The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. HBO2 and NBO2 Administration
Group-I | Control group, no oxygen was given. |
Group-II | Three sessions of NBO2 were administered at six-hour intervals within 24 h. |
Group-III | Three sessions of HBO2 at 2 ATA were administered at six-hour intervals within 24 h. |
Group-IV | Three sessions of HBO2 at 2.4 ATA were administered at six-hour intervals within 24 h. |
Group-V | Total of 15 sessions of NBO2 were administered in 10 days as; 3 times a day on the first day (6-h intervals), two times a day on the second, third and fourth day (10-h intervals), and once a day for the last six days (22-h intervals). |
Group-VI | Total of 15 sessions of HBO2 at 2 ATA were administered in 10 days as scheduled for Group V. |
Group-VII | Total of 15 sessions HBO2 were administered as scheduled for Group V, but at 2.4 ATA. |
2.3. Preparation of Plasma and Erythrocyte Lysates
2.4. Biochemical Assays
2.4.1. Measurement of Malondialdehyde (MDA) Levels
2.4.2. Measurement of Cu–Zn-Superoxide Dismutase (Cu–Zn-SOD)
2.4.3. Measurement of Erythrocyte Glutathione (GSH) Levels
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sjöberg, F.; Singer, M. The medical use of oxygen: A time for critical reappraisal. J. Intern. Med. 2013, 274, 505–528. [Google Scholar] [CrossRef]
- Mathieu, D.; Marroni, A.; Kot, J. Tenth European Consensus Conference on Hyperbaric Medicine: Recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. Diving Hyperb. Med. 2017, 47, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Undersea and Hyperbaric Medical Society (UHMS). Hyperbaric Oxygen Therapy Indications, 13th ed.; Part I. Indications; Weaver, L.K., Ed.; Best Publishing Company: North Palm Beach, FL, USA, 2014; pp. 1–241. ISBN 978-1930536-73-9. [Google Scholar]
- Maltepe, E.; Saugstad, O.D. Oxygen in health and disease: Regulation of oxygen homeostasis-clinical implications. Pediatr. Res. 2009, 65, 261–268. [Google Scholar] [CrossRef]
- Gerschman, R.; Gilbert, D.; Nye, S.W.; Dwyer, P.; Fenn, W.O. Oxygen poisoning and X-irradiation: A mechanism in common. Science 1954, 119, 623. [Google Scholar] [CrossRef]
- Donald, K.W. Oxygen poisoning in man; signs and symptoms of oxygen poisoning. Br. Med. J. 1947, 1, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Gröger, M.; Oter, S.; Simkova, V.; Bolten, M.; Koch, A.; Warninghoff, V.; Georgieff, M.; Muth, C.M.; Speit, G.; Radermacher, P. DNA damage after long-term repetitive hyperbaric oxygen exposure. J. Appl. Physiol. 2009, 106, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Rothfuss, A.; Dennog, C.; Speit, G. Adaptive protection against the induction of oxidative DNA damage after hyperbaric oxygen treatment. Carcinogenesis 1998, 19, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, D.; Chance, B.; Cadenas, E.; Boveris, A. The relation of free radical production to hyperoxia. Annu. Rev. Physiol. 1986, 48, 703–719. [Google Scholar] [CrossRef]
- Benedetti, S.; Lamorgese, A.; Piersantelli, M.; Pagliarani, S.; Benvenuti, F.; Canestrari, F. Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyperbaric oxygen. Clin. Biochem. 2004, 37, 312–317. [Google Scholar] [CrossRef]
- Oter, S.; Korkmaz, A.; Topal, T.; Ozcan, O.; Sadir, S.; Ozler, M.; Ogur, R.; Bilgic, H. Correlation between hyperbaric oxygen exposure pressures and oxidative parameters in rat lung, brain, and erythrocytes. Clin. Biochem. 2005, 38, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, C.A.; Tatro, L.G. Regional H2O2 concentration in rat brain after hyperoxic convulsions. J. Appl. Physiol. 1990, 69, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Mihaljević, Z.; Matić, A.; Stupin, A.; Rašić, L.; Jukić, I.; Drenjančević, I. Acute hyperbaric oxygenation, contrary to intermittent hyperbaric oxygenation, adversely affects vasorelaxation in healthy sprague-dawley rats due to increased oxidative stress. Oxid. Med. Cell. Longev. 2018, 2018, 7406027. [Google Scholar] [CrossRef]
- Dennog, C.; Hartmann, A.; Frey, G.; Speit, G. Detection of DNA damage after hyperbaric oxygen (HBO) therapy. Mutagenesis 1996, 11, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Dennog, C.; Radermacher, P.; Barnett, Y.A.; Speit, G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat. Res. 1999, 428, 83–89. [Google Scholar] [CrossRef]
- Gröger, M.; Radermacher, P.; Speit, G.; Muth, C.M. Genotoxicity of hyperbaric oxygen and its prevention: What hyperbaric physicians should know. Diving Hyperb. Med. 2008, 38, 200–205. [Google Scholar] [PubMed]
- Thom, S.R. Oxidative stress is fundamental to hyperbaric oxygen therapy. J. Appl. Physiol. 2009, 106, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Bert, P. La Pression Barométrique, Recherches de Physiologie Expérimentale; Masson: Paris, France, 1878; p. 1168. [Google Scholar]
- Smith, J.L. The influence of pathological conditions on active absorption of oxygen by the lungs. J. Physiol. 1898, 22, 307–318. [Google Scholar] [CrossRef]
- Terry, T.L. Retrolental fibroplasias. Adv. Pediatr. 1948, 3, 55–67. [Google Scholar] [CrossRef]
- Godman, C.A.; Joshi, R.; Giardina, C.; Perdrizet, G.; Hightower, L.E. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann. N. Y. Acad. Sci. 2010, 1197, 178–183. [Google Scholar] [CrossRef]
- Cimino, F.; Balestra, C.; Germonpré, P.; De Bels, D.; Tillmans, F.; Saija, A.; Speciale, A.; Virgili, F. Pulsed high oxygen induces a hypoxic-like response in human umbilical endothelial cells and in humans. J. Appl. Physiol. 2012, 113, 1684–1689. [Google Scholar] [CrossRef]
- Balestra, C.; Germonpré, P.; Poortmans, J.R.; Marroni, A. Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: The “normobaric oxygen paradox”. J. Appl. Physiol. 2006, 100, 512–518. [Google Scholar] [CrossRef]
- Eken, A.; Aydin, A.; Sayal, A.; Ustündağ, A.; Duydu, Y.; Dündar, K. The effects of hyperbaric oxygen treatment on oxidative stress and SCE frequencies in humans. Clin. Biochem. 2005, 38, 1133–1137. [Google Scholar] [CrossRef]
- Simsek, K.; Ay, H.; Topal, T.; Ozler, M.; Uysal, B.; Ucar, E.; Acikel, C.H.; Yesilyurt, O.; Korkmaz, A.; Oter, S.; et al. Long-term exposure to repetitive hyperbaric oxygen results in cumulative oxidative stress in rat lung tissue. Inhal. Toxicol. 2011, 23, 166–172. [Google Scholar] [CrossRef]
- Hadanny, A.; Maliar, A.; Fishlev, G.; Bechor, Y.; Bergan, J.; Friedman, M.; Avni, I.; Efrati, S. Reversibility of retinal ischemia due to central retinal artery occlusion by hyperbaric oxygen. Clin. Ophthalmol. 2016, 11, 115–125. [Google Scholar] [CrossRef]
- Weaver, L.K.; Hopkins, R.O.; Chan, K.J.; Churchill, S.; Elliott, C.G.; Clemmer, T.P.; Orme, J.F., Jr.; Thomas, F.O.; Morris, A.H. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med. 2002, 347, 1057–1067. [Google Scholar] [CrossRef]
- Brown, D.R.; Davis, N.L.; Lepawsky, M.; Cunningham, J.; Kortbeek, J. A multicenter review of the treatment of major truncal necrotizing infections with and without hyperbaric oxygen therapy. Am. J. Surg. 1994, 167, 485–489. [Google Scholar] [CrossRef]
- Strauss, M.B. The effect of hyperbaric oxygen in crush injuries and skeletal muscle-compartment syndromes. Undersea Hyperb. Med. 2012, 39, 847–855. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar]
- Beutler, E.; Duran, O.; Kelly, M.B. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Fairbanks, V.; Klee, G.G. Biochemical aspects of hemotology. In Textbook of Clinical Chemistry; Tietz Nobert, W., Ed.; WB Saunders: Philadelphia, PA, USA, 1986; pp. 1532–1534. [Google Scholar]
- Gesell, L.B. Hyperbaric Oxygen Therapy Indications, 12th ed.; The Hyperbaric Oxygen Therapy Committee Report; Undersea and Hyperbaric Medical Society: Durham, NC, USA, 2008. [Google Scholar]
- Clark, J.M.; Lambertsen, C.J. Rate of development of pulmonary oxygen toxicity in man during oxygen breathing at 2.0 ATA. J. Appl. Physiol. 1971, 30, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Bardin, H.; Lambertsen, C.J. A Quantitative Method for Calculating Pulmonary Toxicity; Use of the ‘unit pulmonary toxicity dose’ (UPTD), Institute for Environmental Medicine Report; University of Pennsylvania: Philadelphia, PA, USA, 1970. [Google Scholar]
- Clark, J.M.; Thom, S.R. Oxygen under pressure. In Physiology and Medicine of Diving; Brubakk, A.O., Neuman, T.S., Eds.; Sounders: Edinburgh, UK; London, UK; New York, NY, USA, 2003; pp. 358–418. [Google Scholar]
- Clark, J.M.; Lambertsen, C.J.; Gelfand, R.; Troxel, A.B. Optimization of oxygen tolerance extension in rats by intermittent exposure. J. Appl. Physiol. 2006, 100, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.S.; Roberts, T.K.; McGregor, N.R.; Dunstan, R.H.; Butt, H.L. The role of erythrocytes in the inactivation of free radicals. Med. Hypotheses 1998, 50, 363–367. [Google Scholar] [CrossRef]
- Morris, G.; Anderson, G.; Dean, O.; Berk, M.; Galecki, P.; Martin-Subero, M.; Maes, M. The glutathione system: A new drug target in neuroimmune disorders. Mol. Neurobiol. 2014, 50, 1059–1084. [Google Scholar] [CrossRef]
- De Bels, D.; Theunissen, S.; Devriendt, J.; Germonpré, P.; Lafere, P.; Valsamis, J.; Snoeck, T.; Meeus, P.; Balestra, C. The normobaric oxygen paradox: Does it increase haemoglobin? Diving Hyperb. Med. 2012, 42, 67–71. [Google Scholar]
Groups (n = 8) | Plasma MDA (nmol/mL) | Plasma SOD (U/mL) | Erythrocyte GSH (mg/g Hb) |
---|---|---|---|
I | 3.54 ± 0.39 | 36.31 ± 2.60 | 3.74 ± 0.19 |
II | 4.15 ± 0.27 | 37.53 ± 2.26 | 3.69 ± 0.22 |
III | 4.69 ± 0.38 * | 28.55 ± 2.35 * | 3.43 ± 0.32 |
IV | 4.95 ± 0.44 * | 27.18 ± 2.22 * | 3.23 ± 0.24 * |
V | 3.71 ± 0.38 | 34.71 ± 2.35 | 3.71 ± 0.18 |
VI | 3.65 ± 0.34 | 33.93 ± 3.33 | 3.71 ± 0.29 |
VII | 3.31 ± 0.35 | 38.40 ± 4.26 | 4.09 ± 0.42 |
Groups Compared * | MDA | SOD | GSH |
---|---|---|---|
II–V | 0.036 ** | 0.040 ** | 0.674 |
III–VI | 0.0009 ** | 0.006 ** | 0.115 |
IV–VII | 0.0008 ** | 0.0008 ** | 0.002 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Körpınar, Ş.; Uzun, H. The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina 2019, 55, 205. https://doi.org/10.3390/medicina55050205
Körpınar Ş, Uzun H. The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina. 2019; 55(5):205. https://doi.org/10.3390/medicina55050205
Chicago/Turabian StyleKörpınar, Şefika, and Hafize Uzun. 2019. "The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats" Medicina 55, no. 5: 205. https://doi.org/10.3390/medicina55050205
APA StyleKörpınar, Ş., & Uzun, H. (2019). The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina, 55(5), 205. https://doi.org/10.3390/medicina55050205