The Automatic Assessment of Strength and Mobility in Older Adults: A Test-Retest Reliability Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paterson, D.H.; Jones, G.R.; Rice, C.L. Ageing and physical activity: Evidence to develop exercise recommendations for older adults. Appl. Physiol. Nutr. Metab. 2007, 32, S69–S108. [Google Scholar] [CrossRef]
- Paterson, D.H.; Warburton, D.E. Review Physical activity and functional limitations in older adults: A systematic review related to Canada’s Physical Activity Guidelines. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Den Ouden, M.E.; Schuurmans, M.J.; Brand, J.S.; Arts, I.E.; Mueller-Schotte, S.; van der Schouw, Y.T. Physical functioning is related to both an impaired physical ability and ADL disability: A ten year follow-up study in middle-aged and older persons. Maturitas 2013, 74, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Junius-Walker, U.; Onder, G.; Soleymani, D.; Wiese, B.; Albaina, O.; Bernabei, R.; Marzetti, E. The essence of frailty: A systematic review and qualitative synthesis on frailty concepts and definitions. Eur. J. Intern. Med. 2018, 56, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Awalt, E.; Carver, D.; MacKnight, C. Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian study of health and aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M70–M73. [Google Scholar]
- Ding, L.; Yang, F. Muscle weakness is related to slip-initiated falls among community-dwelling older adults. J. Biomech. 2016, 49, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Zasadzka, E.; Borowicz, A.M.; Roszak, M.; Pawlaczyk, M. Assessment of the risk of falling with the use of timed up and go test in the elderly with lower extremity osteoarthritis. Clin. Interv. Aging 2015, 10, 1289–1298. [Google Scholar] [CrossRef]
- Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La Vecchia, C.; Negri, E. Risk factors for falls in community-dwelling older people: A systematic review and meta-analysis. Epidemiology 2010, 21, 658–668. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Csuka, M.; McCarty, D.J. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [PubMed]
- Collado Mateo, D.; Dominguez Munoz, F.J.; Adsuar, J.C.; Merellano-Navarro, E.; Olivares, P.R.; Gusi, N. Reliability of the timed-up and go test in women with fibromyalgia. Rehabilit. Nurs. J. 2016. [Google Scholar] [CrossRef]
- Regterschot, G.R.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Test-retest reliability of sensor-based sit-to-stand measures in young and older adults. Gait Posture 2014, 40, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Millor, N.; Lecumberri, P.; Gomez, M.; Martinez-Ramirez, A.; Izquierdo, M. An evaluation of the 30-s chair stand test in older adults: Frailty detection based on kinematic parameters from a single inertial unit. J. Neuroeng. Rehabilit. 2013, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Y.; Wei, S.H.; Chen, P.Y.; Tsai, M.W.; Cheng, I.C.; Liu, D.H.; Kao, C.L. Can sit-to-stand lower limb muscle power predict fall status? Gait Posture 2014, 40, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Collado-Mateo, D.; Adsuar, J.C.; Dominguez-Munoz, F.J.; Olivares, P.R.; Gusi, N. Impact of Fibromyalgia in the Sit-to-Stand-to-Sit Performance Compared With Healthy Controls. PM R J. Inj. Funct. Rehabilit. 2016. [Google Scholar] [CrossRef] [PubMed]
- Janssens, L.; Brumagne, S.; McConnell, A.K.; Claeys, K.; Pijnenburg, M.; Goossens, N.; Burtin, C.; Janssens, W.; Decramer, M.; Troosters, T. Impaired postural control reduces sit-to-stand-to-sit performance in individuals with chronic obstructive pulmonary disease. PLoS ONE 2014, 9, e88247. [Google Scholar] [CrossRef]
- Busca, B.; Font, A. A low-cost contact system to assess load displacement velocity in a resistance training machine. J. Sports Sci. Med. 2011, 10, 472–477. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Munro, B.; Visintainer, M.; Page, E. Statistical Methods for Health Care Research; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1986. [Google Scholar]
- Olivares, P.R.; Gusi, N.; Prieto, J.; Hernandez-Mocholi, M.A. Fitness and health-related quality of life dimensions in community-dwelling middle aged and older adults. Health Qual. Life Outcomes 2011, 9, 117. [Google Scholar] [CrossRef]
- Petrella, J.K.; Kim, J.S.; Tuggle, S.C.; Hall, S.R.; Bamman, M.M. Age differences in knee extension power, contractile velocity, and fatigability. J. Appl. Physiol. 2005, 98, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, U.; Klenk, J.; Becker, C. Assessment of fatigability of older women during sit-to-stand performance. Aging Clin. Exp. Res. 2016, 28, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, S.; Tajima, N.; Chosa, E. Biomechanical analysis of effects of foot placement with varying chair height on the motion of standing up. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 2000, 5, 124–133. [Google Scholar] [CrossRef]
All (n = 99) | Men (n = 66) | Women (n = 33) | |
---|---|---|---|
Age (years) | 71.10 ± 6.02 | 70.63 ± 5.57 | 72.03 ± 6.83 |
Height (cm) | 169.04 ± 8.66 | 172.55 ± 6.85 | 162.03 ± 7.66 |
BMI (kg/cm2) | 27.00 ± 2.51 | 26.98 ± 2.54 | 27.05 ± 2.48 |
Weight (kg) | 77.24 ± 10.09 | 80.38 ± 9.23 | 70.97 ± 8.83 |
Mean ± SD Test | Mean ± SD Retest | p-Value | Distribution Value | ICC (95% CI) | SEM | SEM (%) | SRD | SRD (%) | |
---|---|---|---|---|---|---|---|---|---|
Number of repetitions | 9.99 ± 1.84 | 9.78 ± 1.96 | 0.047 | <0.001 | 0.874 (0.817–0.913) | 0.67 | 6.82 | 1.87 | 18.91 |
Mean duration of sit-to-stand-to-sit cycle (s) | 3.21 ± 0.63 | 3.28 ± 0.70 | 0.164 | <0.001 | 0.889 (0.838–0.924) | 0.67 | 20.5 | 1.84 | 56.8 |
Mean duration of initial sit-to-stand-to-sit cycle (s) | 3.03 ± 0.65 | 3.13 ± 0.64 | 0.015 | <0.001 | 0.675 (0.551–0.769) | 0.21 | 7.0 | 0.60 | 19.3 |
Mean duration of last sit-to-stand-to-sit cycle (s) | 3.36 ± 0.84 | 3.41 ± 0.83 | 0.411 | 0.135 | 0.771 (0.676–0.840) | 0.48 | 4.7 | 1.32 | 13.1 |
Mean duration of impulse phase (s) | 1.22 ± 0.22 | 1.27 ± 0.26 | <0.001 | 0.892 | 0.821 (0.745–0.876) | 0.10 | 8.16 | 0.28 | 22.61 |
Mean duration of the initial impulse phase (s) | 1.09 ± 0.25 | 1.16 ± 0.26 | 0.003 | 0.036 | 0.354 (0.169–0.515) | 0.20 | 18.22 | 0.57 | 50.50 |
Mean duration of the last impulse phase (s) | 1.33 ± 0.32 | 1.38 ± 0.30 | 0.019 | 0.010 | 0.676 (0.553–0.771) | 0.18 | 13.02 | 0.49 | 36.10 |
Mean duration of the no-contact phase(s) | 1.99 ± 0.49 | 2.00 ± 0.55 | 0.822 | 0.005 | 0.884 (0.833–0.921) | 0.18 | 8.88 | 0.49 | 24.61 |
Mean duration of the initial no-contact phase (s) | 1.94 ± 0.46 | 1.97 ± 0.51 | 0.752 | <0.001 | 0.699 (0.582–0.787) | 0.27 | 13.61 | 0.74 | 37.73 |
Mean duration of the last no-contact phase | 2.02 ± 0.67 | 2.03 ± 0.69 | 0.985 | 0.008 | 0.715 (0.603–0.799) | 0.36 | 17.93 | 1.01 | 49.69 |
Repetition 1 | Repetition 2 | Repetition 3 | Repetition 4 | Repetition 5 | |
---|---|---|---|---|---|
TUG manual stopwatch (s) | 9.92 ± 1.69 | 9.67 ± 1.59 | 9.57 ± 1.59 | 9.62 ± 1.67 | 9.78 ± 1.72 |
TUG automatic chronometer (s) | 10.09 ± 1.68 | 9.65 ± 1.64 | 9.62 ± 1.65 | 9.69 ± 1.73 | 9.72 ± 1.79 |
Distribution p-value | 0.198 | 0.015 | 0.120 | 0.722 | 0.113 |
Paired sample comparisons p-value | <0.001 * | 0.662 | 0.085 | 0.020 | 0.122 |
Correlation coefficient | 0.979 * | 0.966 * | 0.987 * | 0.984 * | 0.982 * |
Repetitions | Distribution p-Value | p-Value | ICC (95% CI) | SEM (Nm) | SEM (%) | SRD (Nm) | SRD (%) |
---|---|---|---|---|---|---|---|
Manual Stopwatch | |||||||
1 vs. 2 | 0.440 | <0.001 | 0.878 (0.825–0.916) | 0.57 | 5.85 | 1.59 | 16.21 |
2 vs. 3 | 0.231 | 0.619 | 0.929 (0.896–0.952) | 0.42 | 4.40 | 1.17 | 12.21 |
2 vs. 4 | 0.003 | 0.893 | 0.879 (0.825–0.917) | 0.57 | 5.88 | 1.57 | 16.29 |
2 vs. 5 | 0.016 | 0.242 | 0.875 (0.819–0.914) | 0.59 | 6.02 | 1.62 | 16.68 |
3 vs. 4 | 0.154 | 0.353 | 0.894 (0.846–0.928) | 0.53 | 5.53 | 1.47 | 15.33 |
3 vs. 5 | 0.014 | 0.227 | 0.866 (0.807–0.908) | 0.51 | 5.22 | 1.40 | 14.47 |
4 vs. 5 | 0.018 | 0.787 | 0.892 (0.843–0.926) | 0.47 | 4.81 | 1.29 | 13.34 |
Automatic Chronometer | |||||||
1 vs. 2 | 0.249 | 0.001 | 0.892 (0.843–0.926) | 0.55 | 5.53 | 1.51 | 15.32 |
2 vs. 3 | 0.139 | 0.075 | 0.941 (0.913–0.960) | 0.40 | 4.15 | 1.11 | 11.50 |
2 vs. 4 | 0.008 | 0.392 | 0.908 (0.866–0.937) | 0.51 | 5.29 | 1.42 | 14.65 |
2 vs. 5 | <0.001 | 0.122 | 0.896 (0.848–0.929) | 0.55 | 5.71 | 1.53 | 15.83 |
3 vs. 4 | 0.033 | 0.999 | 0.908 (0.867–0.938) | 0.51 | 5.31 | 1.42 | 14.72 |
3 vs. 5 | 0.002 | 0.016 | 0.884 (0.833–0.921) | 0.59 | 6.06 | 1.62 | 16.79 |
4 vs. 5 | 0.001 | 0.038 | 0.894 (0.846–0.927) | 0.57 | 5.90 | 1.59 | 16.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collado-Mateo, D.; Madeira, P.; Dominguez-Muñoz, F.J.; Villafaina, S.; Tomas-Carus, P.; Parraca, J.A. The Automatic Assessment of Strength and Mobility in Older Adults: A Test-Retest Reliability Study. Medicina 2019, 55, 270. https://doi.org/10.3390/medicina55060270
Collado-Mateo D, Madeira P, Dominguez-Muñoz FJ, Villafaina S, Tomas-Carus P, Parraca JA. The Automatic Assessment of Strength and Mobility in Older Adults: A Test-Retest Reliability Study. Medicina. 2019; 55(6):270. https://doi.org/10.3390/medicina55060270
Chicago/Turabian StyleCollado-Mateo, Daniel, Pedro Madeira, Francisco J. Dominguez-Muñoz, Santos Villafaina, Pablo Tomas-Carus, and José A. Parraca. 2019. "The Automatic Assessment of Strength and Mobility in Older Adults: A Test-Retest Reliability Study" Medicina 55, no. 6: 270. https://doi.org/10.3390/medicina55060270
APA StyleCollado-Mateo, D., Madeira, P., Dominguez-Muñoz, F. J., Villafaina, S., Tomas-Carus, P., & Parraca, J. A. (2019). The Automatic Assessment of Strength and Mobility in Older Adults: A Test-Retest Reliability Study. Medicina, 55(6), 270. https://doi.org/10.3390/medicina55060270