The Lipid Paradox Among Acute Ischemic Stroke Patients-A Retrospective Study of Outcomes and Complications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Patient and Hospital Characteristics
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. LDs and AIS Amongst Year-2014 Hospitalizations
3.2. LDs and Post-AIS Outcomes Amongst AIS Population from Year 2003–2014
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Tong, X.; Schieb, L.; Vaughan, A.; Gillespie, C.; Wiltz, J.L.; King, S.C.; Odom, E.; Merritt, R.; Hong, Y.; et al. Vital Signs: Recent Trends in Stroke Death Rates—United States, 2000–2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Klag, M.J.; Ford, D.E.; Mead, L.A.; He, J.; Whelton, P.K.; Liang, K.Y.; Levine, D.M. Serum cholesterol in young men and subsequent cardiovascular disease. N. Engl. J. Med. 1993, 328, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Castelli, W.P.; Anderson, K.; Wilson, P.W.; Levy, D. Lipids and risk of coronary heart disease. The Framingham Study. Ann. Epidemiol. 1992, 2, 23–28. [Google Scholar] [CrossRef]
- Hankey, G.J.; Warlow, C.P. Treatment and secondary prevention of stroke: Evidence, costs, and effects on individuals and populations. Lancet 1999, 354, 1457–1463. [Google Scholar] [CrossRef]
- Prospective Studies Collaboration. Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Lancet 1995, 346, 1647–1653. [Google Scholar] [CrossRef]
- Landau, W.M. Is cholesterol a risk factor for stroke?: No. Arch. Neurol. 1999, 56, 1521–1524. [Google Scholar] [CrossRef] [PubMed]
- Amarenco, P. Hypercholesterolemia, lipid-lowering agents, and the risk for brain infarction. Neurology 2001, 57, S35–S44. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.A.; Kannel, W.B.; Verter, J. Current status of risk factors for stroke. Neurol. Clin. 1983, 1, 317–343. [Google Scholar] [CrossRef]
- Kagan, A.; Popper, J.S.; Rhoads, G.G. Factors related to stroke incidence in Hawaii Japanese men. The Honolulu Heart Study. Stroke 1980, 11, 14–21. [Google Scholar] [CrossRef]
- Iso, H.; Jacobs, D.R., Jr.; Wentworth, D.; Neaton, J.D.; Cohen, J.D. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial. N. Engl. J. Med. 1989, 320, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Benfante, R.; Yano, K.; Hwang, L.J.; Curb, J.D.; Kagan, A.; Ross, W. Elevated serum cholesterol is a risk factor for both coronary heart disease and thromboembolic stroke in Hawaiian Japanese men. Implications of shared risk. Stroke 1994, 25, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Schulz, U.G.; Rothwell, P.M. Differences in vascular risk factors between etiological subtypes of ischemic stroke: Importance of population-based studies. Stroke 2003, 34, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Tirschwell, D.L.; Smith, N.L.; Heckbert, S.R.; Lemaitre, R.N.; Longstreth, W.T., Jr.; Psaty, B.M. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology 2004, 63, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Amarenco, P.; Labreuche, J.; Elbaz, A.; Touboul, P.J.; Driss, F.; Jaillard, A.; Bruckert, E. Blood lipids in brain infarction subtypes. Cereb. Dis. 2006, 22, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Eastern Stroke and Coronary Heart Disease Collaborative Research Group. Blood pressure, cholesterol, and stroke in eastern Asia. Lancet 1998, 352, 1801–1807. [Google Scholar] [CrossRef]
- Dyker, A.G.; Weir, C.J.; Lees, K.R. Influence of cholesterol on survival after stroke: Retrospective study. BMJ 1997, 314, 1584–1588. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vauthey, C.; de Freitas, G.R.; van Melle, G.; Devuyst, G.; Bogousslavsky, J. Better outcome after stroke with higher serum cholesterol levels. Neurology 2000, 54, 1944–1949. [Google Scholar] [CrossRef]
- Zuliani, G.; Cherubini, A.; Atti, A.R.; Ble, A.; Vavalle, C.; Di Todaro, F.; Benedetti, C.; Volpato, S.; Marinescu, M.G.; Senin, U.; et al. Low cholesterol levels are associated with short-term mortality in older patients with ischemic stroke. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, 293–297. [Google Scholar] [CrossRef]
- Ni Chroinin, D.; Callaly, E.L.; Duggan, J.; Merwick, A.; Hannon, N.; Sheehan, O.; Marnane, M.; Horgan, G.; Williams, E.B.; Harris, D.; et al. Association between acute statin therapy, survival, and improved functional outcome after ischemic stroke: The North Dublin Population Stroke Study. Stroke 2011, 42, 1021–1029. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Di Raimondo, D.; Di Sciacca, R.; Pedone, C.; La Placa, S.; Arnao, V.; Pinto, A.; Licata, G. Effects of clinical and laboratory variables at admission and of in-hospital treatment with cardiovascular drugs on short term prognosis of ischemic stroke. The GIFA study. Nutr. Metab. Cardiovasc. Dis. NMCD 2013, 23, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T.S.; Christensen, R.H.; Kammersgaard, L.P.; Andersen, K.K. Higher total serum cholesterol levels are associated with less severe strokes and lower all-cause mortality: Ten-year follow-up of ischemic strokes in the Copenhagen Stroke Study. Stroke 2007, 38, 2646–2651. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, H.S.; Nakayama, H.; Reith, J.; Raaschou, H.O.; Olsen, T.S. Acute stroke with atrial fibrillation. The Copenhagen Stroke Study. Stroke 1996, 27, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Wolf, P.A.; Kelly-Hayes, M.; Beiser, A.S.; Kase, C.S.; Benjamin, E.J.; D’Agostino, R.B. Stroke severity in atrial fibrillation. The Framingham Study. Stroke 1996, 27, 1760–1764. [Google Scholar] [CrossRef] [PubMed]
- Volpato, S.; Leveille, S.G.; Corti, M.C.; Harris, T.B.; Guralnik, J.M. The value of serum albumin and high-density lipoprotein cholesterol in defining mortality risk in older persons with low serum cholesterol. J. Am. Geriatr. Soc. 2001, 49, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Birman-Deych, E.; Waterman, A.D.; Yan, Y.; Nilasena, D.S.; Radford, M.J.; Gage, B.F. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med. Care 2005, 43, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Oake, J.; Aref-Eshghi, E.; Godwin, M.; Collins, K.; Aubrey-Bassler, K.; Duke, P.; Mahdavian, M.; Asghari, S. Using Electronic Medical Record to Identify Patients With Dyslipidemia in Primary Care Settings: International Classification of Disease Code Matters From One Region to a National Database. Biomed. Inform. Insights 2017, 9, 1178222616685880. [Google Scholar] [CrossRef]
- Markaki, I.; Nilsson, U.; Kostulas, K.; Sjostrand, C. High cholesterol levels are associated with improved long-term survival after acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, e47–e53. [Google Scholar] [CrossRef] [PubMed]
- Koton, S.; Molshatzki, N.; Bornstein, N.M.; Tanne, D. Low cholesterol, statins and outcomes in patients with first-ever acute ischemic stroke. Cerebrovasc. Dis. 2012, 34, 213–220. [Google Scholar] [CrossRef] [PubMed]
- McCormick, P.J.; Lin, H.M.; Deiner, S.G.; Levin, M.A. Validation of the All Patient Refined Diagnosis Related Group (APR-DRG) Risk of Mortality and Severity of Illness Modifiers as a Measure of Perioperative Risk. J. Med. Syst. 2018, 42, 81. [Google Scholar] [CrossRef] [PubMed]
- Baram, D.; Daroowalla, F.; Garcia, R.; Zhang, G.; Chen, J.J.; Healy, E.; Riaz, S.A.; Richman, P. Use of the All Patient Refined-Diagnosis Related Group (APR-DRG) Risk of Mortality Score as a Severity Adjustor in the Medical ICU. Clin. Med. Circ. Respir. Pul. Med. 2008, 2, 19–25. [Google Scholar] [CrossRef]
LD | No LD | Total | p Value | |
---|---|---|---|---|
AIS | 50,005 (3.22%) | 519,210 (1.95%) | 569,215 | <0.0001 |
No AIS | 1,500,951 (96.78%) | 26,142,654 (98.05%) | 27,643,605 | |
1,550,956 | 26,661,864 | 28,212,820 |
OR | 95% Confidence Limits | p Value | ||
---|---|---|---|---|
LL | UL | |||
No Lipid Disorders | Reference | |||
Lipid Disorders | 1.18 | 1.15 | 1.20 | <0.0001 |
Demographics of Patients | ||||
Age (Years) | 1.02 | 1.02 | 1.02 | <0.0001 |
Gender | ||||
Female | Reference | |||
Male | 1.00 | 0.99 | 1.01 | 0.8272 |
Race | ||||
White | Reference | |||
African American | 1.17 | 1.15 | 1.19 | <0.0001 |
Hispanic | 0.90 | 0.88 | 0.93 | <0.0001 |
Asian or Pacific Islander | 1.12 | 1.07 | 1.16 | <0.0001 |
Native American | 0.92 | 0.84 | 1.01 | 0.0793 |
Characteristics of Patients | ||||
Median Household Income Category for patient’s Zip code * | ||||
0–25th percentile | Reference | |||
26–50th percentile | 1.03 | 1.01 | 1.04 | 0.0038 |
51–75th percentile | 1.02 | 1.01 | 1.04 | 0.0127 |
76–100th percentile | 1.01 | 0.99 | 1.03 | 0.2592 |
Primary Payer | ||||
Medicare | Reference | |||
Medicaid | 1.04 | 1.01 | 1.07 | 0.0025 |
Private Insurance | 1.30 | 1.27 | 1.32 | <0.0001 |
Other/Self-pay/No charge | 1.46 | 1.42 | 1.51 | <0.0001 |
Admission type | ||||
Non-elective | Reference | |||
Elective | 0.29 | 0.28 | 0.30 | <0.0001 |
Admission day | ||||
Weekday | Reference | |||
Weekend | 1.13 | 1.11 | 1.15 | <0.0001 |
Characteristics of Hospitals | ||||
Bed-size of hospital † | ||||
Small | Reference | |||
Medium | 1.11 | 1.09 | 1.13 | <0.0001 |
Large | 1.15 | 1.13 | 1.17 | <0.0001 |
Hospital Location & Teaching Status | ||||
Rural | Reference | |||
Urban Non-teaching | 1.04 | 1.02 | 1.07 | 0.0019 |
Urban Teaching | 1.14 | 1.12 | 1.17 | <0.0001 |
Hospital Region | ||||
Northeast | Reference | |||
Midwest | 1.14 | 1.12 | 1.17 | <0.0001 |
South | 1.23 | 1.21 | 1.26 | <0.0001 |
West | 1.26 | 1.24 | 1.29 | <0.0001 |
Comorbidities of Patients | ||||
Diabetes Mellites | 0.49 | 0.49 | 0.50 | <0.0001 |
Hypertension | 1.73 | 1.70 | 1.76 | <0.0001 |
Obesity | 0.83 | 0.81 | 0.84 | <0.0001 |
Drug Abuse/Dependence | 1.03 | 0.99 | 1.07 | 0.1261 |
Current Alcohol Dependence | 0.91 | 0.88 | 0.94 | <0.0001 |
Past History of Alcohol | 0.83 | 0.70 | 0.98 | 0.0265 |
Current Smoker | 1.30 | 1.27 | 1.32 | <0.0001 |
Past History of Smoking | 0.73 | 0.72 | 0.75 | <0.0001 |
Acquired immune deficiency syndrome | 0.12 | 0.10 | 0.13 | <0.0001 |
Renal Failure | 0.27 | 0.27 | 0.28 | <0.0001 |
Atrial Fibrillation | 1.13 | 1.11 | 1.14 | <0.0001 |
Hemorrhagic Stroke | 2.49 | 2.39 | 2.60 | <0.0001 |
History of TIA/Stroke | 1.56 | 1.53 | 1.59 | <0.0001 |
Deyo’s Charlson Comorbidity Index (CCI) | ||||
1 | Reference | |||
2 | 1.86 | 1.83 | 1.89 | <0.0001 |
3 | 4.39 | 4.30 | 4.48 | <0.0001 |
4 | 7.39 | 7.22 | 7.57 | <0.0001 |
≥5 | 9.38 | 9.18 | 9.58 | <0.0001 |
Area under the ROC curve/c-index | 0.882 |
LDs | Non-LDs | Total | p Value | |
---|---|---|---|---|
AIS (%) | 451,645 (10.69) | 3,773,279 (89.31) | 446,446 (100) | <0.0001 |
Demographics of Patients | ||||
Mean Age ± Standard Error (Years) | 70 ± 0.04 | 71 ± 0.01 | <0.0001 | |
Gender (%) | <0.0001 | |||
Female | 222,900 (49.35) | 1,767,703 (46.85) | 1,990,602 (47.12) | |
Male | 228,746 (50.65) | 2,005,507 (53.15) | 2,234,253 (52.88) | |
Race (%) | <0.0001 | |||
White | 318,230 (72.36) | 2,667,898 (72.54) | 2,986,128 (72.53) | |
African American | 70,736 (16.08) | 620,354 (16.87) | 691,090 (16.78) | |
Hispanic | 35,048 (7.97) | 276,724 (7.52) | 311,772 (7.57) | |
Asian or Pacific Islander | 13,944 (3.17) | 94,600 (2.57) | 108,544 (2.64) | |
Native American | 1832 (0.42) | 18,001 (0.49) | 19,833 (0.48) | |
Characteristics of Patients | ||||
Median Household Income Category for patient’s Zip code (%) * | <0.0001 | |||
0–25th percentile | 116,887 (26.40) | 1,125,147 (30.48) | 1,242,034 (30.04) | |
26–50th percentile | 105,237 (23.77) | 959,992 (26) | 1,065,230 (25.76) | |
51–75th percentile | 108,373 (24.48) | 855,077 (23.16) | 963,450 (23.30) | |
76–100th percentile | 112,216 (25.35) | 751,704 (20.36) | 863,920 (20.89) | |
Primary Payer (%) | <0.0001 | |||
Medicare | 290,927 (64.49) | 2,532,866 (67.25) | 2,823,793 (66.95) | |
Medicaid | 28,514 (6.32) | 257,590 (6.84) | 286,104 (6.78) | |
Private Insurance | 101,488 (22.50) | 697,741 (18.53) | 799,229 (18.95) | |
Other/Self-pay/No charge | 30,179 (6.69) | 278,274 (7.39) | 308,453 (7.31) | |
Admission type (%) | 0.0002 | |||
Non-elective | 433,571 (96.20) | 3,589,986 (95.35) | 4,023,557 (95.44) | |
Elective | 17,130 (3.80) | 175,254 (4.65) | 192,384 (4.56) | |
Admission day (%) | 0.0026 | |||
Weekday | 337,044 (74.63) | 2,808,044 (74.42) | 3,145,089 (74.44) | |
Weekend | 114,601 (25.37) | 965,234 (25.58) | 1,079,835 (25.56) | |
Characteristics of Hospitals | ||||
Bed-size of hospital (%) † | <0.0001 | |||
Small | 50,403 (11.19) | 448,170 (11.93) | 498,573 (11.85) | |
Medium | 115,506 (25.63) | 963,139 (25.64) | 1,078,644 (25.64) | |
Large | 284,703 (63.18) | 2,345,109 (62.43) | 2,629,813 (62.51) | |
Hospital Location & Teaching Status (%) | <0.0001 | |||
Rural | 41,205 (9.14) | 453,884 (12.08) | 495,089 (11.77) | |
Urban Non-teaching | 200,443 (44.48) | 1,582,234 (42.12) | 1,782,676 (42.37) | |
Urban Teaching | 208,964 (46.37) | 1,720,301 (45.80) | 1,929,265 (45.86) | |
Hospital Region (%) | <0.0001 | |||
Northeast | 117,433 (26) | 778,923 (20.64) | 896,356 (21.22) | |
Midwest | 74,569 (16.51) | 655,617 (17.38) | 730,186 (17.28) | |
South | 179,036 (39.64) | 1,631,363 (43.23) | 1,810,399 (42.85) | |
West | 80,608 (17.85) | 707,375 (18.75) | 787,983 (18.65) | |
Comorbidities of Patients (%) | <0.0001 | |||
Diabetes | 179,812 (40.02) | 1,258,315 (33.50) | 1,438,128 (34.20) | |
Drug abuse | 6735 (1.50) | 82,624 (2.20) | 89,359 (2.12) | |
Obesity | 44,246 (9.85) | 286,635 (7.63) | 330,881 (7.81) | |
Hypertension | 388,411 (86.44) | 2,954,771 (78.66) | 3,343,182 (79.50) | |
Renal failure | 45,347 (10.09) | 445,605 (11.86) | 490,952 (11.67) | |
Acquired immune deficiency syndrome | 457 (0.10) | 7606 (0.20) | 8063 (0.19) | |
Deyo’s Charlson Comorbidity Index (CCI) | <0.0001 | |||
1 | 126,878 (28.09) | 1,059,432 (28.08) | 1,186,309 (28.08) | |
2 | 110,148 (24.39) | 831,212 (22.03) | 941,360 (22.38) | |
3 | 93,546 (20.71) | 816,642 (21.64) | 910,188 (21.54) | |
4 | 65,014 (14.39) | 537,270 (14.24) | 602,284 (14.26) | |
≥5 | 56,061 (12.41) | 528,722 (14.01) | 584,783 (13.84) |
LDs | No-LDs | Total | p Value | |
---|---|---|---|---|
Post-AIS Outcomes | ||||
All Cause in Hospital Mortality (%) | 13,218 (2.93) | 206,346 (5.48) | 219,564 (5.21) | <0.0001 |
Discharge Disposition (%) | <0.0001 | |||
Routine/Home | 187,568 (43.14) | 1,299,013 (36.81) | 1,486,581 (37.50) | |
Transfer to Short-term Hospital | 12,474 (2.87) | 114,476 (3.24) | 126,950 (3.20) | |
Transfer to SNF/ICF/Another Type of Facility | 175,573 (40.38) | 1,639,408 (46.45) | 1,814,981 (45.79) | |
Home Health Care | 59,159 (13.61) | 476,296 (13.50) | 535,455 (13.51) | |
Discharge other than Home (%) | 247,206 (56.86) | 2,230,180 (63.19) | 2,477,386 (62.50) | <0.0001 |
APR-DRG Severity/Loss of Function (%) | <0.0001 | |||
Minor loss of function | 58,647 (13.47) | 401,109 (11.32) | 459,756 (11.55) | |
Moderate loss of function | 246,559 (56.61) | 1,805,199 (50.93) | 2,051,758 (51.55) | |
Major loss of function | 114,404 (26.27) | 1,106,595 (31.22) | 1,220,999 (30.68) | |
Severe loss of function | 15,899 (3.65) | 231,623 (6.53) | 247,522 (6.22) | |
Major/Severe Loss of Function/Severity (%) | 130,303 (29.92) | 1,338,218 (37.75) | 1,468,521 (36.9) | |
APR-DRG Likelihood of Death (%) | <0.0001 | |||
Minor likelihood of death | 171,426 (39.36) | 1,124,229 (31.72) | 1,295,655 (32.55) | |
Moderate likelihood of death | 195,248 (44.83) | 1,644,501 (46.40) | 1,839,749 (46.22) | |
Major likelihood of death | 54,708 (12.56) | 579,523 (16.35) | 634,231 (15.94) | |
Severe likelihood of death | 14,128 (3.24) | 196,272 (5.54) | 210,401 (5.29) | |
Major/Extreme likelihood of death (%) | 68,836 (15.8) | 775,795 (21.89) | 844,632 (21.23) | |
Post-AIS Complications | ||||
Post-stroke early epilepsy | 21,149 (4.68) | 231,487 (6.13) | 252,636 (5.98) | <0.0001 |
Stroke associated pneumonia | 9616 (2.13) | 139,553 (3.70) | 149,169 (3.53) | <0.0001 |
Hemorrhagic Transformation | 5642 (1.25) | 64,576 (1.71) | 70,218 (1.66) | <0.0001 |
Upper gastro-intestinal bleeding | 1477 (0.33) | 17,152 (0.45) | 18,629 (0.44) | <0.0001 |
Length of Stay ± SE (Days) | 4.83 ± 0.02 | 5.43 ± 0.01 | <0.0001 | |
Cost of Hospitalization ± SE ($) | 34,604 ± 154 | 38,547 ± 62.04 | <0.0001 |
Odds Ratio | 95% Confidence Interval | p Value | Area under the ROC Curve/c-Index | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Model 1: All cause in-hospital Mortality | ||||
0.66 | 0.62 | 0.69 | <0.0001 | 0.76 |
Model 2: Discharge Disposition (Home vs. no-Home) | ||||
0.83 | 0.82 | 0.85 | <0.0001 | 0.76 |
Model 3: APR-DRG loss of function (major/severe vs. minor/moderate) | ||||
0.80 | 0.79 | 0.82 | <0.0001 | 0.82 |
Model 4: APR-DRG risk of death (major/severe likelihood vs. minor/moderate likelihood) | ||||
0.77 | 0.75 | 0.79 | <0.0001 | 0.81 |
Model 5: Post Stroke Early Epilepsy | ||||
0.89 | 0.8 | 0.86 | <0.0001 | 0.65 |
Model 6: Stroke Associated Pneumonia | ||||
0.75 | 0.71 | 0.80 | <0.0001 | 0.8 |
Model 7: Upper GI Bleeding | ||||
0.85 | 0.73 | 0.99 | <0.0001 | 0.69 |
Model 8: Hemorrhagic Transformation | ||||
0.82 | 0.75 | 0.89 | <0.0001 | 0.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, U.; Malik, P.; Dave, M.; DeMasi, M.S.; Lunagariya, A.; Jani, V.B.; Dhamoon, M.S. The Lipid Paradox Among Acute Ischemic Stroke Patients-A Retrospective Study of Outcomes and Complications. Medicina 2019, 55, 475. https://doi.org/10.3390/medicina55080475
Patel U, Malik P, Dave M, DeMasi MS, Lunagariya A, Jani VB, Dhamoon MS. The Lipid Paradox Among Acute Ischemic Stroke Patients-A Retrospective Study of Outcomes and Complications. Medicina. 2019; 55(8):475. https://doi.org/10.3390/medicina55080475
Chicago/Turabian StylePatel, Urvish, Preeti Malik, Mihir Dave, Matthew S. DeMasi, Abhishek Lunagariya, Vishal B. Jani, and Mandip S. Dhamoon. 2019. "The Lipid Paradox Among Acute Ischemic Stroke Patients-A Retrospective Study of Outcomes and Complications" Medicina 55, no. 8: 475. https://doi.org/10.3390/medicina55080475
APA StylePatel, U., Malik, P., Dave, M., DeMasi, M. S., Lunagariya, A., Jani, V. B., & Dhamoon, M. S. (2019). The Lipid Paradox Among Acute Ischemic Stroke Patients-A Retrospective Study of Outcomes and Complications. Medicina, 55(8), 475. https://doi.org/10.3390/medicina55080475