Discectomy and Laminectomy: A Randomized Clinical Trial. Anesth. Analg. 2017, 125, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gallice, M.; Rouberol, F.; Albaladejo, P.; Palombi, K.; Aptel, F.; Romanet, J.P.; Chiquet, C. Managing antithrombotic therapy in vitreoretinal surgery. J. Fr. Ophtalmol. 2015, 38, 61–73. [Google Scholar] [CrossRef]
- Ghali, A.M.; el Btarny, A.M. The effect on outcome of peribulbar anaesthesia in conjunction with general anesthesia for vitreoretinal surgery. Anaesthesia 2010, 65, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Kolny, M.; Stasiowski, M.J.; Zuber, M.; Marciniak, R.; Chabierska, E.; Pluta, A.; Jałowiecki, P.; Byrczek, T. Randomized, comparative study of the effectiveness of three different techniques of interscalene brachial plexus block using 0.5% ropivacaine for shoulder arthroscopy. Anaesthesiol. Intensive Ther. 2017, 49, 47–52. [Google Scholar] [CrossRef]
- Schönfeld, C.-L.; Hierneis, S.; Kampik, A. Preemptive analgesia with ropivacaine for pars plana vitrectomy: Randomized controlled trial on efficacy and required dose. Retina 2012, 32, 912–917. [Google Scholar] [CrossRef]
- Williams, N.; Strunin, A.; Heriot, W. Pain and vomiting after vitreoretinal surgery: A potential role for local anaesthesia. Anaesth. Intensive Care 1995, 23, 444–448. [Google Scholar] [CrossRef]
- Bayerl, K.; Boost, K.A.; Wolf, A.; Kampik, A.; Schaumberger, M.; Haritoglou, C. A 23-gauge pars plana vitrectomy after induction of general anesthesia: Effect of additional retrobulbar anesthesia on postoperative pain. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2014, 111, 1194–1200. [Google Scholar] [CrossRef]
- Henzler, D.; Müller-Kaulen, B.; Steinhorst, U.H.; Broermann, H.; Piepenbrock, S. The combination of retrobulbar block with general anaesthesia may lead to pre-emptive analgesia in patients undergoing pars plana vitrectomy. Anasthesiologie Intensivmed. Notfallmedizin Schmerzther. AINS 2002, 37, 267–272. [Google Scholar] [CrossRef]
- Mahfouz, A.K.M.; Nabawi, K.S. Preemptive analgesia in rhegmatogenous retinal detachment surgery: Is it effective? Retina 2002, 22, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.O.; Goodwin, P.L.; Feist, R.M.; Vail, R.S. Preemptive sub-Tenon’s anesthesia for pars plana vitrectomy under general anesthesia: Is it effective? Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2007, 38, 203–208. [Google Scholar] [CrossRef]
- Page, M.A.; Fraunfelder, F.W. Safety, efficacy, and patient acceptability of lidocaine hydrochloride ophthalmic gel as a topical ocular anesthetic for use in ophthalmic procedures. Clin. Ophthalmol. 2009, 3, 601–609. [Google Scholar] [CrossRef]
- Landwehr, S.; Kiencke, P.; Giesecke, T.; Eggert, D.; Thumann, G.; Kampe, S. A comparison between IV paracetamol and IV metamizol for postoperative analgesia after retinal surgery. Curr. Med. Res. Opin. 2005, 21, 1569–1575. [Google Scholar] [CrossRef]
- Sadrolsadat, S.H.; Yousefshahi, F.; Ostadalipour, A.; Mohammadi, F.Z.; Makarem, J. Effect of Intravenous Acetaminophen on Postoperative Pain in Vitrectomy: A Randomized, Double-Blind, Clinical Trial. Anesthesiol. Pain Med. 2017, 7, e13639. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.C. Techniques of orbital regional anaesthesia. Br. J. Anaesth. 1995, 75, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Kusza, K.; Kübler, A.; Maciejewski, D.; Mikstacki, A.; Owczuk, R.; Wujtewicz, M.; Piechota, M. Guidelines of the Polish Society of Anaesthesiology and Intensive Therapy determining principles, conditions and organisational aspects of anaesthesiology and intensive therapy services. Anaesthesiol. Intensive Ther. 2012, 44, 177–187. [Google Scholar]
- Jaichandran, V.V.; Raman, R.; Gella, L.; Sharma, T. Local anesthetic agents for vitreoretinal surgery: No advantage to mixing solutions. Ophthalmology 2015, 122, 1030–1033. [Google Scholar] [CrossRef]
- Mahajan, D.; Sain, S.; Azad, S.; Arora, T.; Azad, R. Comparison of topical anesthesia and peribulbar anesthesia for 23-gauge vitrectomy without sedation. Retina 2013, 33, 1400–1406. [Google Scholar] [CrossRef]
- Newsom, R.S.; Wainwright, A.C.; Canning, C.R. Local anaesthesia for 1221 vitreoretinal procedures. Br. J. Ophthalmol. 2001, 85, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Fogel, S.; Leavell, M. Cost analysis in vitrectomy: Monitored anesthesia care and general anesthesia. AANA J. 2001, 69, 111–113. [Google Scholar]
- Kristin, N.; Schönfeld, C.L.; Bechmann, M.; Bengisu, M.; Ludwig, K.; Scheider, A.; Kampik, A. Vitreoretinal surgery: Pre-emptive analgesia. Br. J. Ophthalmol. 2001, 85, 1328–1331. [Google Scholar] [CrossRef]
- Bujalska, M. Effect of nitric oxide synthase inhibition on antinociceptive action of different doses of acetaminophen. Pol. J. Pharmacol. 2004, 56, 605–610. [Google Scholar]
- Graham, G.G.; Scott, K.F. Mechanism of action of paracetamol. Am. J. Ther. 2005, 12, 46–55. [Google Scholar] [CrossRef]
- Ottani, A.; Leone, S.; Sandrini, M.; Ferrari, A.; Bertolini, A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur. J. Pharmacol. 2006, 531, 280–281. [Google Scholar] [CrossRef]
- Raffa, R.B.; Walker, E.A.; Sterious, S.N. Opioid receptors and acetaminophen (paracetamol). Eur. J. Pharmacol. 2004, 503, 209–210. [Google Scholar] [CrossRef]
- Roca-Vinardell, A.; Ortega-Alvaro, A.; Gibert-Rahola, J.; Micó, J.A. The role of 5-HT1A/B autoreceptors in the antinociceptive effect of systemic administration of acetaminophen. Anesthesiology 2003, 98, 741–747. [Google Scholar] [CrossRef]
- Smith, H.S. Potential analgesic mechanisms of acetaminophen. Pain Physician 2009, 12, 269–280. [Google Scholar]
- Apfel, C.C.; Turan, A.; Souza, K.; Pergolizzi, J.; Hornuss, C. Intravenous acetaminophen reduces postoperative nausea and vomiting: A systematic review and meta-analysis. Pain 2013, 154, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Brodner, G.; Gogarten, W.; Van Aken, H.; Hahnenkamp, K.; Wempe, C.; Freise, H.; Cosanne, I.; Huppertz-Thyssen, M.; Ellger, B. Efficacy of intravenous paracetamol compared to dipyrone and parecoxib for postoperative pain management after minor-to-intermediate surgery: A randomised, double-blind trial. Eur. J. Anaesthesiol. 2011, 28, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Doleman, B.; Read, D.; Lund, J.N.; Williams, J.P. Preventive Acetaminophen Reduces Postoperative Opioid Consumption, Vomiting, and Pain Scores After Surgery: Systematic Review and Meta-Analysis. Reg. Anesth. Pain Med. 2015, 40, 706–712. [Google Scholar] [CrossRef] [PubMed]
- McNicol, E.D.; Tzortzopoulou, A.; Cepeda, M.S.; Francia, M.B.D.; Farhat, T.; Schumann, R. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: A systematic review and meta-analysis. Br. J. Anaesth. 2011, 106, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Oscier, C.D.; Milner, Q.J.W. Peri-operative use of paracetamol. Anaesthesia 2009, 64, 65–72. [Google Scholar] [CrossRef]
- Toms, L.; McQuay, H.J.; Derry, S.; Moore, R.A. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst. Rev. 2008, 4, CD004602. [Google Scholar] [CrossRef]
- Brod, R.D. Transient central retinal artery occlusion and contralateral amaurosis after retrobulbar anesthetic injection. Ophthalmic Surg. 1989, 20, 643–646. [Google Scholar] [PubMed]
- Rybczyńska, I.; Liska, M.; el Zaluk, E.; Kociecki, J. Advantages and disadvantages of periocular analgesia. Klin. Oczna 1995, 97, 72–73. [Google Scholar] [PubMed]
- Calenda, E.; Olle, P.; Muraine, M.; Brasseur, G. Peribulbar anesthesia and sub-Tenon injection for vitreoretinal surgery: 300 cases. Acta Ophthalmol. Scand. 2000, 78, 196–199. [Google Scholar] [CrossRef]
- Calenda, E.; Rey, N.; Compere, V.; Muraine, M. Peribulbar anesthesia leading to central retinal artery occlusion. J. Clin. Anesth. 2009, 21, 311–312. [Google Scholar] [CrossRef]
- Jaichandran, V.V.; Nair, A.G.; Gandhi, R.A.; Prateeba-Devi, N. Brainstem anesthesia presenting as contralateral third nerve palsy following peribulbar anesthesia for cataract surgery. Acta Anaesthesiol. Taiwanica Off. J. Taiwan Soc. Anesthesiol. 2013, 51, 135–136. [Google Scholar] [CrossRef]
- Krilis, M.; Zeldovich, A.; Garrick, R.; Goldberg, I. Vision loss and partial third nerve palsy following contralateral peribulbar anesthesia. J. Cataract Refract. Surg. 2013, 39, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, A.; Singh, P.M.; Kumar, M. Pulmonary oedema in a patient undergoing vitreo-retinal surgery under peribulbar block. Indian J. Anaesth. 2012, 56, 387–390. [Google Scholar] [CrossRef]
- Brar, G.S.; Ram, J.; Dogra, M.R.; Pandav, S.S.; Sharma, A.; Kaushik, S.; Gupta, A. Ocular explosion after peribulbar anesthesia. J. Cataract Refract. Surg. 2002, 28, 556–561. [Google Scholar] [CrossRef]
- Bensghir, M.; Badou, N.; Houba, A.; Balkhi, H.; Haimeur, C.; Azendour, H. Convulsions during cataract surgery under peribulbar anesthesia: A case report. J. Med. Case Rep. 2014, 8, 218. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Andrade, S.; Bartels, D.B.; Lange, R.; Sandford, L.; Gurwitz, J. Safety of metamizole: A systematic review of the literature. J. Clin. Pharm. Ther. 2016, 41, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Pogatzki-Zahn, E.; Chandrasena, C.; Schug, S.A. Nonopioid analgesics for postoperative pain management. Curr. Opin. Anaesthesiol. 2014, 27, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Souki, M.A. Metamizole for postoperative pain therapy. Eur. J. Anaesthesiol. 2016, 33, 785–786. [Google Scholar] [CrossRef]
- Stammschulte, T.; Ludwig, W.-D.; Mühlbauer, B.; Bronder, E.; Gundert-Remy, U. Metamizole (dipyrone)-associated agranulocytosis. An analysis of German spontaneous reports 1990–2012. Eur. J. Clin. Pharmacol. 2015, 71, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Steffen, P.; Schuhmacher, I.; Weichel, T.; Georgieff, M.; Seeling, W. Differential administration of non-opioids in postoperative analgesia, I. Quantification of the analgesic effect of metamizole using patient-controlled analgesia. Anasthesiologie Intensivmed. Notfallmedizin Schmerzther. AINS 1996, 31, 143–147. [Google Scholar] [CrossRef]
- Blanca-López, N.; Pérez-Sánchez, N.; Agúndez, J.A.; García-Martin, E.; Torres, M.J.; Cornejo-García, J.A.; Perkins, J.R.; Miranda, M.A.; Andreu, I.; Mayorga, C.; et al. Allergic Reactions to Metamizole: Immediate and Delayed Responses. Int. Arch. Allergy Immunol. 2016, 169, 223–230. [Google Scholar] [CrossRef]
- JJuste, F.M.; Garces, T.R.; Enguita, R.G.; Blasco, P.C.; Trallero, J.A. Cardiac complications in a metamizole-induced type I Kounis syndrome. Rev. Bras. Anestesiol. 2016, 66, 194–196. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fekrat, S.; Elsing, S.H.; Raja, S.C.; Campochiaro, P.A.; de Juan, E.; Haller, J.A. Eye pain after vitreoretinal surgery: A prospective study of 185 patients. Retina 2001, 21, 627–632. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, R.B.; Zacharias, L.C.; de Azevedo, B.M.; Giusti, B.S.; Pretti, R.C.; Takahashi, W.Y.; Monteiro, M.L. Metamizole versus placebo for panretinal photocoagulation pain control: A prospective double-masked randomized controlled study. Int. J. Retina Vitr. 2015, 1, 21. [Google Scholar] [CrossRef]
- Calenda, E.; Muraine, M. Ultrasound comparison of diffusion of local anesthetic solution after a peribulbar and a sub-Tenon’s block: A pilot study. Int. J. Ophthalmol. 2016, 9, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.; Missir, A.; Pluta, A.; Szumera, I.; Stasiak, M.; Szopa, W.; Błaszczyk, B.; Możdżyński, B.; Majchrzak, K.; Tymowski, M.; et al. Influence of infiltration anaesthesia on perioperative outcomes following lumbar discectomy under surgical pleth index-guided general anaesthesia: A preliminary report from a randomised controlled prospective trial. Adv. Med. Sci. 2020, 65, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Vaideanu, D.; Taylor, P.; McAndrew, P.; Hildreth, A.; Deady, J.P.; Steel, D.H. Double masked randomised controlled trial to assess the effectiveness of paracetamol in reducing pain in panretinal photocoagulation. Br. J. Ophthalmol. 2006, 90, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Degoute, C.-S. Controlled hypotension: A guide to drug choice. Drugs 2007, 67, 1053–1076. [Google Scholar] [CrossRef] [PubMed]
- Krebs, E.E.; Carey, T.S.; Weinberger, M. Accuracy of the pain numeric rating scale as a screening test in primary care. J. Gen. Intern. Med. 2007, 22, 1453–1458. [Google Scholar] [CrossRef]
- Wenlan, L.; Zhongyuan, X.; Shaoqing, L.; Liying, Z.; Bo, Z.; Min, L. MiR-34a-5p mediates sevoflurane preconditioning induced inhibition of hypoxia/reoxygenation injury through STX1A in cardiomyocytes. Biomed. Pharmacother. Biomedecine Pharmacother. 2018, 102, 153–159. [Google Scholar] [CrossRef]
- Ledowski, T.; Burke, J.; Hruby, J. Surgical pleth index: Prediction of postoperative pain and influence of arousal. Br. J. Anaesth. 2016, 117, 371–374. [Google Scholar] [CrossRef]
Anthropometric Data | Total n = 175 (100%) | GA Group n = 35 (20%) | M Group n = 35 (20%) | P Group n = 35 (20%) | PBB Group n = 35 (20%) | T Group n = 35 (20%) | p-Value | |
---|---|---|---|---|---|---|---|---|
The results of the one-way analysis of variance (ANOVA)/the Kruskal–Wallis test by ranks | ||||||||
Age X ± S M (Rk) | [years] | 64.5 ± 11.7 66 (13) | 65.1 ± 10.8 67 (9) | 61.9 ± 11.9 63 (14) | 66.1 ± 9.9 67 (8) | 66.8 ± 12.1 69 (13) | 62.7 ± 13.3 65 (14) | p = 0.25 a NS |
High X ± S M (Rk) | [cm] | 165.8 ± 8.7 165 (12) | 166.9 ± 8.6 168 (14) | 168 ± 7.4 170 (14) | 163.4 ± 8.7 160 (12) | 165.9 ± 8.3 164 (12) | 164.7 ± 10.3 164 (18) | p = 0.18 a NS |
Weight X ± S M (Rk) | [kg] | 77.6 ± 15.9 75.5 (17) | 83.4 ± 19.8 82 (20) | 74.7 ± 14.9 74 (19) | 74.1 ± 13.3 74 (22) | 78.8 ± 16 75 (11) | 77.1 ± 13.7 80 (21) | p = 0.19 a NS |
BMI X ± S M (Rk) | [kg/m2] | 28.3 ± 5.4 27.5 (6.4) | 29.9 ± 6.6 28.4 (5.3) | 26.4 ± 4.6 25.3 (5.4) | 27.9 ± 5.3 27.6 (7.7) | 28.6 ± 5.1 27.1 (4.4) | 28.5 ± 4.9 28.4 (7.3) | p = 0.05 a |
The results of the χ2 test of independence | ||||||||
Gender n (%) | Female | 97 (55.4) | 18 (51.4) | 15 (42.9) | 24 (68.6) | 21 (60) | 19 (54.3) | p = 0.26 b NS |
Male | 78 (44.6) | 17 (48.6) | 20 (57.1) | 11 (31.4) | 14 (40) | 16 (45.7) | ||
Diabetes Mellitus | Insulin-dependent | 53 (30.3) | 11 (31.4) | 6 (17.1) | 12 (34.3) | 12 (34.3) | 12 (34.3) | p = 0.45 b NS |
Insulin-independent | 45 (25.7) | 10 (28.6) | 3 (8.6) | 12 (34.3) | 9 (25.7) | 11 (31.4) | p = 0.11 b NS | |
The results of the multiple proportions test | ||||||||
BMI n (%) | Norm | 50 (28.7) | 5 (14.3) | 15 (42.9) | 14 (40) | 7 (20.6) | 9 (25.7) | p < 0.05 c |
Overweight | 72 (41.4) | 18 (51.4) | 13 (37.1) | 9 (25.7) | 19 (55.9) | 13 (37.1) | p = 0.09 c NS | |
Obesity | 52 (29.9) | 12 (34.3) | 7 (20) | 12 (34.3) | 8 (23.5) | 13 (37.1) | p = 0.41 c NS |
Scale | Total n = 175 (100%) | GA Group n = 35 (20%) | M Group n = 35 (20%) | P Group n = 35 (20%) | PBB Group n = 35 (20%) | T Group n = 35 (20%) | p-Value |
---|---|---|---|---|---|---|---|
NRS MAX X ± S M (Rk) | 1.5 ± 2.1 0 (3) | 1.5 ± 2 0 (3) | 1.5 ± 2.2 0 (3) | 1.6 ± 2.1 0 (3) | 1.1 ± 1.9 0 (2) | 1.8 ± 2.5 0 (3) | p = 0.84 a NS |
Number of patients with postoperative acute pain perception—NRS > 6 n (%) | 3 (1.7) | 0 (0) | 0 (0) | 1 (2.9) | 0 (0) | 2 (5.7) | p = 0.25 b NS |
Number of patients with postoperative moderate pain perception—NRS 4–6 n (%) | 30 (17.1) | 6 (17.1) | 8 (22.9) | 5 (14.3) | 5 (14.3) | 6 (17.1) | p = 0.88 b NS |
Number of patients with postoperative mild pain perception—NRS ≤ 3 n (%) | 140 (80) | 29 (82.9) | 27 (77.1) | 28 (80) | 30 (85.7) | 26 (74.3) | p = 0.78 b NS |
Number of patients with postoperative intolerable perception—NRS > 3 n (%) | 33 (18.9) | 6 (17.1) | 8 (22.9) | 6 (17.1) | 5 (14.3) | 8 (22.9) | p = 0.84 b NS |
Number of patients unable to assess their postoperative pain perception n (%) | 2 | 0 | 0 | 1 | 0 | 1 | - |
Interoperative Parameters | Total n = 175 (100%) | GA Group n = 35 (20%) | M Group n = 35 (20%) | P Group n = 35 (20%) | PBB Group n = 35 (20%) | T Group n = 35 (20%) | p-Value a |
---|---|---|---|---|---|---|---|
Time duration of VRS [min] X ± S M (Rk) | 50.9 ± 18.9 47 (29) | 47 ± 13.8 45 (22) | 54.3 ± 20 57 (35) | 48.2 ± 19.1 45 (30) | 51.8 ± 23 42 (41) | 53.1 ± 17.5 52 (25) | p = 0.47 NS |
Interoperative requirement of rescue FNT [mcg] X ± S M (Rk) | 129.9 ± 108.2 100 (150) | 144.3 ± 102.7 150 (150) | 165.7 ± 116.8 200 (200) | 95.7 ± 81.7 100 (50) | 95.1 ± 101.3 50 (150) | 148.6 ± 120.3 150 (200) | p = 0.02 p < 0.05 |
Parameter | GA Group | M Group | P Group | PBB Group | T Group | p-Value a |
---|---|---|---|---|---|---|
n = 35 (20%) | n = 35 (20%) | n = 35 (20%) | n = 35 (20%) | n = 35 (20%) | ||
Stage 1—ONSET | ||||||
HR | 73.6 ± 13.7 | 73.7 ± 12 | 73.3 ± 11.9 | 70.7 ± 12.1 | 69.4 ± 12.6 | p = 0.38 |
(beats/min) | 70 (20) | 74 (19) | 74 (17) | 72 (19) | 66 (17) | NS |
SAP | 152.7 ± 18 | 150.3 ± 17.8 | 150.1 ± 18.1 | 147.1 ± 24.3 | 158.8 ± 26.5 | p = 0.48 |
(mmHg) | 153 (25) | 150 (30) | 154 (22) | 153 (35) | 157 (35) | NS |
MAP | 110.7 ± 11.1 | 109.9 ± 12.3 | 108.2 ± 10.7 | 109.3 ± 12.8 | 113.4 ± 14.4 | p = 0.47 |
(mmHg) | 109 (17) | 108 (21) | 110 (13) | 112 (24) | 115 (26) | NS |
DAP | 79.5 ± 9 | 80.8 ± 10.4 | 76.6 ± 8.7 | 79.7 ± 9.1 | 81.1 ± 9.5 | p = 0.28 |
(mmHg) | 79 (12) | 81 (15) | 74 (15) | 80 (10) | 82.5 (16) | NS |
SPI | 53.1 ± 19.8 | 55.9 ± 18.8 | 54.3 ± 16.7 | 54.2 ± 20.1 | 54.6 ± 20.9 | p = 0.9 |
52 (29) | 60 (29) | 51 (19) | 62 (34) | 52.5 (29) | NS | |
Stage 2—between LMA placement and start of VRS | ||||||
mean HR | 75.7 ± 14.5 | 68.2 ± 14.5 | 67.9 ± 10.4 | 69.5 ± 11.4 | 71.6 ± 14.5 | p = 0.15 |
(beats/min) | 76.5 (22) | 71.8 (18.1) | 66.8 (15.5) | 67.5 (18.6) | 73.4 (21.7) | NS |
max HR | 81.4 ± 15.3 | 74.7 ± 11.7 | 73.6 ± 12 | 75.3 ± 11.5 | 76.5 ± 13.7 | p = 0.1 |
(beats/min) | 82 (23) | 76 (18) | 73 (18) | 74 (16) | 79.5 (18) | NS |
min HR | 71.9 ± 13.3 | 67.3 ± 10.1 | 64.6 ± 9.9 | 64.8 ± 11.3 | 68 ± 14.4 | p = 0.08 |
(beats/min) | 73 (19) | 69 (18) | 64 (13) | 64 (20) | 67.5 (22) | NS |
mean SAP | 133.3 ± 26.3 | 124 ± 28.7 | 134.6 ± 24 | 121.3 ± 22.7 | 128.6 ± 23.2 | p = 0.15 |
(mmHg) | 136 (38.7) | 129.5 (36.5) | 134 (40) | 118 (30) | 125.2 (34.2) | NS |
max SAP | 145.3 ± 29.7 | 133.1 ± 30.4 | 142.2 ± 23.1 | 131.7 ± 21.2 | 140.8 ± 26.8 | p = 0.24 |
(mmHg) | 145 (42) | 139 (39) | 144 (43) | 129 (22) | 132 (44) | NS |
min SAP | 123.3 ± 28.5 | 115.8 ± 26.5 | 127.1 ± 26.9 | 112.7 ± 26.1 | 118.3 ± 23.3 | p = 0.16 |
(mmHg) | 116 (33) | 116 (37) | 133 (46) | 105 (37) | 118.5 (29) | NS |
mean MAP | 98.6 ± 17.3 | 95 ± 16.4 | 98.1 ± 15.6 | 90 ± 14.6 | 97 ± 17.3 | p = 0.16 |
(mmHg) | 97.5 (23.2) | 99.7 (26) | 100 (24) | 87.5 (17.5) | 93.8 (25.8) | NS |
max MAP | 106 ± 18.1 | 100.9 ± 17.8 | 103.1 ± 14.4 | 96.8 ± 13.5 | 103.9 ± 17.1 | p = 0.17 |
(mmHg) | 104.5 (21) | 105 (22) | 103 (21) | 94 (16) | 100.5 (25) | NS |
min MAP | 92.8 ± 21.9 | 89.6 ± 15.9 | 93.5 ± 17.9 | 83.9 ± 17.2 | 88.6 ± 15.8 | p = 0.26 |
(mmHg) | 90 (25) | 90 (24) | 92 (30) | 82 (22) | 86 (19) | NS |
mean DAP | 75 ± 13.1 | 72.8 ± 13.4 | 72.6 ± 11.2 | 68.4 ± 11.2 | 74.1 ± 10.3 | p = 0.21 |
(mmHg) | 73 (18.7) | 74 (23.5) | 72 (16.3) | 68 (15.5) | 74.7 (14.6) | NS |
max DAP | 79.6 ± 13.1 | 77.4 ± 14.5 | 76 ± 10.5 | 73.5 ± 10.5 | 81 ± 13.7 | p = 0.11 |
(mmHg) | 77 (19) | 78 (23) | 76 (15) | 74 (17) | 82 (16) | NS |
min DAP | 71.1 ± 14.6 | 69.4 ± 13.1 | 69.5 ± 12.9 | 64 ± 12.6 | 68.6 ± 10.8 | p = 0.27 |
(mmHg) | 69 (24) | 67 (24) | 67 (23) | 63 (16) | 68.5 (12) | NS |
mean SE | 45.1 ± 8.1 | 43.3 ± 8.1 | 42.7 ± 8.6 | 42.6 ± 8.7 | 46.8 ± 7.9 | p = 0.17 |
44.9 (13.5) | 42.8 (14.3) | 41.9 (13.2) | 42 (13.5) | 46.2 (12.7) | NS | |
max SE | 50.2 ± 9.5 | 49.9 ± 8.1 | 48.4 ± 9.2 | 46.5 ± 9.8 | 52.6 ± 8.7 | p = 0.28 |
51 (16) | 50 (12) | 47 (15) | 44 (16) | 55 (12) | NS | |
min SE | 41.1 ± 9.8 | 36.6 ± 7.6 | 35.5 ± 8.2 | 38.8 ± 8.6 | 40.5 ± 9.9 | p < 0.05 GA vs. M * GA vs. P ** T vs. P * |
41 (14) | 36 (11) | 35 (14) | 40 (10) | 40.5 (15) | ||
mean SPI | 34.6 ± 10.4 | 35.2 ± 13.8 | 39.4 ± 41.1 | 30 ± 7.1 | 30.8 ± 10.3 | p = 0.05 |
35.3 (14.8) | 32.3 (18.8) | 29 (16.7) | 28.6 (9.1) | 29 (14.5) | ||
max SPI | 41.9 ± 12.3 | 43.3 ± 14.3 | 40 ± 11.8 | 37.4 ± 8.1 | 37.5 ± 11.5 | p = 0.32 |
41 (19) | 41 (20) | 36 (15) | 36 (10) | 37.5 (17) | NS | |
min SPI | 28.3 ± 9.7 | 30.1 ± 13.5 | 27.2 ± 9.3 | 25.2 ± 7.6 | 26.1 ± 10.1 | p = 0.54 |
27 (12) | 29 (14) | 25 (10) | 25 (12) | 25 (12) | NS | |
Stage 3—VRS | ||||||
mean HR | 68.6 ± 10.3 | 61.4 ± 7.1 | 59.5 ± 8.3 | 62.1 ± 9.1 | 64.6 ± 11.2 | p < 0.01 |
(beats/min) | 67.9 (17.2) | 61 (11.2) | 59.5 (11.5) | 63 (13.9) | 62 (16.1) | GA vs. P ** |
max HR | 82.1 ± 13.7 | 73.5 ± 10.2 | 69.7 ± 10.7 | 74.7 ± 13.6 | 74.9 ± 13.8 | p < 0.01 |
(beats/min) | 81 (24) | 72 (17) | 69 (18) | 74 (18) | 72.5 (17) | GA vs. P ** |
min HR | 61.2 ± 10.9 | 54.4 ± 7.5 | 53.4 ± 7.7 | 55.2 ± 8.6 | 57.2 ± 11.7 | p < 0.05 |
(beats/min) | 62 (14) | 53 (12) | 52 (8) | 56 (13) | 54.5 (15) | GA vs. P * |
mean SAP | 115.5 ± 22.7 | 107.5 ± 14 | 107.3 ± 23.3 | 105.9 ± 17.3 | 117.4 ± 16.5 | p < 0.05 |
(mmHg) | 108.1 (34.7) | 108.4 (21.6) | 104.2 (18.8) | 100.7 (20.7) | 117.4 (24.2) | PBB vs. T * |
max SAP | 149.3 ± 30.4 | 139.1 ± 30.1 | 137 ± 27.7 | 133.4 ± 27.8 | 144.6 ± 27.2 | p = 0.13 |
(mmHg) | 146 (48) | 138 (37) | 135 (37) | 126 (39) | 147.5 (32) | NS |
min SAP | 93.2 ± 18.5 | 86.1 ± 11.8 | 89.3 ± 15.9 | 87.5 ± 16.7 | 96.9 ± 14.2 | p < 0.05 PBB vs. T * M vs. T * |
(mmHg) | 91 (29) | 87 (18) | 87 (21) | 86 (17) | 94 (20) | |
mean MAP | 87.5 ± 13.6 | 82.1 ± 10 | 81.8 ± 12.6 | 79.9 ± 11.6 | 88.4 ± 10.6 | p < 0.01 GA vs. PBB ** GA vs. P * PBB vs. T ** |
(mmHg) | 83.9 (23.3) | 82.9 (15.8) | 80.5 (14.7) | 77.2 (11.9) | 90 (15.1) | |
max MAP | 109.7 ± 19.5 | 104.2 ± 19.6 | 102.4 ± 18.8 | 99.6 ± 18.3 | 107 ± 16.2 | p = 0.19 |
(mmHg) | 108 (32) | 102 (30) | 99 (30) | 94.3 (25) | 108 (21) | NS |
min MAP | 71.1 ± 12.1 | 66.2 ± 9 | 67 ± 11.2 | 65.8 ± 11 | 73.7 ± 9.7 | p < 0.01 |
(mmHg) | 71 (19) | 65 (11) | 64 (16) | 64 (15) | 73 (12) | PBB vs. T ** |
mean DAP | 66.1 ± 9.6 | 63.9 ± 8.5 | 62.1 ± 10.3 | 60.7 ± 8.8 | 68.1 ± 9.7 | p < 0.01 |
(mmHg) | 65.2 (14.5) | 65.7 (9.5) | 59 (11.2) | 58.4 (12.6) | 66.5 (10.7) | PBB vs. T ** |
max DAP | 84.2 ± 14.9 | 81.9 ± 15.1 | 76.5 ± 14 | 75.4 ± 13.5 | 83.4 ± 12.1 | p < 0.05 |
(mmHg) | 79 (23) | 83 (20) | 74 (24) | 75 (21) | 83 (15) | A vs. PBB * |
min DAP | 54.7 ± 9.4 | 51.1 ± 8.6 | 50.7 ± 8 | 50 ± 7.9 | 57.1 ± 9 | p < 0.01 PBB vs. T ** P vs. T * |
(mmHg) | 56 (13) | 52 (13) | 47 (12) | 49 (14) | 55.5 (13) | |
mean SE | 43.5 ± 5.7 | 41.1 ± 5 | 41.7 ± 7.5 | 45.6 ± 5.8 | 45.6 ± 5.2 | p < 0.01 PBB vs. M * M vs. T * |
43.4 (8.2) | 41.2 (6.8) | 40.7 (10.8) | 45.8 (7.4) | 45.8 (7.6) | ||
max SE | 55.2 ± 7.7 | 52.7 ± 7.1 | 55.4 ± 7.1 | 55.1 ± 5.9 | 54.9 ± 6.9 | p = 0.47 |
55.5 (12) | 52 (13) | 57 (9) | 54 (9) | 56 (11) | NS | |
min SE | 34.9 ± 7.3 | 33.2 ± 6.6 | 32.1 ± 6.8 | 37.3 ± 7.3 | 37.8 ± 5.6 | p < 0.001 PBB vs. P ** T vs. M * T vs. P ** |
35 (9) | 33 (9) | 32 (8) | 37 (9) | 38.5 (6) | ||
mean SPI | 33.9 ± 8.7 | 34.4 ± 10.9 | 34 ± 9.1 | 32.6 ± 7.1 | 33.5 ± 9.1 | p = 0.99 |
32.2 (10.3) | 32.3 (12.8) | 31.3 (9.8) | 32.3 (8.7) | 32.8 (13) | NS | |
max SPI | 55.5 ± 11.9 | 57.2 ± 13.1 | 52.2 ± 11.2 | 53.7 ± 12.2 | 51.3 ± 13.7 | p = 0.28 |
53.5 (19) | 56 (19) | 55 (16) | 53 (18) | 50 (23) | NS | |
min SPI | 22 ± 7.3 | 20.4 ± 7.7 | 22 ± 8 | 20.3 ± 6.7 | 20.9 ± 6.9 | p = 0.74 |
23 (11) | 20 (9) | 20 (9) | 19 (9) | 20 (10) | NS | |
Stage 4—PACU | ||||||
mean HR | 74 ± 11.1 | 74 ± 12.4 | 68 ± 9.8 | 72.5 ± 11.4 | 70.4 ± 10.8 | p = 0.13 |
(beats/min) | 72.7 (16.1) | 70.6 (13.5) | 66 (13.9) | 72 (12.9) | 70.6 (17.8) | NS |
max HR | 80.3 ± 11.4 | 78.1 ± 13.5 | 72.2 ± 10.9 | 78.3 ± 11.3 | 77.1 ± 16.1 | p = 0.08 |
(beats/min) | 79 (15.5) | 76 (17) | 71 (16) | 79 (10) | 75 (19) | NS |
min HR | 69.5 ± 12.6 | 70.1 ± 11.6 | 64.8 ± 9 | 67.4 ± 11.4 | 66 ± 11.4 | p = 0.37 |
(beats/min) | 67 (19.5) | 67 (14) | 63 (13) | 65 (16) | 67 (17) | NS |
mean SAP | 152.4 ± 17.4 | 145.5 ± 14.6 | 146.4 ± 19 | 148.1 ± 18.2 | 158.8 ± 19.2 | p < 0.05 M vs. T * P vs. T * |
(mmHg) | 152.4 (28.5) | 146.8 (15.3) | 143.2 (29) | 146.3 (21.8) | 156.7 (28.8) | |
max SAP | 164.2 ± 22.7 | 152.3 ± 16.4 | 153.1 ± 19.5 | 158.8 ± 21.7 | 167.2 ± 18.3 | p < 0.01 M vs. T * P vs. T * |
(mmHg) | 163.5 (31) | 154 (15) | 154 (31) | 152 (33) | 166 (24) | |
min SAP | 145.7 ± 17.6 | 138.4 ± 13.3 | 140.7 ± 19.4 | 138.1 ± 18.3 | 152.8 ± 21 | p < 0.05 |
(mmHg) | 145.5 (27.5) | 140 (24) | 135 (33) | 136 (15) | 153.5 (31) | PBB vs. T * |
mean MAP | 107.7 ± 14.3 | 103.1 ± 13.9 | 101.7 ± 13.6 | 106 ± 10.1 | 113.7 ± 11.1 | p < 0.01 M vs. T ** P vs. T ** |
(mmHg) | 106.7 (14.6) | 104.8 (15.3) | 100.9 (18.3) | 106 (12.7) | 113.2 (13) | |
max MAP | 116.8 ± 14.7 | 110 ± 15 | 106.6 ± 13.5 | 114.1 ± 12.8 | 120.1 ± 10.8 | p < 0.01 M vs. T * P vs. T *** |
(mmHg) | 114.5 (19) | 109.5 (14) | 106.5 (21) | 113 (22) | 119 (14.5) | |
min MAP | 103.7 ± 12.5 | 98.5 ± 14.4 | 98.8 ± 14.4 | 100.2 ± 13.8 | 108 ± 12.5 | p = 0.05 |
(mmHg) | 103 (18.5) | 102 (18) | 99 (16) | 104 (20) | 108.5 (17) | |
mean DAP | 77 ± 8.6 | 78.1 ± 10 | 75.6 ± 12.5 | 77.8 ± 8.3 | 81.8 ± 10.6 | p = 0.11 |
(mmHg) | 77.2 (11.3) | 77.2 (12.3) | 74.6 (15) | 76.7 (11.7) | 81.2 (15.7) | NS |
max DAP | 83.7 ± 9.8 | 83.1 ± 12.2 | 80.2 ± 12.7 | 84.3 ± 9.4 | 88.2 ± 14.3 | p = 0.07 |
(mmHg) | 83.5 (12.5) | 81 (12) | 77.5 (12) | 83 (11) | 89 (16.5) | NS |
min DAP | 72.9 ± 9.7 | 75.5 ± 10.6 | 71.4 ± 13.2 | 72.8 ± 9.4 | 77.8 ± 10.7 | p = 0.06 |
(mmHg) | 70.5 (13.5) | 74 (14) | 70 (13) | 73 (10) | 76.5 (16.5) | NS |
mean SPI | 51.3 ± 12.3 | 57.9 ± 17.6 | 53.6 ± 14.6 | 55.1 ± 13.5 | 54.1 ± 10.9 | p = 0.4 |
48.8 (12) | 62 (32.8) | 52.7 (21.5) | 54.5 (21.9) | 55.9 (15.6) | NS | |
max SPI | 62.1 ± 12.1 | 66.2 ± 18 | 61 ± 14.8 | 63.9 ± 14.4 | 64 ± 10.6 | p = 0.64 |
59 (16) | 70 (31) | 58 (22) | 62 (19) | 63 (19.5) | NS | |
min SPI | 41.6 ± 13.4 | 49.6 ± 16.3 | 46.6 ± 14.5 | 46.8 ± 13.5 | 44.8 ± 13 | p = 0.2 |
40 (14) | 52 (30) | 47 (22) | 48 (21) | 45 (16.5) | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiowski, M.J.; Pluta, A.; Lyssek-Boroń, A.; Kawka, M.; Krawczyk, L.; Niewiadomska, E.; Dobrowolski, D.; Rejdak, R.; Król, S.; Żak, J.; et al. Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina 2021, 57, 262. https://doi.org/10.3390/medicina57030262
Stasiowski MJ, Pluta A, Lyssek-Boroń A, Kawka M, Krawczyk L, Niewiadomska E, Dobrowolski D, Rejdak R, Król S, Żak J, et al. Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina. 2021; 57(3):262. https://doi.org/10.3390/medicina57030262
Chicago/Turabian StyleStasiowski, Michał Jan, Aleksandra Pluta, Anita Lyssek-Boroń, Magdalena Kawka, Lech Krawczyk, Ewa Niewiadomska, Dariusz Dobrowolski, Robert Rejdak, Seweryn Król, Jakub Żak, and et al. 2021. "Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery" Medicina 57, no. 3: 262. https://doi.org/10.3390/medicina57030262
APA StyleStasiowski, M. J., Pluta, A., Lyssek-Boroń, A., Kawka, M., Krawczyk, L., Niewiadomska, E., Dobrowolski, D., Rejdak, R., Król, S., Żak, J., Szumera, I., Missir, A., Jałowiecki, P., & Grabarek, B. O. (2021). Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina, 57(3), 262. https://doi.org/10.3390/medicina57030262