State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies
Abstract
1. Introduction
2. Current Fertility Preservation Methods
3. New Techniques of Fertility Preservation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Armuand, G.M.; Rodriguez-Wallberg, K.A.; Wettergren, L.; Ahlgren, J.; Enblad, G.; Höglund, M.; Lampic, C. Sex differences in fertility-related information received by young adult cancer survivors. J. Clin. Oncol. 2012, 30, 2147–2153. [Google Scholar] [CrossRef]
- Petru, E. MaligneTumoren der Mamma: Fertilität, Kontrazeption und Hormonersatz. In Praxisbuch Gynäkologische Onkologie; Petru, E., Fink, D., Köchli, O.R., Loibl, S., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2019; pp. 33–38. [Google Scholar]
- Mehedintu, C.; Bratila, E.; Berceanu, C.; Cirstoiu, M.M.; Barac, R.I.; Andreescu, C.V.; Badiu, D.C.; Gales, L.; Zgura, A.; Bumbu, A.G. Comparison of Tumor - Infiltrating Lymphocytes Between Primary and Metastatic Tumors in Her2+and HER2-Breast Cancer Patients. Rev. Chim. Buchar. 2018, 69, 4033–4037. [Google Scholar] [CrossRef]
- Hankey, B.F.; Miller, B.; Curtis, R.; Kosary, C. Trends in breast cancer in younger women in contrast to older women. J. Natl. Cancer. Inst. Monogr. 1994, 16, 7–14. [Google Scholar]
- Voinea, O.C.; Sajin, M.; Dumitru, A.V.; Patrascu, O.M.; Georgescu, T.A.; Cirstoiu, M.M.; Jinga, D.C.; Nica, A.E. Emerging concepts regarding the molecular profile of breast carcinoma: One-year experience in a University Center. Rom. J. Mil. Med. 2018, 121, 17–24. [Google Scholar]
- Jemal, A.; Tiwari, R.C.; Murray, T.; Ghafoor, A.; Samuels, A.; Ward, E.; Feuer, E.J.; Thun, M.J.; American Cancer Society. Cancer statistics, 2004. CA Cancer J. Clin. 2004, 54, 8–29. [Google Scholar] [CrossRef]
- Hankey, B.F.; Ries, L.A.; Edwards, B.K. The surveillance, epidemiology, and end results program: A national resource. Cancer Epidemiol. Biomark. Prev. 1999, 8, 1117–1121. [Google Scholar]
- Zgura, A.; Gales, L.; Haineala, B.; Bratila, E.; Mehedintu, C.; Andreescu, C.V.; Berceanu, C.; Petca, A.; Barac, R.I.; Ionescu, A.; et al. Correlations Between Known Prognostic Markers and Tumor - infiltrating Lymphocytes in Breast Cancer. Rev. Chim. Buchar. 2019, 70, 2362–2366. [Google Scholar] [CrossRef]
- Anders, C.K.; Hsu, D.S.; Broadwater, G.; Acharya, C.R.; Foekens, J.A.; Zhang, Y.; Wang, Y.; Marcom, P.K.; Marks, J.R.; Febbo, P.G.; et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J. Clin. Oncol. 2008, 26, 3324–3330. [Google Scholar] [CrossRef]
- McGuire, S. World Cancer Report 2014; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Pagani, O.; Partridge, A.; Korde, L.; Badve, S.; Bartlett, J.; Albain, K.; Gelber, R.; Goldhirsch, A.; Breast International Group; North American Breast Cancer Group; et al. Pregnancy after breast cancer: If you wish, ma’am. Breast Cancer Res. Treat. 2011, 129, 309–317. [Google Scholar] [CrossRef]
- Logan, S.; Perz, J.; Ussher, J.M.; Peate, M.; Anazodo, A. Systematic review of fertility-related psychological distress in cancer patients: Informing on an improved model of care. Psycho. Oncol. 2019, 28, 22–30. [Google Scholar] [CrossRef]
- Monte, L.M.; Ellis, R.R. Fertility of women in the United States: 2012. Econ 2014, 24, 1071–1100. [Google Scholar]
- Te Velde, E.R.; Pearson, P.L. The variability of female reproductive ageing. Hum. Reprod. Update 2002, 8, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Themmen, A.; Al-Qahtani, A.; Groome, N.; Cameron, D. The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum. Reprod. 2006, 21, 2583–2592. [Google Scholar] [CrossRef] [PubMed]
- Chemaitilly, W.; Mertens, A.C.; Mitby, P.; Whitton, J.; Stovall, M.; Yasui, Y.; Robison, L.L.; Sklar, C.A. Acute ovarian failure in the childhood cancer survivor study. J. Clin. Endocrinol. Metab. 2006, 91, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, P.J.; Ennis, M.; Pritchard, K.I.; Trudeau, M.; Hood, N. Risk of menopause during the first year after breast cancer diagnosis. J. Clin. Oncol. 1999, 17, 2365–2370. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, R.; Heytens, E.; Darzynkiewicz, Z.; Oktay, K. Mechanisms of chemotherapy-induced human ovarian aging: Double strand DNA breaks and microvascular compromise. Aging Albany NY 2011, 3, 782–793. [Google Scholar] [CrossRef]
- Moore, H.C.; Unger, J.M.; Phillips, K.-A.; Boyle, F.; Hitre, E.; Porter, D.; Francis, P.A.; Goldstein, L.J.; Gomez, H.L.; Vallejos, C.S.; et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N. Engl. J. Med. 2015, 372, 923–932. [Google Scholar] [CrossRef]
- Oktay, K.; Harvey, B.E.; Loren, A.W. Fertility preservation in patients with cancer: ASCO clinical practice guideline update summary. J. Oncol. Pract. 2018, 14, 381–385. [Google Scholar] [CrossRef]
- Wong, K.M.; Mastenbroek, S.; Repping, S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil. Steril. 2014, 102, 19–26. [Google Scholar] [CrossRef]
- Haouzi, D.; Assou, S.; Mahmoud, K.; Tondeur, S.; Rème, T.; Hedon, B.; De Vos, J.; Hamamah, S. Gene expression profile of human endometrial receptivity: Comparison between natural and stimulated cycles for the same patients. Hum. Reprod. 2009, 24, 1436–1445. [Google Scholar] [CrossRef]
- Wong, K.M.; van Wely, M.; Mol, F.; Repping, S.; Mastenbroek, S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst. Rev. 2017, 3, CD011184. [Google Scholar] [CrossRef] [PubMed]
- European IVF-Monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE); Kupka, M.S.; D’Hooghe, T.; Ferraretti, A.P.; de Mouzon, J.; Erb, K.; Castilla, J.A.; Calhaz-Jorge, C.; De Geyter, C.H.; et al. Assisted reproductive technology in Europe, 2011: Results generated from European registers by ESHRE. Hum. Reprod. 2016, 31, 233–248. [Google Scholar] [PubMed]
- Liseth, K.; Foss Abrahamsen, J.; Bjørsvik, S.; Grøttebø, K.; Bruserud, Ø. The viability of cryopreserved PBPC depends on the DMSO concentration and the concentration of nucleated cells in the graft. Cytotherapy 2005, 7, 328–333. [Google Scholar] [CrossRef]
- Fowler, A.; Toner, M. Cryo-injury and biopreservation. Ann. N. Y. Acad. Sci. 2006, 1066, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Vajta, G.; Nagy, Z.P. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 2006, 12, 779–796. [Google Scholar] [CrossRef]
- Kuwayama, M.; Vajta, G.; Kato, O.; Leibo, S.P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 2005, 11, 300–308. [Google Scholar] [CrossRef]
- Vajta, G.; Rienzi, L.; Ubaldi, F.M. Open versus closed systems for vitrification of human oocytes and embryos. Reprod. Biomed. Online 2015, 30, 325–333. [Google Scholar] [CrossRef]
- Jin, B.; Mazur, P. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci. Rep. 2015, 5, 9271. [Google Scholar] [CrossRef]
- Darwish, E.; Magdi, Y. Artificial shrinkage of blastocoel using a laser pulse prior to vitrification improves clinical outcome. J. Assist. Reprod. Genet. 2016, 33, 467–471. [Google Scholar] [CrossRef]
- Mazur, P. Principles of cryobiology. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC press: Boca Raton, FL, USA, 2004; pp. 3–65. [Google Scholar]
- Ramløv, H.; Wharton, D.A.; Wilson, P.W. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimusdavidi, and an alpine weta, Hemideinamaori (Orthoptera; Stenopelmatidae). Cryobiology 1996, 33, 607–613. [Google Scholar] [CrossRef]
- Dashnau, J.; Vanderkooi, J. Computational approaches to investigate how biological macromolecules can be protected in extreme conditions. J. Food Sci. 2007, 72, R001–R010. [Google Scholar] [CrossRef]
- Chaytor, J.L.; Tokarew, J.M.; Wu, L.K.; Leclère, M.; Tam, R.Y.; Capicciotti, C.J.; Guolla, L.; von Moos, E.; Findlay, C.S.; Allan, D.S.; et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 2011, 22, 123–133. [Google Scholar] [CrossRef]
- Tam, R.Y.; Ferreira, S.S.; Czechura, P.; Chaytor, J.L.; Ben, R.N. Hydration Index-A Better Parameter for Explaining Small Molecule Hydration in Inhibition of Ice Recrystallization. J. Am. Chem. Soc. 2008, 130, 17494–17501. [Google Scholar] [CrossRef]
- Pereira, R.; Marques, C. Animal oocyte and embryo cryopreservation. Cell Tissue Bank. 2008, 9, 267–277. [Google Scholar] [CrossRef]
- Arav, A.; Zeron, Y.; Leslie, S.; Behboodi, E.; Anderson, G.; Crowe, J. Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 1996, 33, 589–599. [Google Scholar] [CrossRef]
- Chen, S.; Lien, Y.; Chao, K.; Ho, H.-N.; Yang, Y.; Lee, T. Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: Clinical implications in oocyte freezing-a review article. Mol. Cell. Endocrinol. 2003, 202, 101–107. [Google Scholar] [CrossRef]
- AbdelHafez, F.; Xu, J.; Goldberg, J.; Desai, N. Vitrification in open and closed carriers at different cell stages: Assessment of embryo survival, development, DNA integrity and stability during vapor phase storage for transport. BMC Biotechnol. 2011, 11, 29. [Google Scholar] [CrossRef]
- Punyawai, K.; Anakkul, N.; Srirattana, K.; Aikawa, Y.; Sangsritavong, S.; Nagai, T.; Imai, K.; Parnpai, R. Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts. J. Reprod. Dev. 2015, 61, 431–437. [Google Scholar] [CrossRef]
- Practice Committees of American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: A guideline. Fertil. Steril. 2013, 99, 37–43. [Google Scholar] [CrossRef]
- Patrizio, P.; Sakkas, D. From oocyte to baby: A clinical evaluation of the biological efficiency of in vitro fertilization. Fertil. Steril. 2009, 91, 1061–1066. [Google Scholar] [CrossRef]
- Isachenko, V.; Isachenko, E.; Weiss, J.M.; Todorov, P.; Kreienberg, R. Cryobanking of human ovarian tissue for anti-cancer treatment: Comparison of vitrification and conventional freezing. CryoLetters 2009, 30, 449–454. [Google Scholar]
- Klocke, S.; Bündgen, N.; Köster, F.; Eichenlaub-Ritter, U.; Griesinger, G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Arch. Gynecol. Obstet. 2015, 291, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Xie, Y.; Wang, Y.; Li, S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: A systematic review and meta-anlaysis. Sci. Rep. 2017, 7, 8538. [Google Scholar] [CrossRef] [PubMed]
- Silber, S. Unifying theory of adult resting follicle recruitment and fetal oocyte arrest. Reprod. Biomed. Online 2015, 31, 472–475. [Google Scholar] [CrossRef][Green Version]
- Hayashi, K.; Ogushi, S.; Kurimoto, K.; Shimamoto, S.; Ohta, H.; Saitou, M. Offspring from oocytes derived from in vitro primordial germ cell–like cells in mice. Science 2012, 338, 971–975. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.-M. The ovary: From conception to death. Fertil. Steril. 2017, 108, 594–595. [Google Scholar] [CrossRef]
- Damásio, L.C.V.; Soares-Júnior, J.M.; Iavelberg, J.; Maciel, G.A.; de Jesus Simões, M.; dos Santos Simões, R.; da Motta, E.V.; Baracat, M.C.; Baracat, E.C. Heterotopic ovarian transplantation results in less apoptosis than orthotopic transplantation in a minipig model. J. Ovarian Res. 2016, 9, 14. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Sheng, Y.; Cao, Y.-Z.; Wang, H.-Y.; Chen, Z.-J. Cryopreservation of whole ovaries with vascular pedicles: Vitrification or conventional freezing? J. Assist. Reprod. Genet. 2011, 28, 445–452. [Google Scholar] [CrossRef]
- Kawamura, K.; Cheng, Y.; Suzuki, N.; Deguchi, M.; Sato, Y.; Takae, S.; Ho, C.H.; Kawamura, N.; Tamura, M.; Hashimoto, S.; et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc. Natl. Acad. Sci. USA 2013, 110, 17474–17479. [Google Scholar] [CrossRef]
- Silber, S. How ovarian transplantation works and how resting follicle recruitment occurs: A review of results reported from one center. Women’s Health Lond 2016, 12, 217–227. [Google Scholar] [CrossRef]
- Wallace, W.H.B.; Kelsey, T.W. Human ovarian reserve from conception to the menopause. PLoS ONE 2010, 5, e8772. [Google Scholar] [CrossRef]
- Tica, O.A.; Tica, O.; Antal, L.; Hatos, A.; Popescu, M.I.; Pantea Stoian, A.; Bratu, O.G.; Gaman, M.A.; Pituru, S.M.; Diaconu, C.C. Modern oral anticoagulant treatment in patients with atrial fibrillation and heart failure: Insights from the clinical practice. Farmacia 2018, 66, 972–976. [Google Scholar] [CrossRef]
- Faddy, M. Follicle dynamics during ovarian ageing. Mol. Cell. Endocrinol. 2000, 163, 43–48. [Google Scholar] [CrossRef]
- Ayuandari, S.; Winkler-Crepaz, K.; Paulitsch, M.; Wagner, C.; Zavadil, C.; Manzl, C.; Ziehr, S.C.; Wildt, L.; Hofer-Tollinger, S. Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice: Dynamics and molecular aspects. J. Assist. Reprod. Genet. 2016, 33, 1585–1593. [Google Scholar] [CrossRef]
- Kawamura, K.; Kawamura, N.; Hsueh, A.J. Activation of dormant follicles: A new treatment for premature ovarian failure? Curr. Opin. Obstet. Gynecol. 2016, 28, 217–222. [Google Scholar] [CrossRef]
- Gavish, Z.; Peer, G.; Hadassa, R.; Yoram, C.; Meirow, D. Follicle activation and ‘burn-out’contribute to post-transplantation follicle loss in ovarian tissue grafts: The effect of graft thickness. Hum. Reprod. 2014, 29, 989–996. [Google Scholar] [CrossRef]
- Meirow, D.; Roness, H.; Kristensen, S.G.; Andersen, C.Y. Optimizing outcomes from ovarian tissue cryopreservation and transplantation; activation versus preservation. Hum. Reprod. 2015, 30, 2453–2456. [Google Scholar] [CrossRef]
- Celik, S.; Celikkan, F.T.; Ozkavukcu, S.; Can, A.; Celik-Ozenci, C. Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation. J. Assist. Reprod. Genet. 2018, 35, 615–626. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Cordier, F.; Amorim, C.A.; Donnez, J.; Vander Linden, C. In vitro activation prior to transplantation of human ovarian tissue: Is it truly effective? Front. Endocrinol. 2019, 10, 520. [Google Scholar] [CrossRef]
- Suzuki, N.; Yoshioka, N.; Takae, S.; Sugishita, Y.; Tamura, M.; Hashimoto, S.; Morimoto, Y.; Kawamura, K. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum. Reprod. 2015, 30, 608–615. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.-M. Fertility preservation in women. N. Engl. J. Med. 2017, 377, 1657–1665. [Google Scholar] [CrossRef]
- Xia, X.; Yin, T.; Yan, J.; Yan, L.; Jin, C.; Lu, C.; Wang, T.; Zhu, X.; Zhi, X.; Wang, J.; et al. Mesenchymal stem cells enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation. Cell Transplant. 2015, 24, 1999–2010. [Google Scholar] [CrossRef]
- Andersen, C.Y.; Silber, S.J.; Berghold, S.H.; Jorgensen, J.S.; Ernst, E. Long-term duration of function of ovarian tissue transplants. Reprod. Biomed. Online 2012, 25, 128–132. [Google Scholar] [CrossRef]
- Jensen, A.; Rechnitzer, C.; Macklon, K.; Ifversen, M.; Birkebæk, N.; Clausen, N.; Sørensen, K.; Fedder, J.; Ernst, E.; Yding Andersen, C. Cryopreservation of ovarian tissue for fertility preservation in a large cohort of young girls: Focus on pubertal development. Hum. Reprod. 2016, 32, 154–164. [Google Scholar] [CrossRef]
- Wilkosz, P.; Greggains, G.D.; Tanbo, T.G.; Fedorcsak, P. Female reproductive decline is determined by remaining ovarian reserve and age. PLoS ONE 2014, 9, e108343. [Google Scholar] [CrossRef]
- Rosendahl, M.; Simonsen, M.; Kjer, J. The influence of unilateral oophorectomy on the age of menopause. Climacteric 2017, 20, 540–544. [Google Scholar] [CrossRef]
- Andersen, C.Y.; Kristensen, S.G. Novel use of the ovarian follicular pool to postpone menopause and delay osteoporosis. Reprod. Biomed. Online 2015, 31, 128–131. [Google Scholar] [CrossRef][Green Version]
- Yasui, T.; Hayashi, K.; Mizunuma, H.; Kubota, T.; Aso, T.; Matsumura, Y.; Lee, J.S.; Suzuki, S. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas 2012, 72, 249–255. [Google Scholar] [CrossRef]
- Herraiz, S.; Romeu, M.; Buigues, A.; Martínez, S.; Díaz-García, C.; Gómez-Seguí, I.; Martinez, J.; Pellicer, N.; Pellicer, A. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil. Steril. 2018, 110, 496–505. [Google Scholar] [CrossRef]
- Akahori, T.; Woods, D.C.; Tilly, J.L. Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution in Vitro and Ovarian Regeneration in Vivo. Clin. Med. Insights Reprod. Health. 2019, 13, 1179558119848007. [Google Scholar] [CrossRef]
- Meng, Y.; Xu, Z.; Wu, F.; Chen, W.; Xie, S.; Liu, J.; Huang, X.; Zhou, Y. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. Fertil. Steril. 2014, 102, 871–877. [Google Scholar] [CrossRef]
- Li, F.; Turan, V.; Lierman, S.; Cuvelier, C.; De Sutter, P.; Oktay, K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum. Reprod. 2013, 29, 107–113. [Google Scholar] [CrossRef]
- Guzel, Y.; Bildik, G.; Dilege, E.; Oktem, O. Sphingosine-1-phosphate reduces atresia of primordial follicles occurring during slow-freezing and thawing of human ovarian cortical strips. Mol. Reprod. Dev. 2018, 85, 858–864. [Google Scholar] [CrossRef]
- Bedaiwy, M.A.; Hussein, M.R.; Biscotti, C.; Falcone, T. Cryopreservation of intact human ovary with its vascular pedicle. Hum. Reprod. 2006, 21, 3258–3269. [Google Scholar] [CrossRef][Green Version]
- Nichols-Burns, S.M.; Lotz, L.; Schneider, H.; Adamek, E.; Daniel, C.; Stief, A.; Grigo, C.; Klump, D.; Hoffmann, I.; Beckmann, M.W.; et al. Preliminary observations on whole-ovary xenotransplantation as an experimental model for fertility preservation. Reprod. Biomed. Online 2014, 29, 621–626. [Google Scholar] [CrossRef][Green Version]
- Kara, M.; Daglioglu, Y.K.; Kuyucu, Y.; Tuli, A.; Tap, O. The effect of edaravone on ischemia–reperfusion injury in rat ovary. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 162, 197–202. [Google Scholar] [CrossRef]
- Brännström, M.; Milenkovic, M. Whole ovary cryopreservation with vascular transplantation–A future development in female oncofertility. Middle East. Fertil. Soc. J. 2010, 15, 125–138. [Google Scholar] [CrossRef]
- Maiani, E.; Di Bartolomeo, C.; Klinger, F.G.; Cannata, S.M.; Bernardini, S.; Chateauvieux, S.; Mack, F.; Mattei, M.; De Felici, M.; Diederich, M.; et al. Reply to: Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat. Med. 2012, 18, 1172–1174. [Google Scholar] [CrossRef]
- Kerr, J.B.; Hutt, K.J.; Michalak, E.M.; Cook, M.; Vandenberg, C.J.; Liew, S.H.; Bouillet, P.; Mills, A.; Scott, C.L.; Findlay, J.K.; et al. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol. Cell 2012, 48, 343–352. [Google Scholar] [CrossRef]
- Sonigo, C.; Beau, I.; Binart, N.; Grynberg, M. Anti-Müllerian hormone in fertility preservation: Clinical and therapeutic applications. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119854755. [Google Scholar] [CrossRef]
- Laronda, M.M.; Rutz, A.L.; Xiao, S.; Whelan, K.A.; Duncan, F.E.; Roth, E.W.; Woodruff, T.K.; Shah, R.N. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 2017, 8, 15261. [Google Scholar] [CrossRef]
- Luyckx, V.; Dolmans, M.M.; Vanacker, J.; Legat, C.; Moya, C.F.; Donnez, J.; Amorim, C.A. A new step toward the artificial ovary: Survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil. Steril. 2014, 101, 1149–1156. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibelean, C.B.; Petca, R.-C.; Radu, D.C.; Petca, A. State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. Medicina 2020, 56, 89. https://doi.org/10.3390/medicina56020089
Chibelean CB, Petca R-C, Radu DC, Petca A. State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. Medicina. 2020; 56(2):89. https://doi.org/10.3390/medicina56020089
Chicago/Turabian StyleChibelean, Călin Bogdan, Răzvan-Cosmin Petca, Dan Cristian Radu, and Aida Petca. 2020. "State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies" Medicina 56, no. 2: 89. https://doi.org/10.3390/medicina56020089
APA StyleChibelean, C. B., Petca, R.-C., Radu, D. C., & Petca, A. (2020). State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. Medicina, 56(2), 89. https://doi.org/10.3390/medicina56020089