Choice of Methodology Impacts Outcome in Indirect Comparisons of Drugs for Idiopathic Pulmonary Fibrosis
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Forced Vital Capacity (FVC)
3.2. Other Endpoints
4. Discussion
Limitations
5. Conclusions
- Whether the SMD is appropriate in this population or whether a bivariate approach could be used [26];
- The functional form of FVC over time to consider the viability of synthesising endpoints across different timepoints;
- Whether the study populations are sufficiently homogeneous to fit a fixed effect model, whether random effects should be preferred, or whether meta-regression would be plausible;
- The efficacy of the combined pirfenidone/nintedanib treatment. As this does not connect to the evidence network, a different methodology such as population matching would be required [27].
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Swigris, J.J.; Stewart, A.L.; Gould, M.K.; Wilson, S.R. Patients’ perspectives on how idiopathic pulmonary fibrosis affects the quality of their lives. Health Qual. Life Outcomes 2005, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Bucher, H.C.; Guyatt, G.H.; Griffith, L.E.; Walter, S.D. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J. Clin. Epidemiol. 1997, 50, 683–691. [Google Scholar] [CrossRef]
- Caldwell, D.M.; Ades, A.E.; Higgins, J.P. Simultaneous comparison of multiple treatments: Combining direct and indirect evidence. BMJ 2005, 331, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Welton, N.J.; Sutton, A.J.; Ades, A.E. Evidence synthesis for decision making 1: Introduction. Med. Decis. Making 2013, 33, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.J.; Abrams, K.R. Bayesian methods in meta-analysis and evidence synthesis. Stat. Methods Med. Res. 2001, 10, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.; Heneghan, C. Interpreting meta-analysis in systematic reviews. Evid. Based Med. 2008, 13, 67–69. [Google Scholar] [CrossRef]
- Dias, S.; Sutton, A.J.; Welton, N.J.; Ades, A.E. Evidence synthesis for decision making 3: Heterogeneity--Subgroups, meta-regression, bias, and bias-adjustment. Med. Decis. Making 2013, 33, 618–640. [Google Scholar] [CrossRef]
- Canestaro, W.J.; Forrester, S.H.; Raghu, G.; Ho, L.; Devine, B.E. Drug treatment of idiopathic pulmonary fibrosis: systematic review and network meta-analysis. Chest 2016, 149, 756–766. [Google Scholar] [CrossRef]
- Fleetwood, K.; McCool, R.; Glanville, J.; Edwards, S.C.; Gsteiger, S.; Daigl, M.; Fisher, M. Systematic review and network meta-analysis of idiopathic pulmonary fibrosis treatments. J. Manag. Care Spec. Pharm. 2017, 23, s5–s16. [Google Scholar] [CrossRef]
- Loveman, E.; Copley, V.R.; Scott, D.A.; Colquitt, J.L.; Clegg, A.J.; O’Reilly, K.M. Comparing new treatments for idiopathic pulmonary fibrosis--A network meta-analysis. BMC Pulm. Med. 2015, 15, 37. [Google Scholar] [CrossRef]
- Loveman, E.; Copley, V.R.; Colquitt, J.L.; Scott, D.A.; Clegg, A.J.; Jones, J.; O’Reilly, K.M.; Singh, S.; Bausewein, C.; Wells, A. The effectiveness and cost-effectiveness of treatments for idiopathic pulmonary fibrosis: Systematic review, network meta-analysis, and health economic evaluation. BMC Pharmacol. Toxicol. 2014, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Neupane, B.; Zhang, Y.; Garcia, C.C.; Raghu, G.; Richeldi, L.; Brozek, J.; Beyene, J.; Schünemann, H. Treatment of idiopathic pulmonary fibrosis: A network meta-analysis. BMC Med. 2016, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Skandamis, A.; Kani, C.; Markantonis, S.L.; Souliotis, K. Systematic review and network meta-analysis of approved medicines for the treatment of idiopathic pulmonary fibrosis. J. Drug Assess. 2019, 8, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Dai, H.P.; Kang, J.; Chen, B.Y.; Sun, T.Y.; Xu, Z.J. Double-blind randomized trial of pirfenidone in chinese idiopathic pulmonary fibrosis patients. Medicine 2015, 94, e1600. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Taniguchi, H.; Azuma, A.; Inoue, Y.; Kondoh, Y.; Hasegawa, Y.; Bando, M.; Abe, S.; Mochizuki, Y.; Chida, K.; et al. Safety and pharmacokinetics of nintedanib and pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 2015, 45, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Azuma, A.; Nukiwa, T.; Tsuboi, E.; Suga, M.; Abe, S.; Nakata, K.; Taguchi, Y.; Nagai, S.; Itoh, H.; Ohi, M.; et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2005, 171, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Ebina, M.; Kondoh, Y.; Ogura, T.; Azuma, A.; Suga, M.; Taguchi, Y.; Takahashi, H.; Nakata, K.; Sato, A.; et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 2010, 35, 821–829. [Google Scholar] [CrossRef]
- Noble, P.W.; Albera, C.; Bradford, W.Z.; Costabel, U.; Glassberg, M.K.; Kardatzke, D.; King, T.E., Jr.; Lancaster, L.; Sahn, S.A.; Szwarcberg, J.; et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet 2011, 377, 1760–1769. [Google Scholar] [CrossRef]
- King, T.E., Jr.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef]
- Richeldi, L.; Costabel, U.; Selman, M.; Kim, D.S.; Hansell, D.M.; Nicholson, A.G.; Brown, K.K.; Flaherty, K.R.; Noble, P.W.; Raghu, G.; et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2011, 365, 1079–1087. [Google Scholar] [CrossRef]
- Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Chinn, S. A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat. Med. 2000, 19, 3127–3131. [Google Scholar] [CrossRef]
- Systematic Reviews in Health Care: Meta-Analysis in Context, 2nd ed.; Egger, M., Davey Smith, G., Altman, D.G., Eds.; BMJ Publishing Group: London, UK, 2001. [Google Scholar]
- King, T.E., Jr.; Albera, C.; du Bois, R.M.; Bradford, W.; Costabel, U.; Noble, P.W.; Sahn, S.A.; Valeyre, D. The Effect of treatment with pirfenidone on longitudinal change in lung volume in patients with idiopathic pulmonary fibrosis (IPF): A meta-analysis of outcomes in four randomized controlled clinical trials. Am. J. Respir. Crit. Care Med. 2011, 183, A5302. [Google Scholar]
- Nathan, S.D.; Albera, C.; Bradford, W.Z.; Costabel, U.; Glaspole, I.; Glassberg, M.K.; Kardatzke, D.R.; Daigl, M.; Kirchgaessler, K.U.; Lancaster, L.H.; et al. Effect of pirfenidone on mortality: Pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir. Med. 2017, 5, 33–41. [Google Scholar] [CrossRef]
- Ades, A.E.; Lu, G.; Dias, S.; Mayo-Wilson, E.; Kounali, D. Simultaneous synthesis of treatment effects and mapping to a common scale: An alternative to standardisation. Res. Synth. Methods 2015, 6, 96–107. [Google Scholar] [CrossRef]
- Phillippo, D.M.; Ades, A.E.; Dias, S.; Palmer, S.; Abrams, K.R.; Welton, N.J. Methods for population-adjusted indirect comparisons in health technology appraisal. Med. Decis. Making 2018, 38, 200–211. [Google Scholar] [CrossRef]
Relevant RCTs of Nintedanib or Pirfenidone | Inclusion of RCTs (for at Least One Outcome) in the NMAs | |||||
---|---|---|---|---|---|---|
Trial Name, Phase, Forced Vital Capacity (FVC) Outcome, and Timepoints | NMA | |||||
Fleetwood, 2017 [9] Bayesian Markov chain Monte Carlo (MCMC) Methods, Random Effects | Rochwerg, 2016 [12] Bayesian MCMC Methods, Random Effects | Canestaro, 2016 [8] Bayesian MCMC Methods, Fixed Effects | Loveman 2015 [10] Bayesian MCMC Methods, Fixed Effects | Loveman 2014 [11] Bayesian MCMC Methods, Fixed Effects | Skandamis 2018 [13] (poster only) Bayesian MCMC Methods, Random Effects | |
SP3 [16], Phase II % predicted at 52 weeks a; Litres at 36 weeks | ✓ b | ✓ | ✓ | ✓ | ✓ | ✓ |
SP2 [17], Phase III % predicted at 52 weeks a; Litres at 52 weeks | ✓ b | ✓ | ✓ | ✓ | ✓ | ✓ |
Capacity 004 [18], Phase III % predicted at 72 weeks; Litres at 48 and 52 weeks a | ✓ b | ✓c | ✓ c | ✓ | ✓ | ✓ |
Capacity 006 [18], Phase III % predicted at 72 weeks; Litres at 48 and 52 weeks a | ✓ b | ✓c | ✓ c | ✓ | ✓ | ✓ |
ASCEND [19], Phase III % predicted at 52 weeks a; Litres at 52 weeks | ✓ b | ✓ | ✓ | ✓ | Not included | ✓ |
TOMORROW [20], Phase III % predicted at 52 weeks; Litres at 52 weeks | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
INPULSIS 1 [21], Phase II % predicted at 52 weeks; Litres at 52 weeks | ✓ | ✓c | ✓ c | ✓ | Not included | ✓ |
INPULSIS 2 [21], Phase II % predicted at 52 weeks; Litres at 52 weeks | ✓ | ✓c | ✓ c | ✓ | Not included | ✓ |
Huang, 2015 [14] Phase II Litres at 48 weeks; % predicted at 48 weeks | Not included | Not included | Not included | Not included | Not included | ✓ |
Ogura, 2015 [15] Phase II Not reported | Not included | Not included | Not included | Not included | Not included | ✓ |
Trial Name, Phase | Intervention, n | Comparator, n | Duration of Treatment | Mean Age | % Male | Time Since Diagnosis | Mean % Predicted FVC | Risk of Bias a |
---|---|---|---|---|---|---|---|---|
SP3 [16], Phase II | Pirfenidone 1800 mg/day, n = 73 | Placebo, n = 36 | 39 weeks | 64 | 90 | <1 year: 22% | 80 | Unclear |
SP2 [17], Phase III | Pirfenidone 1800 mg/day, n = 108 | Placebo, n = 104 | 52 weeks | 65 | 78 | <1 year: 37% | 78 | Unclear |
Capacity 004 [18], Phase III | Pirfenidone 2403 mg/day, n = 174 | Placebo, n = 174 | 72 weeks | 66 | 71 | ≤1 year: 48% | 75 | Low |
Capacity 006 [18], Phase III | Pirfenidone 2403 mg/day, n = 171 | Placebo, n = 173 | 72 weeks | 67 | 72 | ≤1 year: 59% | 74 | Low |
ASCEND [19], Phase III | Pirfenidone 2403 mg/day, n = 278 | Placebo, n = 277 | 52 weeks | 68 | 78 | 1.7 years | 68 | Low |
TOMORROW [20], Phase III | Nintedanib 300 mg/day, n = 85 | Placebo, n = 85 | 52 weeks | 65 | 75 | 1.2 years | 80 | Low |
INPULSIS 1 [21], Phase II | Nintedanib 300 mg/day, n = 309 | Placebo, n = 204 | 52 weeks | 67 | 81 | 1.7 years | 80 | Low |
INPULSIS 2 [21], Phase II | Nintedanib 300 mg/day, n = 329 | Placebo, n = 219 | 52 weeks | 67 | 78 | 1.6 years | 79 | Low |
Huang 2015 [14], Phase II | Pirfenidone 1800 mg/day + NAC, n = 38 | Placebo + NAC, n = 38 | 48 weeks | 60 | 93 | Not reported | 77 | Unclear |
Ogura 2015 [15], Phase II | Nintedanib b 100 mg/day, n = 6; 200 mg/day, n = 8; 300 mg/day, n = 24 | Placebo b, n = 12 | up to 28 days | 65 | 70 | Not reported | 74 | Unclear |
Outcome | NMA | |||||
---|---|---|---|---|---|---|
Fleetwood, 2017 [9] Bayesian MCMC Methods, Random Effects | Rochwerg, 2016 [12] Bayesian MCMC Methods, Random Effects | Canestaro, 2016 [8] Bayesian MCMC Methods, Fixed Effects | Loveman 2015 [10] Bayesian MCMC Methods, Fixed Effects | Loveman 2014 [11] Bayesian MCMC Methods, Fixed Effects | Skandamis 2018 [13] (poster only) Bayesian MCMC Methods, Random Effects | |
Change in % predicted FVC | WMD −0.23 (−2.13, 1.66) | Not estimated | Not estimated | OR 0.67 (0.51, 0.88) a | OR 0.56 (0.31, 1.03) | Not estimated |
Change in FVC Litres | WMD −0.01 (−0.15, 0.13) | Not estimated | Not estimated | Not estimated | ||
>10% decline in FVC | OR 1.11 (0.60, 2.0) | Not estimated | OR 1.16 (0.83, 1.67) | OR 1.21 (0.86, 1.72) | Not estimated | OR 1.10 (0.49, 2.22) |
Mortality | OR 1.35 (0.51, 3.70) | OR 1.05 (0.45, 2.78) | OR 1.02 (0.55, 1.89) | OR 1.39 (0.7, 2.82) | Not estimated | OR 1.08 (0.52, 2.63) |
Respiratory mortality | Not estimated | Not estimated | 1.09 (0.49, 2.38) | OR 2.1 (0.77, 6.17) | Not estimated | Not estimated |
Serious adverse events | Not estimated | OR 1.04 (0.51, 2.24) | Not estimated | Not estimated | Not estimated | OR 0.98 (0.62, 1.61) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, D.A.; Loveman, E.; Colquitt, J.L.; O’Reilly, K. Choice of Methodology Impacts Outcome in Indirect Comparisons of Drugs for Idiopathic Pulmonary Fibrosis. Medicina 2019, 55, 443. https://doi.org/10.3390/medicina55080443
Scott DA, Loveman E, Colquitt JL, O’Reilly K. Choice of Methodology Impacts Outcome in Indirect Comparisons of Drugs for Idiopathic Pulmonary Fibrosis. Medicina. 2019; 55(8):443. https://doi.org/10.3390/medicina55080443
Chicago/Turabian StyleScott, David A., Emma Loveman, Jill L. Colquitt, and Katherine O’Reilly. 2019. "Choice of Methodology Impacts Outcome in Indirect Comparisons of Drugs for Idiopathic Pulmonary Fibrosis" Medicina 55, no. 8: 443. https://doi.org/10.3390/medicina55080443
APA StyleScott, D. A., Loveman, E., Colquitt, J. L., & O’Reilly, K. (2019). Choice of Methodology Impacts Outcome in Indirect Comparisons of Drugs for Idiopathic Pulmonary Fibrosis. Medicina, 55(8), 443. https://doi.org/10.3390/medicina55080443