DNA Methylation and Micro-RNAs: The Most Recent and Relevant Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma
Abstract
1. Context
2. Evidence Acquisition
2.1. Inclusion Criteria
2.2. Exclusion Criteria
3. Results
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Di, J.; Wang, Z.; Han, X.; Li, Z.; Luo, X.; Zeng, Q. Quantitative analysis of RASSF1A promoter methylation in hepatocellular carcinoma and its prognostic implications. Biochem. Biophys. Res. Commun. 2013, 438, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Herceg, Z.; Paliwal, A. Epigenetic mechanisms in hepatocellular carcinoma: How environmental factors influence the epigenome. Mutat. Res. 2011, 727, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.; Sherman, M. Screening for hepatocellular carcinoma. Hepatology 1998, 27, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Detection of epigenetic aberrations in the development of hepatocellular carcinoma. Methods Mol. Biol. 2015, 1238, 709–731. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chua, M.S.; Andrisani, O.; So, S. Epigenetics in hepatocellular carcinoma: An update and future therapy perspectives. World J. Gastroenterol. 2014, 20, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Schagdarsurengin, U.; Wilkens, L.; Steinemann, D.; Flemming, P.; Kreipe, H.H.; Pfeifer, G.P.; Schlegelberger, B.; Dammann, R. Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma. Oncogene 2003, 22, 1866–1871. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Y.; Li, B.; Sun, Z.; Yang, B. Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary hepatocellular carcinoma patients. Clin. Biochem. 2006, 39, 344–348. [Google Scholar] [CrossRef]
- Tchou, J.C.; Lin, X.; Freije, D.; Isaacs, W.B.; Brooks, J.D.; Rashid, A.; De Marzo, A.M.; Kanai, Y.; Hirohashi, S.; Nelson, W.G. GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas. Int. J. Oncol. 2000, 16, 663–676. [Google Scholar] [CrossRef]
- Zhong, S.; Tang, M.W.; Yeo, W.; Liu, C.; Lo, Y.M.; Johnson, P.J. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin. Cancer Res. 2002, 8, 1087–1092. [Google Scholar]
- Yang, B.; Guo, M.; Herman, J.G.; Clark, D.P. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol. 2003, 163, 1101–1107. [Google Scholar] [CrossRef]
- Rongrui, L.; Na, H.; Zongfang, L.; Fanpu, J.; Shiwen, J. Epigenetic mechanism involved in the HBV/HCV-related hepatocellular carcinoma tumorigenesis. Curr. Pharm. Des. 2014, 20, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Iyer, P.; Zekri, A.R.; Hung, C.W.; Schiefelbein, E.; Ismail, K.; Hablas, A.; Seifeldin, I.A.; Soliman, A.S. Concordance of DNA methylation pattern in plasma and tumor DNA of Egyptian hepatocellular carcinoma patients. Exp. Mol. Pathol. 2010, 88, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 2005, 15, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Lujambio, A.; Lowe, S.W. The microcosmos of cancer. Nature 2012, 482, 347–355. [Google Scholar] [CrossRef]
- Dong, X.; Hou, Q.; Chen, Y.; Wang, X. Diagnostic Value of the Methylation of Multiple Gene Promoters in Serum in Hepatitis B Virus-Related Hepatocellular Carcinoma. Dis. Markers. 2017. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Chen, S.Y.; Peng, H.L.; Kan, P.Y.; Chang, W.C.; Yen, C.J. Cell-free methylation markers with diagnostic and prognostic potential in hepatocellular carcinoma. Oncotarget 2017, 8, 6406–6418. [Google Scholar] [CrossRef]
- Wu, H.C.; Yang, H.I.; Wang, Q.; Chen, C.J.; Santella, R.M. Plasma DNA methylation marker and hepatocellular carcinoma risk prediction model for the general population. Carcinogenesis 2017, 38, 1021–1028. [Google Scholar] [CrossRef]
- Tao, L.P.; Fan, X.P.; Fan, Y.C.; Zhao, J.; Gao, S.; Wang, K. Combined detection of insulin-like growth factor-binding protein 7 promoter methylation improves the diagnostic efficacy of AFP in hepatitis B virus-associated hepatocellular carcinoma. Pathol. Res. Pract. 2018, 214, 144–150. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, L.; Zhao, R.C.; Liang, W.B.; Zhang, J.; Ding, X.Q.; Li, Z.L.; Sun, C.J.; Li, B.; Liu, Q.Y.; et al. Predicting hepatocellular carcinoma development for cirrhosis patients via methylation detection of heparocarcinogenesis-related genes. J Cancer. 2018, 9, 2203–2210. [Google Scholar] [CrossRef]
- Tian, M.M.; Fan, Y.C.; Zhao, J.; Gao, S.; Zhao, Z.H.; Chen, L.Y.; Wang, K. Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Huang, Y.; Wei, L.; He, J.Y.; Liu, Q.Y.; Yu, X.Q.; Li, Z.L.; Zhang, J.; Li, B.; Sun, C.J.; et al. Combination of LINE-1 hypomethylation and RASSF1A promoter hypermethylation in serum DNA is a non-invasion prognostic biomarker for early recurrence of hepatocellular carcinoma after curative resection. Neoplasma 2017, 64, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Huang, Y.; Zhao, R.; Zhang, J.; Liu, Q.; Liang, W.; Ding, X.; Gao, B.; Li, B.; Sun, C.; et al. Detection of promoter methylation status of suppressor of cytokine signaling 3 (SOCS3) in tissue and plasma from Chinese patients with different hepatic diseases. Clin. Exp. Med. 2018, 18, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Hu, Y.; Hua, D.; Wu, Y.Y.; Song, M.X.; Cheng, Z.H. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp. Mol. Pathol. 2011, 91, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.; Wong, N.; Wong, W.L.; Lai, P.B.; Zhong, S.; Johnson, P.J. High frequency of promoter hypermethylation of RASSF1A in tumor and plasma of patients with hepatocellular carcinoma. Liver Int. 2005, 25, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Lai, P.B.; Mok, T.S.; Chan, H.L.; Ding, C.; Yeung, S.W.; Lo, Y.M. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin. Chem. 2008, 54, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Yi, B.; Li, L.; Zhang, H.Y.; Sun, F.; Dong, S.Q.; Cao, Y. Methylation of tumor associated genes in tissue and plasma samples from liver disease patients. Exp. Mol. Pathol. 2008, 85, 96–100. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Swify, E.M.; Amin, N.F.; Soliman, M.M.; Tag-Eldin, L.M.; Elsherbiny, N.M. Is serum level of methylated RASSF1A valuable in diagnosing hepatocellular carcinoma in patients with chronic viral hepatitis C? Arab. J. Gastroenterol. 2012, 13, 111–115. [Google Scholar] [CrossRef]
- Harris, R.E. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell. Biochem. 2007, 42, 93–126. [Google Scholar]
- Singh, B.; Berry, J.A.; Shoher, A.; Ramakrishnan, V.; Lucci, A. COX-2 overexpression increases motility and invasion of breast cancer cells. Int. J. Oncol. 2005, 26, 1393–1399. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, T.; Sheng, Y.; Zhang, C.; Peng, Y.; Wang, X.; Zhang, C. Methylation Profiling of Multiple Tumor Suppressor Genes in Hepatocellular Carcinoma and the Epigenetic Mechanism of 3OST2 Regulation. J. Cancer 2015, 6, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Um, T.H.; Kim, H.; Oh, B.K.; Kim, M.S.; Kim, K.S.; Jung, G.; Park, Y.N. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol. 2011, 54, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Yang, F.; Yang, Y.; Mu, Y.; Sun, W.; Li, W.; Xu, D.; Wu, J.; Zhu, Y. Induction of cyclooxygenase-2 expression by hepatitis B virus depends on demethylation-associated recruitment of transcription factors to the promoter. Virol. J. 2011, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Huang, Q.; Ding, Z.; Liu, T.; Xue, C.; Sang, X.; Gu, J. Genome-wide DNA methylation analysis identifies candidate epigenetic markers and drivers of hepatocellular carcinoma. Brief Bioinform. 2018, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.H.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 2017, 16, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.P.; Paliwal, A.; Vaissiere, T.; Chemin, I.; Zoulim, F.; Tommasino, M.; Hainaut, P.; Sylla, B.; Scoazec, J.Y.; Tost, J.; et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J. Hepatol. 2011, 54, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Gurioli, G.; Martignano, F.; Salvi, S.; Costantini, M.; Gunelli, R.; Casadio, V. GSTP1 methylation in cancer: A liquid biopsy biomarker? Clin. Chem. Lab. Med. 2018, 56, 702–717. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Jiang, Y.; Li, H.; Yu, D.C.; Ding, Y.T. Detecting abnormal methylation of tumor suppressor genes GSTP1, P16, RIZ1, and RASSF1A in hepatocellular carcinoma and its clinical significance. Oncol. Lett. 2015, 10, 2553–2558. [Google Scholar] [CrossRef]
- Huang, W.; Li, T.; Yang, W.; Chai, X.; Chen, K.; Wei, L.; Duan, S.; Li, B.; Qin, Y. Analysis of DNA methylation in plasma for monitoring hepatocarcinogenesis. Genet. Test. Mol. Biomarkers. 2015, 19, 295–302. [Google Scholar] [CrossRef]
- Liu, M.; Cui, L.H.; Li, C.C.; Zhang, L. Association of APC, GSTP1 and SOCS1 promoter methylation with the risk of hepatocellular carcinoma: A meta-analysis. Eur. J. Cancer Prev. 2015, 24, 470–483. [Google Scholar] [CrossRef]
- Wong, I.H.; Lo, Y.M.; Zhang, J.; Liew, C.T.; Ng, M.H.; Wong, N.; Lai, P.B.; Lau, W.Y.; Hjelm, N.M.; Johnson, P.J. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 1999, 59, 71–73. [Google Scholar] [PubMed]
- Han, L.Y.; Fan, Y.C.; Mu, N.N.; Gao, S.; Li, F.; Ji, X.F.; Dou, C.Y.; Wang, K. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B virus associated hepatocellular carcinoma. Int. J. Med. Sci. 2014, 11, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Yasui, K.; Dohi, O.; Gen, Y.; Tomie, A.; Kitaichi, T.; Iwai, N.; Mitsuyoshi, H.; Sumida, Y.; Moriguchi, M.; et al. Genome-wide DNA methylation analysis in hepatocellular carcinoma. Oncol. Rep. 2016, 35, 2228–2236. [Google Scholar] [CrossRef] [PubMed]
- Holmila, R.; Sklias, A.; Muller, D.C.; Degli Esposti, D.; Guilloreau, P.; McKay, J.; Sangrajrang, S.; Srivatanakul, P.; Hainaut, P.; Merle, P.; et al. Targeted deep sequencing of plasma circulating cell-free DNA reveals Vimentin and Fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma. PLoS ONE 2017, 12, e0174265. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shi, Y.H.; Fan, J. Circulating cell-free nucleic acids: Promising biomarkers of hepatocellular carcinoma. Semin. Oncol. 2012, 39, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Ramzy, I.I.; Omran, D.A.; Hamad, O.; Shaker, O.; Abboud, A. Evaluation of serum LINE-1 hypomethylation as a prognostic marker for hepatocellular carcinoma. Arab. J. Gastroenterol. 2011, 12, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Tangkijvanich, P.; Hourpai, N.; Rattanatanyong, P.; Wisedopas, N.; Mahachai, V.; Mutirangura, A. Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clin. Chim. Acta. 2007, 379, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, A.; Rischer, S.; Bensenane, M.; Conroy, G.; Filhine-Tresarrieu, P.; Debard, R.; Forest-Tramoy, D.; Josse, T.; Reinicke, D.; Garcia, M.; et al. Plasma mSEPT9: A Novel Circulating Cell-free DNA-Based Epigenetic Biomarker to Diagnose Hepatocellular Carcinoma. EBioMedicine 2018, 30, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Lin, Y.; Zhang, H.; Wu, D. miR-139–5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochem. Biophys. Res. Commun. 2015, 463, 315–321. [Google Scholar] [CrossRef]
- Gu, W.; Li, X.; Wang, J. MiR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol. Rep. 2014, 31, 397–404. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Y.; Xue, C.; Chen, X.; Cui, G.; Li, J.; Li, K.; Ren, Z.; Sun, R. Low microRNA-139 expression associates with poor prognosis in patients with tumors: A meta-analysis. Hepatobiliary Pancreat. Dis. Int. 2018. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yin, J.; Yuan, L.; Wang, S.; Yang, L.; Du, X.; Lu, J. Downregulation of microRNA-139 is associated with hepatocellular carcinoma risk and short-term survival. Oncol. Rep. 2014, 31, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Mourad, L.; El-Ahwany, E.; Zoheiry, M.; Abu-Taleb, H.; Hassan, M.; Ouf, A.; Rahim, A.A.; Hassanien, M.; Zada, S. Expression analysis of liver-specific circulating microRNAs in HCV-induced hepatocellular carcinoma in Egyptian patients. Cancer Biol. Ther. 2018, 19, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.M.; Yang, H.; Fang, F.; Xu, J.F.; Yang, L.Y. MicroRNA-331–3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase. Hepatology 2014, 60, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.M.H.; Zayed, N.; Riad, N.M.; Tamim, H.H.; Shahin, R.M.H.; Labib, D.A.; SM, E.L.; Moneim, R.A.; Yosry, A.; Khalifa, R.H. Role of circulating miR-182 and miR-150 as biomarkers for cirrhosis and hepatocellular carcinoma post HCV infection in Egyptian patients. Virus Res. 2018, 255, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Dasgupta, D.; Ghosh, A.; Roychoudhury, S.; Kumar, D.; Gorain, M.; Butti, R.; Datta, S.; Agarwal, S.; Gupta, S.; et al. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell. Death Dis. 2017, 8, e2706. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Hou, P.; Wu, Z.; Wang, T.; Nie, Y. Circulating miR-375 and miR-199a-3p as potential biomarkers for the diagnosis of hepatocellular carcinoma. Tumour Biol. 2015, 36, 4501–4507. [Google Scholar] [CrossRef]
- Chen, L.; Chu, F.; Cao, Y.; Shao, J.; Wang, F. Serum miR-182 and miR-331–3p as diagnostic and prognostic markers in patients with hepatocellular carcinoma. Tumour Biol. 2015, 36, 7439–7447. [Google Scholar] [CrossRef]
- Lin, X.J.; Chong, Y.; Guo, Z.W.; Xie, C.; Yang, X.J.; Zhang, Q.; Li, S.P.; Xiong, Y.; Yuan, Y.; Min, J.; et al. A serum microRNA classifier for early detection of hepatocellular carcinoma: A multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. Lancet Oncol. 2015, 16, 804–815. [Google Scholar] [CrossRef]
- Shi, K.Q.; Lin, Z.; Chen, X.J.; Song, M.; Wang, Y.Q.; Cai, Y.J.; Yang, N.B.; Zheng, M.H.; Dong, J.Z.; Zhang, L.; et al. Hepatocellular carcinoma associated microRNA expression signature: Integrated bioinformatics analysis, experimental validation and clinical significance. Oncotarget 2015, 6, 25093–25108. [Google Scholar] [CrossRef]
- Zekri, A.N.; Youssef, A.S.; El-Desouky, E.D.; Ahmed, O.S.; Lotfy, M.M.; Nassar, A.A.; Bahnassey, A.A. Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumour Biol. 2016, 37, 12273–12286. [Google Scholar] [CrossRef] [PubMed]
‘‘DNA methylation’’ AND ‘‘hepatocellular carcinoma’’ | 107 |
---|---|
“microRNA OR miRNAs” AND ”hepatocellular carcinoma” | 1126 |
”microRNA-139 OR miRNA-139 OR miR-139” AND “hepatocellular carcinoma” | 15 |
”microRNA-182 OR miRNA-182 OR miR-182” AND “hepatocellular carcinoma” | 8 |
”microRNA-331 OR miRNA-331 OR miR-331” AND “hepatocellular carcinoma” | 2 |
“microRNA-199a-3p OR miRNA-199a-3p OR miR-199a-3p” AND “hepatocellular carcinoma” | 12 |
“microRNA-miR-375 OR miRNA-miR-375 OR miR-miR-375” AND “hepatocellular carcinoma” | 14 |
“microRNA-miR-150 OR miRNA-miR-150 OR miR-miR-150” AND “hepatocellular carcinoma” | 7 |
DNA Alterations. | Gene | Circulating Free DNA / Number of Cases (%) | Reference |
---|---|---|---|
Hypermethylation | APC | 36/98 (36.7) | [16] |
APC | 47 /3 57 (13) | [17] | |
BVES | 29/98 (29.6) | [16] | |
COX2 | — | [17] | |
CDKN2A | 50/237 (21.3) | [18] | |
GSTP1 | 17/98 (17.3) | [16] | |
HOXA9 | 20/98 (20.4) | [16] | |
IGFBP7 | 5.33% | [19] | |
P16 | 85/119 (71.43) | [20] | |
HCCS1 | 75/120 (62.5) | [21] | |
RASSF1A | 51/98 (52.0) | [16] | |
RASSF1A | 77/105 (73.3) | [22] | |
RASSF1A | 21/237 (8.9) | [18] | |
SFRP1 | 73/119 (61.34) | [20] | |
SOCS3 | 23/48 (47.91) | [23] | |
STEAP4 | 30/237 (13) | [18] | |
TBX2 | 179/237 (75.5) | [18] | |
TIMP3 | 11/98 (11.2) | [16] | |
VIM | 31/237 (13.1) | [18] | |
ZNF154 | 135/237 (60.3) | [18] | |
Hypomethylation | LINE-1 | 80/119 (67.23) | [20] |
LINE-1 | 70/105 (66.7) | [22] |
Study | Number of Patients | Comparison/Control Patients (Number) | DNA Methylation | Se1 | Sp2 | AUC | Reference |
---|---|---|---|---|---|---|---|
Dong 2017 | 343 | 98 HCC 75 liver cirrhosis 90 chronic hepatitis B 80 healthy individuals | APC | 36.7 | 96.4 | 0.650 | [16] |
RASSF1A | 52 | 91.5 | 0.718 | ||||
BVES | 29.6 | 97.6 | 0.636 | ||||
TIMP3 | 11.2 | 98.8 | 0.356 | ||||
GSTP1 | 17.4 | 98.7 | 0.486 | ||||
HOXa9 | 20.4 | 95.8 | 0.521 | ||||
RASSF1A + BVES + HOXa9 | 83.7 | 78.9 | 0.852 | ||||
Lu 2017 | 357 | Hepatitis B virus (HBV)-related HCC HBV-related HCC with cirrhosis HCV-related HCC Hepatitis C virus (HCV)-related HCC with cirrhosis HCC without HBV or HCV | APC | - | - | 0.644 | [17] |
COX2 | - | - | 0.758 | ||||
RASSF1A | - | - | 0.666 | ||||
APC + COX2 + RASSF1A + miR-203 | - | - | 0.87 | ||||
Huang 2018 | 326 | 119 HCC 105 liver cirrhosis 52 benign lesion patients 50 healthy people | SFRP1 | 56.3 | 26 | 0.65 | [20] |
LINE-1 | 50.0 | 8.2 | 0.70 | ||||
P16 | 59.4 | 31.5 | 0.63 | ||||
SFRP1 + LINE-1 + P16 | 93.8 | 63.0 | 0.86 | ||||
Tao 2018 | 135 | 80 HBV-related HCC 35 chronic hepatitis B 20 healthy controls | IGFBP7 | 60.0 | 77.14 | 0.695 | [19] |
Tian 2018 | 193 | 20 HCC 146 chronic hepatitis B 27 healthy controls | HCCS1 | 62.5 | 83.6 | 0.730 | [21] |
HCCS1+AFP | 81.7 | 52.1 | 0.713 | ||||
Oussalah 2018 | 289 | 289 cirrhosis of which 98 had HCC | SEPT9 | 98 | 64.4 | 0.94 | [48] |
Wei 2017 | 116 | 48 HCC 48 non-tumor 10 liver cirrhosis 6 benign lesions 4 normal liver | SOCS3 | 73.9 | [23] | ||
Wu 2017 | 494 | 237 HCC 257 control individuals | CDKN29 | - | - | - | [18] |
STEAP4 | - | - | - | ||||
ZNF154 | - | - | - | ||||
TBX2 | - | - | 0.61 | ||||
VIM | - | - | - | ||||
RASSF1A | - | - | - |
HCC Patients (number) | Comparison/Control Subjects (number) | Plasma | Sensitivity (%) | Specificity (%) | AUC | Reference | |
---|---|---|---|---|---|---|---|
miR-139 | 31 | 31 HBV hepatitis | Serum | 58.61 | 80.6 | 0.76 | [52] |
miR-139 | 38 | 42 HCV hepatitis and 45 HCV liver cirrhosis | Serum | 85.71 | 64.29 | 0.863 | [53] |
miR-182 | 103 | 47 chronic hepatitis 39 liver cirrhosis 9 non-alcoholic fatty liver disease (NAFLD) | Serum | 78.6 | 91.58 | 0.911 | [58] |
miR-182 | 40 | 20 HCV non-cirrhotic hepatitis | Serum | 72.5 | 65 | 0.675 | [55] |
miR-150 | 40 | 40 healthy controls | Serum | 60 | 70 | 0.674 | [52] |
miR-331-3p | 103 | 47 chronic hepatitis 39 liver cirrhosis 9 NAFLD | Serum | 79.61 | 86.32 | 0.89 | [58] |
miR-199a-3p | 78 | 156 healthy controls | Serum | 71.8 | 86.1 | 0.883 | [57] |
miR-375 | 78 | 156 healthy controls | Serum | 52.3 | 72.7 | 0.637 | [54] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozma, A.; Fodor, A.; Vulturar, R.; Sitar-Tăut, A.-V.; Orăşan, O.H.; Mureşan, F.; Login, C.; Suharoschi, R. DNA Methylation and Micro-RNAs: The Most Recent and Relevant Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma. Medicina 2019, 55, 607. https://doi.org/10.3390/medicina55090607
Cozma A, Fodor A, Vulturar R, Sitar-Tăut A-V, Orăşan OH, Mureşan F, Login C, Suharoschi R. DNA Methylation and Micro-RNAs: The Most Recent and Relevant Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma. Medicina. 2019; 55(9):607. https://doi.org/10.3390/medicina55090607
Chicago/Turabian StyleCozma, Angela, Adriana Fodor, Romana Vulturar, Adela-Viviana Sitar-Tăut, Olga Hilda Orăşan, Flaviu Mureşan, Cezar Login, and Ramona Suharoschi. 2019. "DNA Methylation and Micro-RNAs: The Most Recent and Relevant Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma" Medicina 55, no. 9: 607. https://doi.org/10.3390/medicina55090607
APA StyleCozma, A., Fodor, A., Vulturar, R., Sitar-Tăut, A.-V., Orăşan, O. H., Mureşan, F., Login, C., & Suharoschi, R. (2019). DNA Methylation and Micro-RNAs: The Most Recent and Relevant Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma. Medicina, 55(9), 607. https://doi.org/10.3390/medicina55090607