Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abo El Enin, M.A.; Amin, I.E.; Abd El Aziz, A.S.; Mahdy, M.M.; Abo El Enin, M.A.; Mostafa, M.M. Effect of fentanyl addition to local anaesthetic in peribulbar block. Indian J. Anaesth. 2009, 53, 57–63. [Google Scholar]
- Gioia, L.; Fanelli, G.; Casati, A.; Nuti, U.; Mennella, R.; Scarioni, M.; Cerchierini, E.; Sciascia, A.; Garassino, A.; Torri, G.; et al. A prospective, randomized, double-blinded comparison of ropivacaine 0.5%, 0.75%, and 1% ropivacaine for peribulbar block. J. Clin. Anesth. 2004, 16, 184–188. [Google Scholar] [CrossRef]
- Luchetti, M.; Magni, G.; Marraro, G. A prospective randomized double-blinded controlled study of ropivacaine 0.75% versus bupivacaine 0.5%-mepivacaine 2% for peribulbar anesthesia. Reg. Anesth. Pain Med. 2000, 25, 195–200. [Google Scholar] [CrossRef]
- Fudickar, A.; Gruenewald, M.; Fudickar, B.; Hill, M.; Wallenfang, M.; Hüllemann, J.; Voss, D.; Caliebe, A.; Roider, J.B.; Steinfath, M.; et al. Immobilization during anesthesia for vitrectomy using a laryngeal mask without neuromuscular blockade versus endotracheal intubation and neuromuscular blockade. Minerva Anestesiol. 2018, 84, 820–828. [Google Scholar] [CrossRef]
- Licina, A.; Sidhu, S.; Xie, J.; Wan, C. Local versus general anaesthesia for adults undergoing pars plana vitrectomy surgery. Cochrane Database Syst. Rev. 2016, 9, CD009936. [Google Scholar] [CrossRef]
- Nicholson, A.D.; Singh, P.; Badrinath, S.S.; Murugesan, R.; Sundararaj, I.; Vardarajan, S.; Krishnan, M.; Nagarajan, K.; Gopal, L.; Sharma, T.; et al. Peribulbar anesthesia for primary vitreoretinal surgery. Ophthalmic Surg. 1992, 23, 657–661. [Google Scholar]
- Shende, D.; Sadhasivam, S.; Madan, R. Effects of peribulbar bupivacaine as an adjunct to general anaesthesia on peri-operative outcome following retinal detachment surgery. Anaesthesia 2000, 55, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Mandelcorn, M.; Taback, N.; Mandelcorn, E.; Ananthanarayan, C. Risk factors for pain and nausea following retinal and vitreous surgery under conscious sedation. Can. J. Ophthalmol. J. Can. Ophtalmol. 1999, 34, 281–285. [Google Scholar]
- Authors/Task Force Members; Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Bøtker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharti, N.; Chari, P.; Kumar, P. Effect of sevoflurane versus propofol-based anesthesia on the hemodynamic response and recovery characteristics in patients undergoing microlaryngeal surgery. Saudi J. Anaesth. 2012, 6, 380–384. [Google Scholar] [CrossRef]
- Loriga, B.; Di Filippo, A.; Tofani, L.; Signorini, P.; Caporossi, T.; Barca, T.; De Gaudio, A.R.; Tizzo, S.; Adembri, C. Postoperative pain after vitreo-retinal surgery is influenced by surgery duration and anesthesia conduction. Minerva Anestesiol. 2019, 85, 731–737. [Google Scholar] [CrossRef]
- Misiołek, H.; Cettler, M.; Woroń, J.; Wordliczek, J.; Dobrogowski, J.; Mayzner-Zawadzka, E. The 2014 guidelines for post-operative pain management. Anaesthesiol. Intensive Ther. 2014, 46, 221–244. [Google Scholar] [CrossRef]
- Gruenewald, M.; Ilies, C. Monitoring the nociception-anti-nociception balance. Best Pract. Res. Clin. Anaesthesiol. 2013, 27, 235–247. [Google Scholar] [CrossRef]
- Kallio, H.; Lindberg, L.I.; Majander, A.S.; Uutela, K.H.; Niskanen, M.L.; Paloheimo, M.P.J. Measurement of surgical stress in anaesthetized children. Br. J. Anaesth. 2008, 101, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Ahonen, J.; Jokela, R.; Uutela, K.; Huiku, M. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br. J. Anaesth. 2007, 98, 456–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struys, M.M.R.F.; Vanpeteghem, C.; Huiku, M.; Uutela, K.; Blyaert, N.B.K.; Mortier, E.P. Changes in a surgical stress index in response to standardized pain stimuli during propofol-remifentanil infusion. Br. J. Anaesth. 2007, 99, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wennervirta, J.; Hynynen, M.; Koivusalo, A.-M.; Uutela, K.; Huiku, M.; Vakkuri, A. Surgical stress index as a measure of nociception/antinociception balance during general anesthesia. Acta Anaesthesiol. Scand. 2008, 52, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T.; Pascoe, E.; Ang, B.; Schmarbeck, T.; Clarke, M.W.; Fuller, C.; Kapoor, V. Monitoring of intra-operative nociception: Skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia 2010, 65, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, I.; Göhner, A.; Crozier, T.A.; Hesjedal, B.; Wiese, C.H.; Popov, A.F.; Bauer, M.; Hinz, J.M. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br. J. Anaesth. 2013, 110, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruenewald, M.; Meybohm, P.; Ilies, C.; Höcker, J.; Hanss, R.; Scholz, J.; Bein, B. Influence of different remifentanil concentrations on the performance of the surgical stress index to detect a standardized painful stimulus during sevoflurane anaesthesia. Br. J. Anaesth. 2009, 103, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Upton, H.D.; Ludbrook, G.L.; Wing, A.; Sleigh, J.W. Intraoperative “Analgesia Nociception Index”-Guided Fentanyl Administration During Sevoflurane Anesthesia in Lumbar Discectomy and Laminectomy: A Randomized Clinical Trial. Anesth. Analg. 2017, 125, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gallice, M.; Rouberol, F.; Albaladejo, P.; Palombi, K.; Aptel, F.; Romanet, J.P.; Chiquet, C. Managing antithrombotic therapy in vitreoretinal surgery. J. Fr. Ophtalmol. 2015, 38, 61–73. [Google Scholar] [CrossRef]
- Ghali, A.M.; el Btarny, A.M. The effect on outcome of peribulbar anaesthesia in conjunction with general anesthesia for vitreoretinal surgery. Anaesthesia 2010, 65, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Kolny, M.; Stasiowski, M.J.; Zuber, M.; Marciniak, R.; Chabierska, E.; Pluta, A.; Jałowiecki, P.; Byrczek, T. Randomized, comparative study of the effectiveness of three different techniques of interscalene brachial plexus block using 0.5% ropivacaine for shoulder arthroscopy. Anaesthesiol. Intensive Ther. 2017, 49, 47–52. [Google Scholar] [CrossRef]
- Schönfeld, C.-L.; Hierneis, S.; Kampik, A. Preemptive analgesia with ropivacaine for pars plana vitrectomy: Randomized controlled trial on efficacy and required dose. Retina 2012, 32, 912–917. [Google Scholar] [CrossRef]
- Williams, N.; Strunin, A.; Heriot, W. Pain and vomiting after vitreoretinal surgery: A potential role for local anaesthesia. Anaesth. Intensive Care 1995, 23, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Bayerl, K.; Boost, K.A.; Wolf, A.; Kampik, A.; Schaumberger, M.; Haritoglou, C. A 23-gauge pars plana vitrectomy after induction of general anesthesia: Effect of additional retrobulbar anesthesia on postoperative pain. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2014, 111, 1194–1200. [Google Scholar] [CrossRef]
- Henzler, D.; Müller-Kaulen, B.; Steinhorst, U.H.; Broermann, H.; Piepenbrock, S. The combination of retrobulbar block with general anaesthesia may lead to pre-emptive analgesia in patients undergoing pars plana vitrectomy. Anasthesiologie Intensivmed. Notfallmedizin Schmerzther. AINS 2002, 37, 267–272. [Google Scholar] [CrossRef]
- Mahfouz, A.K.M.; Nabawi, K.S. Preemptive analgesia in rhegmatogenous retinal detachment surgery: Is it effective? Retina 2002, 22, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.O.; Goodwin, P.L.; Feist, R.M.; Vail, R.S. Preemptive sub-Tenon’s anesthesia for pars plana vitrectomy under general anesthesia: Is it effective? Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2007, 38, 203–208. [Google Scholar] [CrossRef]
- Page, M.A.; Fraunfelder, F.W. Safety, efficacy, and patient acceptability of lidocaine hydrochloride ophthalmic gel as a topical ocular anesthetic for use in ophthalmic procedures. Clin. Ophthalmol. 2009, 3, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Landwehr, S.; Kiencke, P.; Giesecke, T.; Eggert, D.; Thumann, G.; Kampe, S. A comparison between IV paracetamol and IV metamizol for postoperative analgesia after retinal surgery. Curr. Med. Res. Opin. 2005, 21, 1569–1575. [Google Scholar] [CrossRef]
- Sadrolsadat, S.H.; Yousefshahi, F.; Ostadalipour, A.; Mohammadi, F.Z.; Makarem, J. Effect of Intravenous Acetaminophen on Postoperative Pain in Vitrectomy: A Randomized, Double-Blind, Clinical Trial. Anesthesiol. Pain Med. 2017, 7, e13639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, R.C. Techniques of orbital regional anaesthesia. Br. J. Anaesth. 1995, 75, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Kusza, K.; Kübler, A.; Maciejewski, D.; Mikstacki, A.; Owczuk, R.; Wujtewicz, M.; Piechota, M. Guidelines of the Polish Society of Anaesthesiology and Intensive Therapy determining principles, conditions and organisational aspects of anaesthesiology and intensive therapy services. Anaesthesiol. Intensive Ther. 2012, 44, 177–187. [Google Scholar]
- Jaichandran, V.V.; Raman, R.; Gella, L.; Sharma, T. Local anesthetic agents for vitreoretinal surgery: No advantage to mixing solutions. Ophthalmology 2015, 122, 1030–1033. [Google Scholar] [CrossRef]
- Mahajan, D.; Sain, S.; Azad, S.; Arora, T.; Azad, R. Comparison of topical anesthesia and peribulbar anesthesia for 23-gauge vitrectomy without sedation. Retina 2013, 33, 1400–1406. [Google Scholar] [CrossRef]
- Newsom, R.S.; Wainwright, A.C.; Canning, C.R. Local anaesthesia for 1221 vitreoretinal procedures. Br. J. Ophthalmol. 2001, 85, 225–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.J.; Fogel, S.; Leavell, M. Cost analysis in vitrectomy: Monitored anesthesia care and general anesthesia. AANA J. 2001, 69, 111–113. [Google Scholar]
- Kristin, N.; Schönfeld, C.L.; Bechmann, M.; Bengisu, M.; Ludwig, K.; Scheider, A.; Kampik, A. Vitreoretinal surgery: Pre-emptive analgesia. Br. J. Ophthalmol. 2001, 85, 1328–1331. [Google Scholar] [CrossRef]
- Bujalska, M. Effect of nitric oxide synthase inhibition on antinociceptive action of different doses of acetaminophen. Pol. J. Pharmacol. 2004, 56, 605–610. [Google Scholar]
- Graham, G.G.; Scott, K.F. Mechanism of action of paracetamol. Am. J. Ther. 2005, 12, 46–55. [Google Scholar] [CrossRef]
- Ottani, A.; Leone, S.; Sandrini, M.; Ferrari, A.; Bertolini, A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur. J. Pharmacol. 2006, 531, 280–281. [Google Scholar] [CrossRef]
- Raffa, R.B.; Walker, E.A.; Sterious, S.N. Opioid receptors and acetaminophen (paracetamol). Eur. J. Pharmacol. 2004, 503, 209–210. [Google Scholar] [CrossRef]
- Roca-Vinardell, A.; Ortega-Alvaro, A.; Gibert-Rahola, J.; Micó, J.A. The role of 5-HT1A/B autoreceptors in the antinociceptive effect of systemic administration of acetaminophen. Anesthesiology 2003, 98, 741–747. [Google Scholar] [CrossRef]
- Smith, H.S. Potential analgesic mechanisms of acetaminophen. Pain Physician 2009, 12, 269–280. [Google Scholar]
- Apfel, C.C.; Turan, A.; Souza, K.; Pergolizzi, J.; Hornuss, C. Intravenous acetaminophen reduces postoperative nausea and vomiting: A systematic review and meta-analysis. Pain 2013, 154, 677–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodner, G.; Gogarten, W.; Van Aken, H.; Hahnenkamp, K.; Wempe, C.; Freise, H.; Cosanne, I.; Huppertz-Thyssen, M.; Ellger, B. Efficacy of intravenous paracetamol compared to dipyrone and parecoxib for postoperative pain management after minor-to-intermediate surgery: A randomised, double-blind trial. Eur. J. Anaesthesiol. 2011, 28, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Doleman, B.; Read, D.; Lund, J.N.; Williams, J.P. Preventive Acetaminophen Reduces Postoperative Opioid Consumption, Vomiting, and Pain Scores After Surgery: Systematic Review and Meta-Analysis. Reg. Anesth. Pain Med. 2015, 40, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNicol, E.D.; Tzortzopoulou, A.; Cepeda, M.S.; Francia, M.B.D.; Farhat, T.; Schumann, R. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: A systematic review and meta-analysis. Br. J. Anaesth. 2011, 106, 764–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oscier, C.D.; Milner, Q.J.W. Peri-operative use of paracetamol. Anaesthesia 2009, 64, 65–72. [Google Scholar] [CrossRef]
- Toms, L.; McQuay, H.J.; Derry, S.; Moore, R.A. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst. Rev. 2008, 4, CD004602. [Google Scholar] [CrossRef]
- Brod, R.D. Transient central retinal artery occlusion and contralateral amaurosis after retrobulbar anesthetic injection. Ophthalmic Surg. 1989, 20, 643–646. [Google Scholar] [PubMed]
- Rybczyńska, I.; Liska, M.; el Zaluk, E.; Kociecki, J. Advantages and disadvantages of periocular analgesia. Klin. Oczna 1995, 97, 72–73. [Google Scholar] [PubMed]
- Calenda, E.; Olle, P.; Muraine, M.; Brasseur, G. Peribulbar anesthesia and sub-Tenon injection for vitreoretinal surgery: 300 cases. Acta Ophthalmol. Scand. 2000, 78, 196–199. [Google Scholar] [CrossRef]
- Calenda, E.; Rey, N.; Compere, V.; Muraine, M. Peribulbar anesthesia leading to central retinal artery occlusion. J. Clin. Anesth. 2009, 21, 311–312. [Google Scholar] [CrossRef]
- Jaichandran, V.V.; Nair, A.G.; Gandhi, R.A.; Prateeba-Devi, N. Brainstem anesthesia presenting as contralateral third nerve palsy following peribulbar anesthesia for cataract surgery. Acta Anaesthesiol. Taiwanica Off. J. Taiwan Soc. Anesthesiol. 2013, 51, 135–136. [Google Scholar] [CrossRef]
- Krilis, M.; Zeldovich, A.; Garrick, R.; Goldberg, I. Vision loss and partial third nerve palsy following contralateral peribulbar anesthesia. J. Cataract Refract. Surg. 2013, 39, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, A.; Singh, P.M.; Kumar, M. Pulmonary oedema in a patient undergoing vitreo-retinal surgery under peribulbar block. Indian J. Anaesth. 2012, 56, 387–390. [Google Scholar] [CrossRef]
- Brar, G.S.; Ram, J.; Dogra, M.R.; Pandav, S.S.; Sharma, A.; Kaushik, S.; Gupta, A. Ocular explosion after peribulbar anesthesia. J. Cataract Refract. Surg. 2002, 28, 556–561. [Google Scholar] [CrossRef]
- Bensghir, M.; Badou, N.; Houba, A.; Balkhi, H.; Haimeur, C.; Azendour, H. Convulsions during cataract surgery under peribulbar anesthesia: A case report. J. Med. Case Rep. 2014, 8, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, S.; Bartels, D.B.; Lange, R.; Sandford, L.; Gurwitz, J. Safety of metamizole: A systematic review of the literature. J. Clin. Pharm. Ther. 2016, 41, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Pogatzki-Zahn, E.; Chandrasena, C.; Schug, S.A. Nonopioid analgesics for postoperative pain management. Curr. Opin. Anaesthesiol. 2014, 27, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Souki, M.A. Metamizole for postoperative pain therapy. Eur. J. Anaesthesiol. 2016, 33, 785–786. [Google Scholar] [CrossRef]
- Stammschulte, T.; Ludwig, W.-D.; Mühlbauer, B.; Bronder, E.; Gundert-Remy, U. Metamizole (dipyrone)-associated agranulocytosis. An analysis of German spontaneous reports 1990–2012. Eur. J. Clin. Pharmacol. 2015, 71, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Steffen, P.; Schuhmacher, I.; Weichel, T.; Georgieff, M.; Seeling, W. Differential administration of non-opioids in postoperative analgesia, I. Quantification of the analgesic effect of metamizole using patient-controlled analgesia. Anasthesiologie Intensivmed. Notfallmedizin Schmerzther. AINS 1996, 31, 143–147. [Google Scholar] [CrossRef]
- Blanca-López, N.; Pérez-Sánchez, N.; Agúndez, J.A.; García-Martin, E.; Torres, M.J.; Cornejo-García, J.A.; Perkins, J.R.; Miranda, M.A.; Andreu, I.; Mayorga, C.; et al. Allergic Reactions to Metamizole: Immediate and Delayed Responses. Int. Arch. Allergy Immunol. 2016, 169, 223–230. [Google Scholar] [CrossRef]
- JJuste, F.M.; Garces, T.R.; Enguita, R.G.; Blasco, P.C.; Trallero, J.A. Cardiac complications in a metamizole-induced type I Kounis syndrome. Rev. Bras. Anestesiol. 2016, 66, 194–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekrat, S.; Elsing, S.H.; Raja, S.C.; Campochiaro, P.A.; de Juan, E.; Haller, J.A. Eye pain after vitreoretinal surgery: A prospective study of 185 patients. Retina 2001, 21, 627–632. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, R.B.; Zacharias, L.C.; de Azevedo, B.M.; Giusti, B.S.; Pretti, R.C.; Takahashi, W.Y.; Monteiro, M.L. Metamizole versus placebo for panretinal photocoagulation pain control: A prospective double-masked randomized controlled study. Int. J. Retina Vitr. 2015, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Calenda, E.; Muraine, M. Ultrasound comparison of diffusion of local anesthetic solution after a peribulbar and a sub-Tenon’s block: A pilot study. Int. J. Ophthalmol. 2016, 9, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.; Missir, A.; Pluta, A.; Szumera, I.; Stasiak, M.; Szopa, W.; Błaszczyk, B.; Możdżyński, B.; Majchrzak, K.; Tymowski, M.; et al. Influence of infiltration anaesthesia on perioperative outcomes following lumbar discectomy under surgical pleth index-guided general anaesthesia: A preliminary report from a randomised controlled prospective trial. Adv. Med. Sci. 2020, 65, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Vaideanu, D.; Taylor, P.; McAndrew, P.; Hildreth, A.; Deady, J.P.; Steel, D.H. Double masked randomised controlled trial to assess the effectiveness of paracetamol in reducing pain in panretinal photocoagulation. Br. J. Ophthalmol. 2006, 90, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Degoute, C.-S. Controlled hypotension: A guide to drug choice. Drugs 2007, 67, 1053–1076. [Google Scholar] [CrossRef] [PubMed]
- Krebs, E.E.; Carey, T.S.; Weinberger, M. Accuracy of the pain numeric rating scale as a screening test in primary care. J. Gen. Intern. Med. 2007, 22, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- Wenlan, L.; Zhongyuan, X.; Shaoqing, L.; Liying, Z.; Bo, Z.; Min, L. MiR-34a-5p mediates sevoflurane preconditioning induced inhibition of hypoxia/reoxygenation injury through STX1A in cardiomyocytes. Biomed. Pharmacother. Biomedecine Pharmacother. 2018, 102, 153–159. [Google Scholar] [CrossRef]
- Ledowski, T.; Burke, J.; Hruby, J. Surgical pleth index: Prediction of postoperative pain and influence of arousal. Br. J. Anaesth. 2016, 117, 371–374. [Google Scholar] [CrossRef] [Green Version]
Anthropometric Data | Total n = 175 (100%) | GA Group n = 35 (20%) | M Group n = 35 (20%) | P Group n = 35 (20%) | PBB Group n = 35 (20%) | T Group n = 35 (20%) | p-Value | |
---|---|---|---|---|---|---|---|---|
The results of the one-way analysis of variance (ANOVA)/the Kruskal–Wallis test by ranks | ||||||||
Age X ± S M (Rk) | [years] | 64.5 ± 11.7 66 (13) | 65.1 ± 10.8 67 (9) | 61.9 ± 11.9 63 (14) | 66.1 ± 9.9 67 (8) | 66.8 ± 12.1 69 (13) | 62.7 ± 13.3 65 (14) | p = 0.25 a NS |
High X ± S M (Rk) | [cm] | 165.8 ± 8.7 165 (12) | 166.9 ± 8.6 168 (14) | 168 ± 7.4 170 (14) | 163.4 ± 8.7 160 (12) | 165.9 ± 8.3 164 (12) | 164.7 ± 10.3 164 (18) | p = 0.18 a NS |
Weight X ± S M (Rk) | [kg] | 77.6 ± 15.9 75.5 (17) | 83.4 ± 19.8 82 (20) | 74.7 ± 14.9 74 (19) | 74.1 ± 13.3 74 (22) | 78.8 ± 16 75 (11) | 77.1 ± 13.7 80 (21) | p = 0.19 a NS |
BMI X ± S M (Rk) | [kg/m2] | 28.3 ± 5.4 27.5 (6.4) | 29.9 ± 6.6 28.4 (5.3) | 26.4 ± 4.6 25.3 (5.4) | 27.9 ± 5.3 27.6 (7.7) | 28.6 ± 5.1 27.1 (4.4) | 28.5 ± 4.9 28.4 (7.3) | p = 0.05 a |
The results of the χ2 test of independence | ||||||||
Gender n (%) | Female | 97 (55.4) | 18 (51.4) | 15 (42.9) | 24 (68.6) | 21 (60) | 19 (54.3) | p = 0.26 b NS |
Male | 78 (44.6) | 17 (48.6) | 20 (57.1) | 11 (31.4) | 14 (40) | 16 (45.7) | ||
Diabetes Mellitus | Insulin-dependent | 53 (30.3) | 11 (31.4) | 6 (17.1) | 12 (34.3) | 12 (34.3) | 12 (34.3) | p = 0.45 b NS |
Insulin-independent | 45 (25.7) | 10 (28.6) | 3 (8.6) | 12 (34.3) | 9 (25.7) | 11 (31.4) | p = 0.11 b NS | |
The results of the multiple proportions test | ||||||||
BMI n (%) | Norm | 50 (28.7) | 5 (14.3) | 15 (42.9) | 14 (40) | 7 (20.6) | 9 (25.7) | p < 0.05 c |
Overweight | 72 (41.4) | 18 (51.4) | 13 (37.1) | 9 (25.7) | 19 (55.9) | 13 (37.1) | p = 0.09 c NS | |
Obesity | 52 (29.9) | 12 (34.3) | 7 (20) | 12 (34.3) | 8 (23.5) | 13 (37.1) | p = 0.41 c NS |
Scale | Total n = 175 (100%) | GA Group n = 35 (20%) | M Group n = 35 (20%) | P Group n = 35 (20%) | PBB Group n = 35 (20%) | T Group n = 35 (20%) | p-Value |
---|---|---|---|---|---|---|---|
NRS MAX X ± S M (Rk) | 1.5 ± 2.1 0 (3) | 1.5 ± 2 0 (3) | 1.5 ± 2.2 0 (3) | 1.6 ± 2.1 0 (3) | 1.1 ± 1.9 0 (2) | 1.8 ± 2.5 0 (3) | p = 0.84 a NS |
Number of patients with postoperative acute pain perception—NRS > 6 n (%) | 3 (1.7) | 0 (0) | 0 (0) | 1 (2.9) | 0 (0) | 2 (5.7) | p = 0.25 b NS |
Number of patients with postoperative moderate pain perception—NRS 4–6 n (%) | 30 (17.1) | 6 (17.1) | 8 (22.9) | 5 (14.3) | 5 (14.3) | 6 (17.1) | p = 0.88 b NS |
Number of patients with postoperative mild pain perception—NRS ≤ 3 n (%) | 140 (80) | 29 (82.9) | 27 (77.1) | 28 (80) | 30 (85.7) | 26 (74.3) | p = 0.78 b NS |
Number of patients with postoperative intolerable perception—NRS > 3 n (%) | 33 (18.9) | 6 (17.1) | 8 (22.9) | 6 (17.1) | 5 (14.3) | 8 (22.9) | p = 0.84 b NS |
Number of patients unable to assess their postoperative pain perception n (%) | 2 | 0 | 0 | 1 | 0 | 1 | - |
Interoperative Parameters | Total n = 175 (100%) | GA Group n = 35 (20%) | M Group n = 35 (20%) | P Group n = 35 (20%) | PBB Group n = 35 (20%) | T Group n = 35 (20%) | p-Value a |
---|---|---|---|---|---|---|---|
Time duration of VRS [min] X ± S M (Rk) | 50.9 ± 18.9 47 (29) | 47 ± 13.8 45 (22) | 54.3 ± 20 57 (35) | 48.2 ± 19.1 45 (30) | 51.8 ± 23 42 (41) | 53.1 ± 17.5 52 (25) | p = 0.47 NS |
Interoperative requirement of rescue FNT [mcg] X ± S M (Rk) | 129.9 ± 108.2 100 (150) | 144.3 ± 102.7 150 (150) | 165.7 ± 116.8 200 (200) | 95.7 ± 81.7 100 (50) | 95.1 ± 101.3 50 (150) | 148.6 ± 120.3 150 (200) | p = 0.02 p < 0.05 |
Parameter | GA Group | M Group | P Group | PBB Group | T Group | p-Value a |
---|---|---|---|---|---|---|
n = 35 (20%) | n = 35 (20%) | n = 35 (20%) | n = 35 (20%) | n = 35 (20%) | ||
Stage 1—ONSET | ||||||
HR | 73.6 ± 13.7 | 73.7 ± 12 | 73.3 ± 11.9 | 70.7 ± 12.1 | 69.4 ± 12.6 | p = 0.38 |
(beats/min) | 70 (20) | 74 (19) | 74 (17) | 72 (19) | 66 (17) | NS |
SAP | 152.7 ± 18 | 150.3 ± 17.8 | 150.1 ± 18.1 | 147.1 ± 24.3 | 158.8 ± 26.5 | p = 0.48 |
(mmHg) | 153 (25) | 150 (30) | 154 (22) | 153 (35) | 157 (35) | NS |
MAP | 110.7 ± 11.1 | 109.9 ± 12.3 | 108.2 ± 10.7 | 109.3 ± 12.8 | 113.4 ± 14.4 | p = 0.47 |
(mmHg) | 109 (17) | 108 (21) | 110 (13) | 112 (24) | 115 (26) | NS |
DAP | 79.5 ± 9 | 80.8 ± 10.4 | 76.6 ± 8.7 | 79.7 ± 9.1 | 81.1 ± 9.5 | p = 0.28 |
(mmHg) | 79 (12) | 81 (15) | 74 (15) | 80 (10) | 82.5 (16) | NS |
SPI | 53.1 ± 19.8 | 55.9 ± 18.8 | 54.3 ± 16.7 | 54.2 ± 20.1 | 54.6 ± 20.9 | p = 0.9 |
52 (29) | 60 (29) | 51 (19) | 62 (34) | 52.5 (29) | NS | |
Stage 2—between LMA placement and start of VRS | ||||||
mean HR | 75.7 ± 14.5 | 68.2 ± 14.5 | 67.9 ± 10.4 | 69.5 ± 11.4 | 71.6 ± 14.5 | p = 0.15 |
(beats/min) | 76.5 (22) | 71.8 (18.1) | 66.8 (15.5) | 67.5 (18.6) | 73.4 (21.7) | NS |
max HR | 81.4 ± 15.3 | 74.7 ± 11.7 | 73.6 ± 12 | 75.3 ± 11.5 | 76.5 ± 13.7 | p = 0.1 |
(beats/min) | 82 (23) | 76 (18) | 73 (18) | 74 (16) | 79.5 (18) | NS |
min HR | 71.9 ± 13.3 | 67.3 ± 10.1 | 64.6 ± 9.9 | 64.8 ± 11.3 | 68 ± 14.4 | p = 0.08 |
(beats/min) | 73 (19) | 69 (18) | 64 (13) | 64 (20) | 67.5 (22) | NS |
mean SAP | 133.3 ± 26.3 | 124 ± 28.7 | 134.6 ± 24 | 121.3 ± 22.7 | 128.6 ± 23.2 | p = 0.15 |
(mmHg) | 136 (38.7) | 129.5 (36.5) | 134 (40) | 118 (30) | 125.2 (34.2) | NS |
max SAP | 145.3 ± 29.7 | 133.1 ± 30.4 | 142.2 ± 23.1 | 131.7 ± 21.2 | 140.8 ± 26.8 | p = 0.24 |
(mmHg) | 145 (42) | 139 (39) | 144 (43) | 129 (22) | 132 (44) | NS |
min SAP | 123.3 ± 28.5 | 115.8 ± 26.5 | 127.1 ± 26.9 | 112.7 ± 26.1 | 118.3 ± 23.3 | p = 0.16 |
(mmHg) | 116 (33) | 116 (37) | 133 (46) | 105 (37) | 118.5 (29) | NS |
mean MAP | 98.6 ± 17.3 | 95 ± 16.4 | 98.1 ± 15.6 | 90 ± 14.6 | 97 ± 17.3 | p = 0.16 |
(mmHg) | 97.5 (23.2) | 99.7 (26) | 100 (24) | 87.5 (17.5) | 93.8 (25.8) | NS |
max MAP | 106 ± 18.1 | 100.9 ± 17.8 | 103.1 ± 14.4 | 96.8 ± 13.5 | 103.9 ± 17.1 | p = 0.17 |
(mmHg) | 104.5 (21) | 105 (22) | 103 (21) | 94 (16) | 100.5 (25) | NS |
min MAP | 92.8 ± 21.9 | 89.6 ± 15.9 | 93.5 ± 17.9 | 83.9 ± 17.2 | 88.6 ± 15.8 | p = 0.26 |
(mmHg) | 90 (25) | 90 (24) | 92 (30) | 82 (22) | 86 (19) | NS |
mean DAP | 75 ± 13.1 | 72.8 ± 13.4 | 72.6 ± 11.2 | 68.4 ± 11.2 | 74.1 ± 10.3 | p = 0.21 |
(mmHg) | 73 (18.7) | 74 (23.5) | 72 (16.3) | 68 (15.5) | 74.7 (14.6) | NS |
max DAP | 79.6 ± 13.1 | 77.4 ± 14.5 | 76 ± 10.5 | 73.5 ± 10.5 | 81 ± 13.7 | p = 0.11 |
(mmHg) | 77 (19) | 78 (23) | 76 (15) | 74 (17) | 82 (16) | NS |
min DAP | 71.1 ± 14.6 | 69.4 ± 13.1 | 69.5 ± 12.9 | 64 ± 12.6 | 68.6 ± 10.8 | p = 0.27 |
(mmHg) | 69 (24) | 67 (24) | 67 (23) | 63 (16) | 68.5 (12) | NS |
mean SE | 45.1 ± 8.1 | 43.3 ± 8.1 | 42.7 ± 8.6 | 42.6 ± 8.7 | 46.8 ± 7.9 | p = 0.17 |
44.9 (13.5) | 42.8 (14.3) | 41.9 (13.2) | 42 (13.5) | 46.2 (12.7) | NS | |
max SE | 50.2 ± 9.5 | 49.9 ± 8.1 | 48.4 ± 9.2 | 46.5 ± 9.8 | 52.6 ± 8.7 | p = 0.28 |
51 (16) | 50 (12) | 47 (15) | 44 (16) | 55 (12) | NS | |
min SE | 41.1 ± 9.8 | 36.6 ± 7.6 | 35.5 ± 8.2 | 38.8 ± 8.6 | 40.5 ± 9.9 | p < 0.05 GA vs. M * GA vs. P ** T vs. P * |
41 (14) | 36 (11) | 35 (14) | 40 (10) | 40.5 (15) | ||
mean SPI | 34.6 ± 10.4 | 35.2 ± 13.8 | 39.4 ± 41.1 | 30 ± 7.1 | 30.8 ± 10.3 | p = 0.05 |
35.3 (14.8) | 32.3 (18.8) | 29 (16.7) | 28.6 (9.1) | 29 (14.5) | ||
max SPI | 41.9 ± 12.3 | 43.3 ± 14.3 | 40 ± 11.8 | 37.4 ± 8.1 | 37.5 ± 11.5 | p = 0.32 |
41 (19) | 41 (20) | 36 (15) | 36 (10) | 37.5 (17) | NS | |
min SPI | 28.3 ± 9.7 | 30.1 ± 13.5 | 27.2 ± 9.3 | 25.2 ± 7.6 | 26.1 ± 10.1 | p = 0.54 |
27 (12) | 29 (14) | 25 (10) | 25 (12) | 25 (12) | NS | |
Stage 3—VRS | ||||||
mean HR | 68.6 ± 10.3 | 61.4 ± 7.1 | 59.5 ± 8.3 | 62.1 ± 9.1 | 64.6 ± 11.2 | p < 0.01 |
(beats/min) | 67.9 (17.2) | 61 (11.2) | 59.5 (11.5) | 63 (13.9) | 62 (16.1) | GA vs. P ** |
max HR | 82.1 ± 13.7 | 73.5 ± 10.2 | 69.7 ± 10.7 | 74.7 ± 13.6 | 74.9 ± 13.8 | p < 0.01 |
(beats/min) | 81 (24) | 72 (17) | 69 (18) | 74 (18) | 72.5 (17) | GA vs. P ** |
min HR | 61.2 ± 10.9 | 54.4 ± 7.5 | 53.4 ± 7.7 | 55.2 ± 8.6 | 57.2 ± 11.7 | p < 0.05 |
(beats/min) | 62 (14) | 53 (12) | 52 (8) | 56 (13) | 54.5 (15) | GA vs. P * |
mean SAP | 115.5 ± 22.7 | 107.5 ± 14 | 107.3 ± 23.3 | 105.9 ± 17.3 | 117.4 ± 16.5 | p < 0.05 |
(mmHg) | 108.1 (34.7) | 108.4 (21.6) | 104.2 (18.8) | 100.7 (20.7) | 117.4 (24.2) | PBB vs. T * |
max SAP | 149.3 ± 30.4 | 139.1 ± 30.1 | 137 ± 27.7 | 133.4 ± 27.8 | 144.6 ± 27.2 | p = 0.13 |
(mmHg) | 146 (48) | 138 (37) | 135 (37) | 126 (39) | 147.5 (32) | NS |
min SAP | 93.2 ± 18.5 | 86.1 ± 11.8 | 89.3 ± 15.9 | 87.5 ± 16.7 | 96.9 ± 14.2 | p < 0.05 PBB vs. T * M vs. T * |
(mmHg) | 91 (29) | 87 (18) | 87 (21) | 86 (17) | 94 (20) | |
mean MAP | 87.5 ± 13.6 | 82.1 ± 10 | 81.8 ± 12.6 | 79.9 ± 11.6 | 88.4 ± 10.6 | p < 0.01 GA vs. PBB ** GA vs. P * PBB vs. T ** |
(mmHg) | 83.9 (23.3) | 82.9 (15.8) | 80.5 (14.7) | 77.2 (11.9) | 90 (15.1) | |
max MAP | 109.7 ± 19.5 | 104.2 ± 19.6 | 102.4 ± 18.8 | 99.6 ± 18.3 | 107 ± 16.2 | p = 0.19 |
(mmHg) | 108 (32) | 102 (30) | 99 (30) | 94.3 (25) | 108 (21) | NS |
min MAP | 71.1 ± 12.1 | 66.2 ± 9 | 67 ± 11.2 | 65.8 ± 11 | 73.7 ± 9.7 | p < 0.01 |
(mmHg) | 71 (19) | 65 (11) | 64 (16) | 64 (15) | 73 (12) | PBB vs. T ** |
mean DAP | 66.1 ± 9.6 | 63.9 ± 8.5 | 62.1 ± 10.3 | 60.7 ± 8.8 | 68.1 ± 9.7 | p < 0.01 |
(mmHg) | 65.2 (14.5) | 65.7 (9.5) | 59 (11.2) | 58.4 (12.6) | 66.5 (10.7) | PBB vs. T ** |
max DAP | 84.2 ± 14.9 | 81.9 ± 15.1 | 76.5 ± 14 | 75.4 ± 13.5 | 83.4 ± 12.1 | p < 0.05 |
(mmHg) | 79 (23) | 83 (20) | 74 (24) | 75 (21) | 83 (15) | A vs. PBB * |
min DAP | 54.7 ± 9.4 | 51.1 ± 8.6 | 50.7 ± 8 | 50 ± 7.9 | 57.1 ± 9 | p < 0.01 PBB vs. T ** P vs. T * |
(mmHg) | 56 (13) | 52 (13) | 47 (12) | 49 (14) | 55.5 (13) | |
mean SE | 43.5 ± 5.7 | 41.1 ± 5 | 41.7 ± 7.5 | 45.6 ± 5.8 | 45.6 ± 5.2 | p < 0.01 PBB vs. M * M vs. T * |
43.4 (8.2) | 41.2 (6.8) | 40.7 (10.8) | 45.8 (7.4) | 45.8 (7.6) | ||
max SE | 55.2 ± 7.7 | 52.7 ± 7.1 | 55.4 ± 7.1 | 55.1 ± 5.9 | 54.9 ± 6.9 | p = 0.47 |
55.5 (12) | 52 (13) | 57 (9) | 54 (9) | 56 (11) | NS | |
min SE | 34.9 ± 7.3 | 33.2 ± 6.6 | 32.1 ± 6.8 | 37.3 ± 7.3 | 37.8 ± 5.6 | p < 0.001 PBB vs. P ** T vs. M * T vs. P ** |
35 (9) | 33 (9) | 32 (8) | 37 (9) | 38.5 (6) | ||
mean SPI | 33.9 ± 8.7 | 34.4 ± 10.9 | 34 ± 9.1 | 32.6 ± 7.1 | 33.5 ± 9.1 | p = 0.99 |
32.2 (10.3) | 32.3 (12.8) | 31.3 (9.8) | 32.3 (8.7) | 32.8 (13) | NS | |
max SPI | 55.5 ± 11.9 | 57.2 ± 13.1 | 52.2 ± 11.2 | 53.7 ± 12.2 | 51.3 ± 13.7 | p = 0.28 |
53.5 (19) | 56 (19) | 55 (16) | 53 (18) | 50 (23) | NS | |
min SPI | 22 ± 7.3 | 20.4 ± 7.7 | 22 ± 8 | 20.3 ± 6.7 | 20.9 ± 6.9 | p = 0.74 |
23 (11) | 20 (9) | 20 (9) | 19 (9) | 20 (10) | NS | |
Stage 4—PACU | ||||||
mean HR | 74 ± 11.1 | 74 ± 12.4 | 68 ± 9.8 | 72.5 ± 11.4 | 70.4 ± 10.8 | p = 0.13 |
(beats/min) | 72.7 (16.1) | 70.6 (13.5) | 66 (13.9) | 72 (12.9) | 70.6 (17.8) | NS |
max HR | 80.3 ± 11.4 | 78.1 ± 13.5 | 72.2 ± 10.9 | 78.3 ± 11.3 | 77.1 ± 16.1 | p = 0.08 |
(beats/min) | 79 (15.5) | 76 (17) | 71 (16) | 79 (10) | 75 (19) | NS |
min HR | 69.5 ± 12.6 | 70.1 ± 11.6 | 64.8 ± 9 | 67.4 ± 11.4 | 66 ± 11.4 | p = 0.37 |
(beats/min) | 67 (19.5) | 67 (14) | 63 (13) | 65 (16) | 67 (17) | NS |
mean SAP | 152.4 ± 17.4 | 145.5 ± 14.6 | 146.4 ± 19 | 148.1 ± 18.2 | 158.8 ± 19.2 | p < 0.05 M vs. T * P vs. T * |
(mmHg) | 152.4 (28.5) | 146.8 (15.3) | 143.2 (29) | 146.3 (21.8) | 156.7 (28.8) | |
max SAP | 164.2 ± 22.7 | 152.3 ± 16.4 | 153.1 ± 19.5 | 158.8 ± 21.7 | 167.2 ± 18.3 | p < 0.01 M vs. T * P vs. T * |
(mmHg) | 163.5 (31) | 154 (15) | 154 (31) | 152 (33) | 166 (24) | |
min SAP | 145.7 ± 17.6 | 138.4 ± 13.3 | 140.7 ± 19.4 | 138.1 ± 18.3 | 152.8 ± 21 | p < 0.05 |
(mmHg) | 145.5 (27.5) | 140 (24) | 135 (33) | 136 (15) | 153.5 (31) | PBB vs. T * |
mean MAP | 107.7 ± 14.3 | 103.1 ± 13.9 | 101.7 ± 13.6 | 106 ± 10.1 | 113.7 ± 11.1 | p < 0.01 M vs. T ** P vs. T ** |
(mmHg) | 106.7 (14.6) | 104.8 (15.3) | 100.9 (18.3) | 106 (12.7) | 113.2 (13) | |
max MAP | 116.8 ± 14.7 | 110 ± 15 | 106.6 ± 13.5 | 114.1 ± 12.8 | 120.1 ± 10.8 | p < 0.01 M vs. T * P vs. T *** |
(mmHg) | 114.5 (19) | 109.5 (14) | 106.5 (21) | 113 (22) | 119 (14.5) | |
min MAP | 103.7 ± 12.5 | 98.5 ± 14.4 | 98.8 ± 14.4 | 100.2 ± 13.8 | 108 ± 12.5 | p = 0.05 |
(mmHg) | 103 (18.5) | 102 (18) | 99 (16) | 104 (20) | 108.5 (17) | |
mean DAP | 77 ± 8.6 | 78.1 ± 10 | 75.6 ± 12.5 | 77.8 ± 8.3 | 81.8 ± 10.6 | p = 0.11 |
(mmHg) | 77.2 (11.3) | 77.2 (12.3) | 74.6 (15) | 76.7 (11.7) | 81.2 (15.7) | NS |
max DAP | 83.7 ± 9.8 | 83.1 ± 12.2 | 80.2 ± 12.7 | 84.3 ± 9.4 | 88.2 ± 14.3 | p = 0.07 |
(mmHg) | 83.5 (12.5) | 81 (12) | 77.5 (12) | 83 (11) | 89 (16.5) | NS |
min DAP | 72.9 ± 9.7 | 75.5 ± 10.6 | 71.4 ± 13.2 | 72.8 ± 9.4 | 77.8 ± 10.7 | p = 0.06 |
(mmHg) | 70.5 (13.5) | 74 (14) | 70 (13) | 73 (10) | 76.5 (16.5) | NS |
mean SPI | 51.3 ± 12.3 | 57.9 ± 17.6 | 53.6 ± 14.6 | 55.1 ± 13.5 | 54.1 ± 10.9 | p = 0.4 |
48.8 (12) | 62 (32.8) | 52.7 (21.5) | 54.5 (21.9) | 55.9 (15.6) | NS | |
max SPI | 62.1 ± 12.1 | 66.2 ± 18 | 61 ± 14.8 | 63.9 ± 14.4 | 64 ± 10.6 | p = 0.64 |
59 (16) | 70 (31) | 58 (22) | 62 (19) | 63 (19.5) | NS | |
min SPI | 41.6 ± 13.4 | 49.6 ± 16.3 | 46.6 ± 14.5 | 46.8 ± 13.5 | 44.8 ± 13 | p = 0.2 |
40 (14) | 52 (30) | 47 (22) | 48 (21) | 45 (16.5) | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiowski, M.J.; Pluta, A.; Lyssek-Boroń, A.; Kawka, M.; Krawczyk, L.; Niewiadomska, E.; Dobrowolski, D.; Rejdak, R.; Król, S.; Żak, J.; et al. Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina 2021, 57, 262. https://doi.org/10.3390/medicina57030262
Stasiowski MJ, Pluta A, Lyssek-Boroń A, Kawka M, Krawczyk L, Niewiadomska E, Dobrowolski D, Rejdak R, Król S, Żak J, et al. Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina. 2021; 57(3):262. https://doi.org/10.3390/medicina57030262
Chicago/Turabian StyleStasiowski, Michał Jan, Aleksandra Pluta, Anita Lyssek-Boroń, Magdalena Kawka, Lech Krawczyk, Ewa Niewiadomska, Dariusz Dobrowolski, Robert Rejdak, Seweryn Król, Jakub Żak, and et al. 2021. "Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery" Medicina 57, no. 3: 262. https://doi.org/10.3390/medicina57030262