The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men
Abstract
1. Introduction
2. Methodology
2.1. Study Cohort
2.2. Training Protocol
2.3. Blood Sample Preparation
2.4. Reverse Transcription and Quantitative Real-Time Polymerase Chain Reaction
2.5. Cytokine Assays
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, A.; Patrick, K.; Heywood, W.; Pitts, M.; Richters, J.; Shelley, J.; Simpson, J.S.; Ryall, R. Body mass index, sexual difficulties and sexual satisfaction among people in regular heterosexual relationships: A population-based study. Int. Med. J. 2012, 42, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Benatti, F.B.; Pedersen, B.K. Exercise as an anti-inflammatory therapy for rheumatic diseases—Myokine regulation. Nat. Rev. Rheumatol. 2015, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; et al. Exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Wolf, A.J.; Underhill, D.M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 2018, 18, 243. [Google Scholar] [CrossRef]
- Slattery, K.; Bentley, D.; Coutts, A.J. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: Implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015, 45, 453–471. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersenm, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Maverakis, E.; Kim, K.; Shimoda, M.; Gershwin, M.E.; Patel, F.; Wilken, R.; Raychaundhuri, S.; Renee Ruhaak, L.; Lebrilla, C.B. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review. J. Autoimmun. 2015, 57, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.A.; Bezy, O.; Kahn, C.R. Metabolic syndrome: Is Nlrp3 inflammasome a trigger or a target of insulin resistance? Circ. Res. 2011, 108, 1160–1162. [Google Scholar] [CrossRef]
- Wen, H.; Ting, J.P.; O’neill, L.A. A role for the NLRP3 inflammasome in metabolic diseases—Did Warburg miss inflammation? Nat. Immunol. 2012, 13, 352. [Google Scholar] [CrossRef]
- Miao, E.A.; Alpuche-Aranda, C.M.; Dors, M.; Clark, A.E.; Bader, M.W.; Miller, S.I.; Aderem, A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 2006, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Sansonetti, P.J.; Phalipon, A.; Arondel, J.; Thirumalai, K.; Banerjee, S.; Akira, S.; Takeda, K.; Zychlinsky, A. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri–induced inflammation. Immunity 2000, 12, 581–590. [Google Scholar] [CrossRef]
- Lust, J.A.; Lacy, M.Q.; Zeldenrust, S.R.; Dispenzieri, A.; Gertz, M.A.; Witzig, T.E.; Kumar, S.; Hayman, S.R.; Russell, S.J.; Buadi, F.K.; et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1β-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin. Proc. 2009, 84, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Castaño, Z.; San Juan, B.P.; Spiegel, A.; Pant, A.; DeCristo, M.J.; Laszewski, T.; Ubellacker, J.M.; Janssen, S.R.; Dongre, A.; Reinhardt, F.; et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat. Cell Biol. 2018, 20, 1084. [Google Scholar] [CrossRef] [PubMed]
- Mardare, C.; Krüger, K.; Liebisch, G.; Seimetz, M.; Couturier, A.; Ringseis, R.; Wilhelm, J.; Weissmann, N.; Eder, K.; Mooren, F.-C. Endurance and resistance training affect high fat diet-induced increase of ceramides, inflammasome expression, and systemic inflammation in mice. J. Diabetes Res. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Mejías-Peña, Y.; Estébanez, B.; Rodriguez-Miguelez, P.; Fernandez-Gonzalo, R.; Almar, M.; de Paz, J.A.; González-Gallego, J.; Cuevas, M.J. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging (Albany, NY) 2017, 9, 408. [Google Scholar] [CrossRef]
- Kelly, L.E.; Rimmer, J.H.; Ness, R.A. Obesity levels in institutionalized mentally retarded adults. Adapt. Phys. Act. Q. 1986, 3, 167–176. [Google Scholar] [CrossRef]
- Gleeson, M.; McFarlin, B.; Flynn, M. Exercise and Toll-like receptors. Exerc. Immunol. Rev. 2006, 12, 34–53. [Google Scholar]
- Cuevas, M.J.; Almar, M.; García-Glez, J.C.; García-López, D.; De Paz, J.A.; Alvear-Órdenes, I.; González-Gallego, J. Changes in oxidative stress markers and NF-κB activation induced by sprint exercise. Free Radic. Res. 2005, 39, 431–439. [Google Scholar] [CrossRef]
- Ringseis, R.; Eder, K.; Mooren, F.C.; Krüger, K. Metabolic signals and innate immune activation in obesity and exercise. Exerc. Immunol. Rev. 2015, 21, 58–68. [Google Scholar]
- Rosa, J.C.; Lira, F.S.; Eguchi, R.; Pimentel, G.D.; Venâncio, D.P.; Cunha, C.A.; Oyama, L.M.; De Mello, M.T.; Seelaender, M.; Oller do Nascimento, C.M. Exhaustive exercise increases inflammatory response via toll like receptor-4 and NF-κBp65 pathway in rat adipose tissue. J. Cell. Physiol. 2011, 226, 1604–1607. [Google Scholar] [CrossRef]
- Zbinden-Foncea, H.; Raymackers, J.-M.; Deldicque, L.; Renard, P.; Francaux, M. TLR2 and TLR4 activate p38 MAPK and JNK during endurance exercise in skeletal muscle. Med. Sci. Sports Exerc. 2012, 44, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; Reaburn, P. Exercise and the treatment of depression: A review of the exercise program variables. J. Sci. Med. Sport 2014, 17, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Lira, F.S.; dos Santos, T.; Caldeira, R.S.; Inoue, D.S.; Panissa, V.L.; Cabral-Santos, C.; Campos, E.Z.; Rodriges, B.; Monterio, P.A. Short-term high-and moderate-intensity training modifies inflammatory and metabolic factors in response to acute exercise. Front. Physiol. 2017, 8, 856. [Google Scholar] [CrossRef]
- Kapasi, Z.F.; Catlin, P.A.; Beck, J.; Roehling, T.; Smith, K. The role of endogenous opioids in moderate exercise training-induced enhancement of the secondary antibody response in mice. Phys. Ther. 2001, 81, 1801–1809. [Google Scholar]
- Li, H.; Miao, W.; Ma, J.; Xv, Z.; Bo, H.; Li, J.; Zhang, Y.; Li Ji, L. Acute exercise-induced mitochondrial stress triggers an inflammatory response in the myocardium via NLRP3 inflammasome activation with mitophagy. Oxidative Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Sheng, H.; Ni, X.; Lu, J. Exercise amelioration of depression-like behavior in OVX mice is associated with suppression of NLRP3 inflammasome activation in hippocampus. Behav. Brain Res. 2016, 307, 18–24. [Google Scholar] [CrossRef]
- Wong, W.-T.; Li, L.-H.; Rao, Y.K.; Yang, S.-P.; Cheng, S.-M.; Lin, W.-Y.; Cheng, C.-C.; Chen, A.; Hua, K.-F. Repositioning of the β-blocker carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Front. Immunol. 2018, 9, 1920. [Google Scholar] [CrossRef]
- Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016, 16, 407. [Google Scholar] [CrossRef]
- Shao, B.-Z.; Xu, Z.-Q.; Han, B.-Z.; Su, D.-F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol. 2015, 6, 262. [Google Scholar] [CrossRef]
- Wang, J.; Song, H.; Tang, X.; Yang, Y.; Vieira, V.; Niu, Y.; Ma, Y. Effect of exercise training intensity on murine T-regulatory cells and vaccination response. Scand. J. Med. Sci. Sports 2012, 22, 643–652. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012, 4, 166. [Google Scholar] [CrossRef]
- Lancaster, G.I.; Febbraio, M.A. The immunomodulating role of exercise in metabolic disease. Trends Immunol. 2014, 35, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Haneklaus, M.; O’Neill, L.A.; Coll, R.C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: Recent developments. Curr. Opin. Immunol. 2013, 25, 40–45. [Google Scholar] [CrossRef] [PubMed]
For: 5′-TGGACTTCGAGCAAGAGATG-3′ β-actin |
Rev: 5′-GAAGGAAGGCTGGAAGAGTG-3′ |
For: 5′-ATGAAGATGGCAAGCACCCG-3′ NLRP3 |
Rev: 5′-CTACCAAGAAGGCTCAAAGACGAC-3′ |
High-Intensity (n = 20) | Moderate-Intensity (n = 20) | Control (n = 20) | F | p | |
---|---|---|---|---|---|
Age (years) | 24.1 ± 1.8 | 23.65 ± 2.43 | 23.5 ± 3.21 | 3.09 | 0.06 |
Height (m) | 1.73 ± 0.49 | 1.76 ± 1.01 | 1.74 ± 0.44 | 0.63 | 0.53 |
Weight (kg) | 72.98 ± 1.71 | 73.45 ± 2.28 | 75.35 ± 2.13 | 1.64 | 0.20 |
BMI (kg/m2) | 23.77 ± 2.11 | 23.84 ± 1.92 | 24.43 ± 3.66 | 0.58 | 0.55 |
Body fat (%) | 19.22 ± 2.39 | 19.45 ± 2.55 | 20.62 ± 2.75 | 2.11 | 0.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khakroo Abkenar, I.; Rahmani-nia, F.; Lombardi, G. The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men. Medicina 2019, 55, 105. https://doi.org/10.3390/medicina55040105
Khakroo Abkenar I, Rahmani-nia F, Lombardi G. The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men. Medicina. 2019; 55(4):105. https://doi.org/10.3390/medicina55040105
Chicago/Turabian StyleKhakroo Abkenar, Iman, Farhad Rahmani-nia, and Giovanni Lombardi. 2019. "The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men" Medicina 55, no. 4: 105. https://doi.org/10.3390/medicina55040105
APA StyleKhakroo Abkenar, I., Rahmani-nia, F., & Lombardi, G. (2019). The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men. Medicina, 55(4), 105. https://doi.org/10.3390/medicina55040105