Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Biological Samples and Clinical Data
2.3. RNA Isolation and cDNA Synthesis
2.4. Gene Selection and Primer Design
2.5. Quantitative Real-Time Polymerase Chain Reaction
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanson, S.G.; Nigro, J.F. Pediatric dermatology. Med. Clin. N. Am. 1998, 82, 1381–1403. [Google Scholar] [CrossRef]
- Blessmann Weber, M.; Sponchiado de Ávila, L.; Albaneze, R.; Magalhães de Oliveira, O.; Sudhaus, B.; Ferreira Cestari, T. Pityriasis alba: A study of pathogenic factors. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 463–468. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model Prescribing Information: Drugs Used in Skin Diseases. Available online: https://apps.who.int/medicinedocs/en/d/Jh2918e/ (accessed on 22 January 2020).
- Jadotte, Y.T.; Janniger, C.K. Pityriasis alba revisited: Perspectives on an enigmatic disorder of childhood. Cutis 2011, 87, 66–72. [Google Scholar]
- Castillo-Mori, Y.; Puescas Sánchez, P.; Díaz-Vélez, C.; Maldonado-Gómez, W.; Mendoza-Mego, B.; Alcóser-Arcila, A. Características clínico-epidemiológicas de pitiriasis alba en población de 6 a 16 años en colegios nacionales del distrito de Manuel A. Mesones Muro, Lambayeque, Perú. Acta Méd. Peru. 2011, 28, 73–78. [Google Scholar]
- Guareschi, E.; Di Lernia, V. Infantile pityriasis alba and comorbid disorders. Pediatr. Health 2009, 3, 75–79. [Google Scholar] [CrossRef]
- In, S.I.; Yi, S.W.; Kang, H.Y.; Lee, E.S.; Sohn, S.; Kim, Y.C. Clinical and histopathological characteristics of pytiriasis alba. Clin. Exp. Dermatl. 2008, 34, 591–597. [Google Scholar] [CrossRef]
- Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Tsatmali, M.; Ancans, J.; Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 2002, 50, 125–133. [Google Scholar] [CrossRef]
- Vaccaro, M.; Bagnato, G.; Cristani, M.; Borgia, F.; Spatari, G.; Tigano, V.; Saja, A.; Guarneri, F.; Cannavo, S.P.; Gangemi, S. Oxidation products are increased in patients affected by non-segmental generalized vitiligo. Arch. Dermatol. Res. 2017, 309, 485–490. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Montaudié, H.; Bertolotto, C.; Ballotti, R.; Passeron, T. Fisiología del sistema pigmentario. Melanogénesis. EMC Dermatol. 2014, 48, 1–11. [Google Scholar] [CrossRef]
- Hubackova, S.; Kučerová, A.; Michlits, G.; Kyjacova, L.; Reinis, M.; Korolov, O.; Bartek, J.; Hodny, Z. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 2015, 35, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Arambula, A.; Torres-Alvarez, B.; Cortes-Garcia, D.; Fuentes-Ahumada, C.; Castanedo-Cazares, J.P. CD4, IL-17, and COX-2 are associated with subclinical inflammation in malar melasma. Am. J. Dermatopathol. 2015, 37, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Miazek, N.; Michalek, I.; Pawlowska-Kisiel, M.; Olszewska, M.; Rudnicka, L. Pityriasis Alba—Common disease, enigmatic entity: Up-to-date review of the literature. Pediatric Dermatol. 2015, 32, 786–791. [Google Scholar] [CrossRef]
- Pityriasis Alba. Available online: https://dermnetnz.org/topics/pityriasis-alba/ (accessed on 30 March 2020).
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Natarajan, V.T.; Ganju, P.; Ramkumar, A.; Grover, R.; Gokhale, R.S. Multifaceted pathways protect human skin from UV radiation. Nat. Chem. Biol. 2014, 10, 542–551. [Google Scholar] [CrossRef]
- Cannavo, S.P.; Riso, G.; Di Salvo, E.; Casciaro, M.; Giuffrida, R.; Minciullo, P.L.; Guarneri, F.; Nettis, E.; Gangemi, S. Oxidative stress involvement in urticaria. J. Biol. Regul. Homeost. Agents 2020, 34, 675–678. [Google Scholar] [CrossRef]
- Obrador, E.; Liu-Smith, F.; Dellinger, R.W.; Salvador, R.; Meyskens, F.L.; Estrela, J.M. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol. Chem. 2019, 400, 589–612. [Google Scholar] [CrossRef]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Troy, C.M.; D, D.; Prochiantz, A.; Greene, L.A.; Shelanskil, M.L. Downregulation of Cu/Zn superoxide dismutase leads to cell death v& the nitric oxide-peroxynitrite pathway. J. Neurosci. 1996, 16, 253–261. [Google Scholar]
- Kristal, L.; Klein, P.A. Atopíc dermatitis in infants and children: An update. Pediatr. Clin. N. Am. 2000, 47, 877–895. [Google Scholar] [CrossRef]
- Castanet, J.; Ortonne, J.P. Pigmentary changes in aged and photoaged skin. Arch. Dermatol. 1997, 133, 1296–1299. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Muñoz, J.L.; Garcia-Molina, F.; Varón, R.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N. Generation of hydrogen peroxide in the melanin biosynthesis pathway. Biochim. Biophys. Acta 2009, 1795, 1017–1029. [Google Scholar] [CrossRef]
- Podda, M.; Traber, M.G.; Weber, C.; Yan, L.-J.; Packer, L. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic. Biol. Med. 1998, 24, 55–65. [Google Scholar] [CrossRef]
- Vachtenheim, J.; Borovanský, J. “Transcription physiology” of pigment formation in melanocytes: Central role of MITF. Exp. Dermatol. 2010, 19, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Corvera, C.U.; Thoma, M.S.; Kong, W.; McAlpine, B.E.; Caughey, G.H.; Ansel, J.C.; Bunnett, N.W. Proteinase-activated receptor-2 in human skin: Tissue distribution and activation of keratinocytes by mast cell tryptase. Exp. Dermatol. 1999, 8, 282–294. [Google Scholar] [CrossRef]
- Ramsden, C.A.; Riley, P.A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 2014, 22, 2388–2395. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age—Related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef]
- Moreno-Cruz, B.; Torres-Alvarez, B.; Hernandez-Blanco, D.; Castanedo-Cazares, J.P. Double-blind, placebo-controlled, randomized study comparing 0.0003% calcitriol with 0.1% tacrolimus ointments for the treatment of endemic pityriasis alba. Dermatol. Res. Pract. 2012, 2012, 303275. [Google Scholar] [CrossRef]
- Costin, G.-E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef]
- Svobodova, A.; Vostalova, J. Solar radiation induced skin damage: Review of protective and preventive options. Int. J. Radiat. Biol. 2010, 86, 999–1030. [Google Scholar] [CrossRef]
Gene Symbol | GenBank Number | Primer Sequence (5′-3′) | Tm (°C) | Product Size (bp) |
---|---|---|---|---|
IL-4 | NM_000589 | F: GACATCTTTGCTGCCTCCAA | 60 | 128 |
R: GTGCGACTGCACAGCAGTT | ||||
IL-6 | NM_000600 | F: CCCTGAGAAAGGAGACATGT | 60 | 111 |
R: TGAAAAAGATGGATGCTTCCAA | ||||
IL-17A | NM_002190 | F: TGGAATCTCCACCGCAATGA | 60 | 116 |
R: GTGGACTACCACATGAACTC | ||||
TNF-α | NM_000594 | F: CAGGCAGTCAGATCATCTTC | 60 | 121 |
R: CCAATGCCCTCCTGGCCA | ||||
IFN-γ | NM_000619 | F: AGGAAGACATGAATGTCAAGTT | 60 | 108 |
R: GAATGTCCAACGCAAAGCAAT | ||||
IL-1β | NM_000576 | F: GGAGCAACAAGTGGTGTTCT | 60 | 116 |
R: ACCTGTCCTGCGTGTTGAAA | ||||
SOD1 | NM_000454 | F: GAGGCATGTTGGAGACTTGG | 60.5 | 205 |
R: ACAAGCCAAACGACTTCCAG | ||||
HMOX1 | NM_002133 | F: GCTCAACATCCAGCTCTTTGA | 60.5 | 196 |
R: TGTAAGGACCCATCGGAGAA | ||||
GAPDH | NM_002046 | F: GAGTCAACGGATTTGGTCGT | 60.1 | 214 |
Variable | Patients (n = 16) |
---|---|
Gender | |
Male, n (%) | 12 (75) |
Female, n (%) | 4 (25) |
Age (years) | 8.9 ± 3.1 |
Weight (kg) | 32.3 ± 11.8 |
Height (cm) | 125.4 ± 14.3 |
Body mass index (kg/m²) | 20.0 ± 4.5 |
Hemoglobin (mg/dL) | 13.4 ± 1.5 |
Leucocytes (103/μL) | 7.3 ± 2.5 |
Lymphocytes (103/μL) | 3103.8 ± 1932.3 |
Neutrophils (103/μL) | 3674.4 ± 2406.5 |
Creatinine (mg/dL) | 0.41 ± 0.10 |
Sun exposure (h/day) | 6.31 ± 1.44 |
Variable 1 | Variable 2 | Correlation Coefficient | p-Value |
---|---|---|---|
IL-4 | HMOX1 | 0.611 | 3.5 × 10−2 |
IL-6 | IL-17 | 0.924 | 3.1 × 10−7 |
INF-γ | 0.955 | 9.3 × 10−9 | |
IL-1B | 0.915 | 6.8 × 10−7 | |
SOD1 | 0.944 | 4.2 × 10−8 | |
HMOX1 | 0.564 | 3.6 × 10−2 | |
IL-17 | INF-γ | 0.936 | 9.6 × 10−8 |
IL-1B | 0.953 | 1.2 × 10−8 | |
SOD1 | 0.892 | 3.5 × 10−6 | |
TNF-α | HMOX1 | 0.769 | 1.3 × 10−3 |
INF-γ | IL-1B | 0.854 | 2.5 × 10−5 |
SOD1 | 0.922 | 3.8 × 10−7 | |
HMOX1 | 0.549 | 4.2 × 10−2 | |
IL-1B | SOD1 | 0.857 | 2.3 × 10−5 |
SOD1 | HMOX1 | 0.567 | 3.5 × 10−2 |
HMOX1 | Weight | 0.718 | 3.8 × 10−3 |
Height | 0.673 | 8.3 × 10−3 | |
Body mass index | 0.565 | 3.5 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Fierro, M.L.; Cabral-Pacheco, G.A.; Garza-Veloz, I.; Campuzano-García, A.E.; Díaz-Alonso, A.P.; Flores-Morales, V.; Rodriguez-Sanchez, I.P.; Delgado-Enciso, I.; Rios-Jasso, J. Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba. Medicina 2020, 56, 359. https://doi.org/10.3390/medicina56070359
Martinez-Fierro ML, Cabral-Pacheco GA, Garza-Veloz I, Campuzano-García AE, Díaz-Alonso AP, Flores-Morales V, Rodriguez-Sanchez IP, Delgado-Enciso I, Rios-Jasso J. Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba. Medicina. 2020; 56(7):359. https://doi.org/10.3390/medicina56070359
Chicago/Turabian StyleMartinez-Fierro, Margarita L., Griselda A. Cabral-Pacheco, Idalia Garza-Veloz, Andrés E. Campuzano-García, Alma P. Díaz-Alonso, Virginia Flores-Morales, Iram P. Rodriguez-Sanchez, Ivan Delgado-Enciso, and Jorge Rios-Jasso. 2020. "Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba" Medicina 56, no. 7: 359. https://doi.org/10.3390/medicina56070359
APA StyleMartinez-Fierro, M. L., Cabral-Pacheco, G. A., Garza-Veloz, I., Campuzano-García, A. E., Díaz-Alonso, A. P., Flores-Morales, V., Rodriguez-Sanchez, I. P., Delgado-Enciso, I., & Rios-Jasso, J. (2020). Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba. Medicina, 56(7), 359. https://doi.org/10.3390/medicina56070359