Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients
Abstract
1. Introduction
2. Antihyperglycemic Drugs, Atrial Fibrillation and Stroke
2.1. Insulin
2.2. Metformin
2.3. Sulfonylureas
2.4. Thiazolidinediones
2.5. DPP-4 Inhibitors
2.6. GLP-1 Receptor Agonists
2.7. SGLT-2 Inhibitors
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gæde, P.; Lund-Andersen, H.; Parving, H.-H.; Pedersen, O. Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Sattar, N.; Eliasson, B.; Svensson, A.-M.; Zethelius, B.; Miftaraj, M.; McGuire, D.K.; Rosengren, A.; et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2018, 379, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; D’Alessio, D.; Fradkin, J.; Kernan, W.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.; Buse, J. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018, 61, 2461–2498. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration. The Emerging Risk Factors Collaboration Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef]
- Proietti, R.; Russo, V.; Wu, M.A.; Maggioni, A.P.; Marfella, R. Diabetes mellitus and atrial fibrillation: Evidence of a pathophysiological, clinical and epidemiological association beyond the thromboembolic risk. G. Ital. Cardiol. (Rome) 2017, 18, 199–207. [Google Scholar]
- Mentias, A.; Shantha, G.; Adeola, O.; Barnes, G.D.; Narasimhan, B.; Siontis, K.C.; Levine, D.A.; Sah, R.; Giudici, M.C.; Vaughan-Sarrazin, M. Role of diabetes and insulin use in the risk of stroke and acute myocardial infarction in patients with atrial fibrillation: A Medicare analysis. Am. Heart J. 2019, 214, 158–166. [Google Scholar] [CrossRef]
- Bell, D.; Goncalves, E. Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes. Metab. 2019, 21, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Scheen, A. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. Diabetes Metab. 2017, 43, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Chiao, Y.W.; Chen, Y.J.; Kuo, Y.H.; Lu, C.Y. Traditional Chinese Medical Care and Incidence of Stroke in Elderly Patients Treated with Antidiabetic Medications. Int. J. Environ. Res. Public Health 2018, 15, 1267. [Google Scholar] [CrossRef]
- Naydenov, S.; Runev, N.; Manov, E.; Vasileva, D.; Rangelov, Y.; Naydenova, N. Risk Factors, Co-Morbidities and Treatment of In-Hospital Patients with Atrial Fibrillation in Bulgaria. Medicina 2018, 54, 34. [Google Scholar] [CrossRef]
- Bandemer, S.V.; Merkel, S.; Nimako-Doffour, A.; Weber, M.M. Diabetes and atrial fibrillation: Stratification and prevention of stroke risks. EPMA J. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.S.; Yang, F.Y.; Chen, H.Y.; Jong, G.P. Antihyperglycemic drugs use and new-onset atrial fibrillation: A population-based nested case control study. PLoS ONE 2018, 13, e0197245. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.; Lucerna, M.; Cavallari, I.; Ricottini, E.; Renda, G.; Pecen, L.; Romeo, F.; Le Heuzey, J.Y.; Zamorano, J.L.; Kirchhof, P.; et al. Insulin-Requiring Versus Noninsulin-Requiring Diabetes and Thromboembolic Risk in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2017, 69, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Asghar, O.; Alam, U.; Hayat, S.A.; Aghamohammadzadeh, R.; Heagerty, A.M.; Malik, R.A. Obesity, Diabetes and Atrial Fibrillation; Epidemiology, Mechanisms and Interventions. Curr. Cardiol. Rev. 2012, 8, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Wu, L.S.; Chiou, M.J.; Liu, J.R.; Yu, K.H.; Kuo, C.F.; Wen, M.S.; Chen, W.J.; Yeh, Y.H.; See, L.C. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: A population-based dynamic cohort and in vitro studies. Cardiovasc. Diabetol. 2014, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Homan, E.A.; Reyes, M.V.; Hickey, K.T.; Morrow, J.P. Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Front. Physiol. 2019, 9, 1847. [Google Scholar] [CrossRef] [PubMed]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Leu, H.B.; Chen, T.J.; Chen, C.L.; Kuo, C.H.; Lee, S.D.; Kao, C.L. Metformin-inclusive Therapy Reduces the Risk of Stroke in Patients with Diabetes: A 4-Year Follow-up Study. J. Stroke Cerebrovasc. Dis. 2014, 23, 99–105. [Google Scholar] [CrossRef]
- Hatch, G.M.; Parkinson, F.E. Is There Enhanced Risk of Cerebral Ischemic Stroke by Sulfonylureas in Type 2 Diabetes? Diabetes 2016, 65, 2479–2481. [Google Scholar]
- Liu, R.; Wang, H.; Xu, B.; Chen, W.; Turlova, E.; Dong, N.; Sun, C.; Lu, Y.; Fu, H.; Shi, R.; et al. Cerebrovascular Safety of Sulfonylureas: The Role of KATP Channels in Neuroprotection and the Risk of Stroke in Patients with Type 2 Diabetes. Diabetes 2016, 65, 2795–2809. [Google Scholar] [CrossRef]
- Castilla-Guerra, L.; Fernandez-Moreno, M.; Leon-Jimenez, D.; Carmona-Nimo, E. Antidiabetic drugs and stroke risk Current evidence. Eur. J. Intern. Med. 2018, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kunte, H.; Schmidt, S.; Eliasziw, M.; Del Zoppo, G.J.; Simard, J.M.; Masuhr, F.; Weih, M.; Dirnagl, U. Sulfonylureas Improve Outcome in Patients with Type 2 Diabetes and Acute Ischemic Stroke. Stroke 2007, 38, 2526–2530. [Google Scholar] [CrossRef] [PubMed]
- Weih, M.; Amberger, N.; Wegener, S.; Dirnagl, U.; Reuter, T.; Einhäupl, K. Sulfonylurea Drugs Do Not Influence Initial Stroke Severity and In-Hospital Outcome in Stroke Patients with Diabetes. Stroke 2001, 32, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Bannister, C.A.; Holden, S.E.; Morgan, C.L.; Halcox, J.P.; Schernthaner, G.; Mukherjee, J.; Currie, C.J.; Jenkins-Jones, S.; Halcox, J.; Bannister, C.; et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes. Metab. 2014, 16, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Goudis, C.A.; Korantzopoulos, P.; Ntalas, I.V.; Kallergis, E.M.; Liu, T.; Ketikoglou, D.G. Diabetes mellitus and atrial fibrillation: Pathophysiological mechanisms and potential upstream therapies. Int. J. Cardiol. 2015, 184, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Nesto, R.W.; Bell, D.; Bonow, R.O.; Fonseca, V.; Grundy, S.M.; Horton, E.S.; Le Winter, M.; Porte, D.; Semenkovich, C.F.; Smith, S.; et al. Thiazolidinedione Use, Fluid Retention, and Congestive Heart Failure. Circulation 2003, 108, 2941–2948. [Google Scholar] [CrossRef]
- Wolski, K.; Nissen, S.E. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar]
- Chao, T.F.; Leu, H.B.; Huang, C.C.; Chen, J.W.; Chan, W.L.; Lin, S.J.; Chen, S.A. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes. Int. J. Cardiol. 2012, 156, 199–202. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Shi, H.; Tan, H.; Zhou, L.; Gu, J.; Jiang, W.; Wang, Y. Beneficial effect of pioglitazone on the outcome of catheter ablation in patients with paroxysmal atrial fibrillation and type 2 diabetes mellitus. Europace 2011, 13, 1256–1261. [Google Scholar]
- Korantzopoulos, P.; Kokkoris, S.; Kountouris, E.; Protopsaltis, I.; Siogas, K.; Melidonis, A. Regression of paroxysmal atrial fibrillation associated with thiazolidinedione therapy. Int. J. Cardiol. 2008, 125, e51–e53. [Google Scholar] [CrossRef]
- Pallisgaard, J.; Lindhardt, T.; Staerk, L.; Olesen, J.; Torp-Pedersen, C.; Hansen, M.; Gislason, G. Thiazolidinediones are associated with a decreased risk of atrial fibrillation compared with other antidiabetic treatment: A nationwide cohort study. Eur. Heart J. Cardiovasc. Pharm. 2017, 3, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Dormandy, J.; Charbonnel, B.; Eckland, D.; Erdmann, E.; Massi-Benedetti, M.; Moules, I.; Skene, A.; Tan, M.; Lefèbvre, P.; Murray, G.; et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005, 366, 1279–1289. [Google Scholar] [CrossRef]
- Pallisgaard, J.L.; Brooks, M.M.; Chaitman, B.R.; Boothroyd, D.B.; Perez, M.; Hlatky, M.A. Thiazolidinediones and Risk of Atrial Fibrillation among Patients with Diabetes and Coronary Disease. Am. J. Med. 2018, 131, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Korantzopoulos, P.; Letsas, K.; Tse, G.; Gong, M.; Meng, L.; Li, G.; Liu, T. Thiazolidinedione use and atrial fibrillation in diabetic patients: A meta-analysis. BMC Cardiovasc. Disord. 2017, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R.; Bousser, M.-G.; Betteridge, D.J.; Schernthaner, G.; Pirags, V.; Kupfer, S.; Dormandy, J. Effects of Pioglitazone in Patients with Type 2 Diabetes with or without Previous Stroke. Stroke 2007, 38, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Kernan, W.; Viscoli, C.; Furie, K.; Young, L.; Inzucchi, S.; Gorman, M.; Guarino, P.; Lovejoy, A.; Peduzzi, P.; Conwit, R.; et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2016, 374, 1321–1331. [Google Scholar] [CrossRef]
- Lee, M.; Saver, J.L.; Liao, H.-W.; Lin, C.-H.; Ovbiagele, B. Pioglitazone for Secondary Stroke Prevention. Stroke 2017, 48, 388–393. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yeh, Y.H.; Chan, Y.H.; Liu, J.R.; Chang, S.H.; Lee, H.F.; Wu, L.S.; Yen, K.C.; Kuo, C.T.; See, L.C. Dipeptidyl peptidase-4 inhibitor decreases the risk of atrial fibrillation in patients with type 2 diabetes: A nationwide cohort study in Taiwan. Cardiovasc. Diabetol. 2017, 16, 159. [Google Scholar] [CrossRef]
- Ou, H.T.; Chang, K.C.; Li, C.Y.; Wu, J.S. Risks of cardiovascular diseases associated with dipeptidyl peptidase-4 inhibitors and other antidiabetic drugs in patients with type 2 diabetes: A nation-wide longitudinal study. Cardiovasc. Diabetol. 2016, 15, 41. [Google Scholar] [CrossRef]
- Scirica, B.; Bhatt, D.; Braunwald, E.; Steg, P.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.; Hoffman, E.; et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef]
- White, W.; Cannon, C.; Heller, S.; Nissen, S.; Bergenstal, R.; Bakris, G.; Perez, A.; Fleck, P.; Mehta, C.; Kupfer, S.; et al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N. Engl. J. Med. 2013, 369, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Bethel, M.; Armstrong, P.; Buse, J.; Engel, S.; Garg, J.; Josse, R.; Kaufman, K.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Gantz, I.; Chen, M.; Suryawanshi, S.; Ntabadde, C.; Shah, S.; O’Neill, E.A.; Engel, S.S.; Kaufman, K.D.; Lai, E. A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2017, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Johansen, O.; Cooper, M.; Kahn, S.; Marx, N.; Alexander, J.; Pencina, M.; Toto, R.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Barkas, F.; Elisaf, M.; Tsimihodimos, V.; Milionis, H. Dipeptidyl peptidase-4 inhibitors and protection against stroke: A systematic review and meta-analysis. Diabetes Metab. 2017, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.; Ghosal, S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res. Clin. Pract. 2019, 150, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wu, S.; Guo, S.; Yu, K.; Yang, Z.; Li, L.; Zhang, Y.; Quan, X.; Ji, L.; Zhan, S. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Res. Clin. Pract. 2015, 110, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Muskiet, M.H.A.; Tonneijck, L.; Hoekstra, T.; Kramer, M.H.H.; Diamant, M.; Van Raalte, D.H. Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males. Br. J. Clin. Pharmacol. 2016, 81, 613–620. [Google Scholar] [CrossRef]
- Lorenz, M.; Lawson, F.; Owens, D.; Raccah, D.; Roy-Duval, C.; Lehmann, A.; Perfetti, R.; Blonde, L. Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc. Diabetol. 2017, 16, 6. [Google Scholar] [CrossRef]
- Fisher, M.; Petrie, M.C.; Ambery, P.D.; Donaldson, J.; Ye, J.; McMurray, J.J.V. Cardiovascular safety of albiglutide in the Harmony programme: A meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 697–703. [Google Scholar] [CrossRef]
- Pfeffer, M.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.; Køber, L.; Lawson, F.; Ping, L.; Wei, X.; Lewis, E.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results—Study Results—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01179048 (accessed on 20 June 2019).
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Monami, M.; Nreu, B.; Scatena, A.; Giannini, S.; Andreozzi, F.; Sesti, G.; Mannucci, E. Glucagon-like peptide-1 receptor agonists and atrial fibrillation: A systematic review and meta-analysis of randomised controlled trials. J. Endocrinol. Investig. 2017, 40, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Green, J.; Janmohamed, S.; D’Agostino, R.; Granger, C.; Jones, N.; Leiter, L.; Rosenberg, A.; Sigmon, K.; Somerville, M.; et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef]
- Gerstein, H.; Colhoun, H.; Dagenais, G.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.; Riddle, M.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, in press. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.; Woerle, H.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wiviott, S.; Raz, I.; Bonaca, M.; Mosenzon, O.; Kato, E.; Cahn, A.; Silverman, M.; Zelniker, T.; Kuder, J.; Murphy, S.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zinman, B.; Inzucchi, S.E.; Lachin, J.M.; Wanner, C.; Fitchett, D.; Kohler, S.; Mattheus, M.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E.; et al. Empagliflozin and Cerebrovascular Events in Patients with Type 2 Diabetes Mellitus at High Cardiovascular Risk. Stroke 2017, 48, 1218–1225. [Google Scholar] [CrossRef]
- Wu, J.; Foote, C.; Blomster, J.; Toyama, T.; Perkovic, V.; Sundström, J.; Neal, B. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016, 4, 411–419. [Google Scholar] [CrossRef]
- Imprialos, K.P.; Boutari, C.; Stavropoulos, K.; Doumas, M.; Karagiannis, A.I. Stroke paradox with SGLT-2 inhibitors: A play of chance or a viscosity-mediated reality? J. Neurol. Neurosurg. Psychiatry 2016, 88, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.S.; Siddiqi, T.J.; Memon, M.M.; Khan, M.S.; Rawasia, W.F.; Ayub, M.T.; Sreenivasan, J.; Golzar, Y. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2018, 25, 495–502. [Google Scholar] [CrossRef] [PubMed]
Drug | Mechanism of Action |
---|---|
Insulin | Activation of insulin receptor; various effects on multiple metabolic pathways |
Metformin | Reduced insulin resistance, mostly by decreasing gluconeogenesis |
Sulfonylureas (SU) | Insulin secretagogues by activation of SUR (SU receptor) unit of ATP-sensitive potassium channels |
Thiazolidinediones (TZD) | Insulin sensitizers by the activation of peroxisome proliferator-activated receptor (PPAR)-γ |
Dipeptidyl peptidase-4 (DPP-4) inhibitors | Inhibition of DPP-4 and subsequent conservation of native human GLP-1 in its active form |
Glucagon-like peptide-1 (GLP-1) receptor agonists | Activation of GLP-1 receptor at high pharmacological concentrations |
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors | Inhibition of active reabsorption of glucose and sodium performed by SGLT-2 in the proximal convoluted tubule |
Drug | Risk for AF | Risk for Stroke |
---|---|---|
Insulin | Increased [12] | Increased [6,13] |
Metformin | Reduced [12,15] | Reduced [17,18] |
Sulfonylureas | Unchanged [12] | Reduced [22], unchanged [23], or increased [20,24] |
Thiazolidinediones | Reduced [12,28,29,31,34] or unchanged [32,33] | Reduced [35,36,37] |
DPP-4 inhibitors | Reduced [38] or unchanged [12] | Reduced [39] or unchanged [40,41,42,43,44,45,46] |
GLP-1 receptor agonists | Increased with albiglutide [50], unchanged with semaglutide, liraglutide, and dulaglutide, or in meta-analyses [51,52,53,54] | Reduced in meta-analyses [46] and with semaglutide [53], unchanged with liraglutide, albiglutide, and dulaglutide [55,56,57] |
SGLT-2 inhibitors | Data not available | Increased in some meta-analyses [62], unchanged in others [46,64] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lăcătușu, C.-M.; Grigorescu, E.-D.; Stătescu, C.; Sascău, R.A.; Onofriescu, A.; Mihai, B.-M. Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients. Medicina 2019, 55, 592. https://doi.org/10.3390/medicina55090592
Lăcătușu C-M, Grigorescu E-D, Stătescu C, Sascău RA, Onofriescu A, Mihai B-M. Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients. Medicina. 2019; 55(9):592. https://doi.org/10.3390/medicina55090592
Chicago/Turabian StyleLăcătușu, Cristina-Mihaela, Elena-Daniela Grigorescu, Cristian Stătescu, Radu Andy Sascău, Alina Onofriescu, and Bogdan-Mircea Mihai. 2019. "Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients" Medicina 55, no. 9: 592. https://doi.org/10.3390/medicina55090592
APA StyleLăcătușu, C.-M., Grigorescu, E.-D., Stătescu, C., Sascău, R. A., Onofriescu, A., & Mihai, B.-M. (2019). Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients. Medicina, 55(9), 592. https://doi.org/10.3390/medicina55090592