Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cagnin, A.; Brooks, D.J.; Kennedy, A.M.; Gunn, R.N.; Myers, R.; Turkheimer, F.E.; Jones, T.; Banati, R.B. In-vivo measurement of activated microglia in dementia. Lancet 2001, 358, 461–467. [Google Scholar] [CrossRef]
- Brosseron, F.; Krauthausen, M.; Kummer, M.; Heneka, M.T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: A comparative overview. Mol. Neurobiol. 2014, 50, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, E.; Liljeroth, A.M.; Minthon, L.; Tarkowski, A.; Wallin, A.; Blennow, K. Cerebral pattern of pro- and anti-inflammatory cytokines in dementias. Brain Res. Bull. 2003, 61, 255–260. [Google Scholar] [CrossRef]
- Ott, B.R.; Jones, R.N.; Daiello, L.A.; de la Monte, S.M.; Stopa, E.G.; Johanson, C.E.; Denby, C.; Grammas, P. Blood-Cerebrospinal Fluid Barrier Gradients in Mild Cognitive Impairment and Alzheimer’s Disease: Relationship to Inflammatory Cytokines and Chemokines. Front. Aging Neurosci. 2018, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Bai, F.; Zhang, Z. Inflammatory Cytokines and Alzheimer’s Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci. Bull. 2016, 32, 469–480. [Google Scholar] [CrossRef]
- Park, K.M.; Bowers, W.J. Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal. 2010, 22, 977–983. [Google Scholar] [CrossRef]
- Jin, J.J.; Kim, H.D.; Maxwell, J.A.; Li, L.; Fukuchi, K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J. Neuroinflamm. 2008, 5, 23. [Google Scholar] [CrossRef]
- McCusker, S.M.; Curran, M.D.; Dynan, K.B.; McCullagh, C.D.; Urquhart, D.D.; Middleton, D.; Patterson, C.C.; McIlroy, S.P.; Passmore, A.P. Association between polymorphism in regulatory region of gene encoding tumour necrosis factor alpha and risk of Alzheimer’s disease and vascular dementia: A case-control study. Lancet 2001, 357, 436–439. [Google Scholar] [CrossRef]
- Laws, S.M.; Perneczky, R.; Wagenpfeil, S.; Müller, U.; Förstl, H.; Martins, R.N.; Kurz, A.; Riemenschneider, M. TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Hum. Mutat. 2005, 26, 29–35. [Google Scholar] [CrossRef]
- Di Bona, D.; Candore, G.; Franceschi, C.; Licastro, F.; Colonna-Romano, G.; Cammà, C.; Lio, D.; Caruso, C. Systematic review by meta-analyses on the possible role of TNF-alpha polymorphisms in association with Alzheimer’s disease. Brain Res. Rev. 2009, 61, 60–68. [Google Scholar] [CrossRef]
- Infante, J.; Llorca, J.; Berciano, J.; Combarros, O. No synergistic effect between –850 tumor necrosis factor-alpha promoter polymorphism and apolipoprotein E epsilon 4 allele in Alzheimer’s disease. Neurosci. Lett. 2002, 328, 71–73. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Kang, J.; Sheng, J.G.; Barger, S.W.; Mrak, R.E.; Griffin, W.S. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J. Neurosci. 2000, 20, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.S.; Mrak, R.E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J. Leukoc. Biol. 2002, 72, 233–238. [Google Scholar] [PubMed]
- Li, X.Q.; Zhang, J.W.; Zhang, Z.X.; Chen, D.; Qu, Q.M. Interleukin-1 gene cluster polymorphisms and risk of Alzheimer’s disease in Chinese Han population. J. Neural. Transm. 2004, 111, 1183–1190. [Google Scholar] [CrossRef]
- Qin, X.; Peng, Q.; Zeng, Z.; Chen, Z.; Lin, L.; Deng, Y.; Huang, X.; Xu, J.; Wu, H.; Huang, S.; et al. Interleukin-1A -889C/T polymorphism and risk of Alzheimer’s disease: A meta-analysis based on 32 case-control studies. J. Neurol. 2012, 259, 1519–1529. [Google Scholar] [CrossRef]
- Serretti, A.; Olgiati, P.; Politis, A.; Malitas, P.; Albani, D.; Dusi, S.; Polito, L.; De Mauro, S.; Zisaki, A.; Piperi, C.; et al. Lack of association between interleukin-1 alpha rs1800587 polymorphism and Alzheimer’s disease in two Independent European samples. J. Alzheimers Dis. 2009, 16, 181–187. [Google Scholar] [CrossRef]
- Yildiz, S.H.; Erdogan, M.O.; Artan, S.; Solak, M.; Yaman, M.; Ozbabalik, B.D.; Terzi, E.S. Association of Alzheimer’s Disease with APOE and IL-1α Gene Polymorphisms. Am. J. Alzheimers Dis. Other Demen. 2015, 30, 756–761. [Google Scholar] [CrossRef]
- Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci. 2012, 8, 1254–1266. [Google Scholar] [CrossRef]
- Hampel, H.; Haslinger, A.; Scheloske, M.; Padberg, F.; Fischer, P.; Unger, J.; Teipel, S.J.; Neumann, M.; Rosenberg, C.; Oshida, R.; et al. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer’s disease brain. Eur. Arch. Psychiatry Clin. Neurosci. 2005, 255, 269–278. [Google Scholar] [CrossRef]
- Strauss, S.; Bauer, J.; Ganter, U.; Jonas, U.; Berger, M.; Volk, B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab. Investig. 1992, 66, 223–230. [Google Scholar]
- Sun, Y.X.; Minthon, L.; Wallmark, A.; Warkentin, S.; Blennow, K.; Janciauskiene, S. Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dement. Geriatr. Cogn Disord. 2003, 16, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.S.P.; Liu, C.S.; Rau, A.; Lanctôt, K.L.; Köhler, C.A.; Pakosh, M.; Carvalho, A.F.; Herrmann, N. Peripheral inflammatory markers in Alzheimer’s disease: A systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 2017, 88, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Fontalba, A.; Gutierrez, O.; Llorca, J.; Mateo, I.; Vazquez-Higuera, J.L.; Berciano, J.; Fernández-Luna, J.L.; Combarros, O. Gene-gene interaction between CARD8 and interleukin-6 reduces Alzheimer’s disease risk. J. Neurol. 2009, 256, 1184–1186. [Google Scholar] [CrossRef] [PubMed]
- Flex, A.; Giovannini, S.; Biscetti, F.; Liperoti, R.; Spalletta, G.; Straface, G.; Landi, F.; Angelini, F.; Caltagirone, C.; Ghirlanda, G.; et al. Effect of proinflammatory gene polymorphisms on the risk of Alzheimer’s disease. Neurodegener. Dis. 2014, 13, 230–236. [Google Scholar] [CrossRef]
- Hua, Y.; Guo, X.; Huang, Q.; Kong, Y.; Lu, X. Association between interleukin-6 -174G/C polymorphism and the risk of Alzheimer’s disease: A meta-analysis. Int. J. Neurosci. 2013, 123, 626–635. [Google Scholar] [CrossRef]
- Capurso, C.; Solfrizzi, V.; Colacicco, A.M.; D’Introno, A.; Frisardi, V.; Imbimbo, B.P.; Lorusso, M.; Vendemiale, G.; Denitto, M.; Santamato, A.; et al. Interleukin 6-174 G/C promoter and variable number of tandem repeats (VNTR) gene polymorphisms in sporadic Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 177–182. [Google Scholar] [CrossRef]
- Shao, W.; Peng, D.; Wang, X. Genetics of Alzheimer’s disease: From pathogenesis to clinical usage. J. Clin. Neurosci. 2017, 45, 1–8. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Blessed, G.; Tomlinson, B.E.; Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 1968, 114, 797–811. [Google Scholar] [CrossRef]
- Kato, T.; Honda, M.; Kuwata, S.; Juji, T.; Kunugi, H.; Nanko, S.; Fukuda, M.; Honda, Y. Novel polymorphism in the promoter region of the tumor necrosis factor alpha gene: No association with narcolepsy. Am. J. Med. Genet. 1999, 88, 301–304. [Google Scholar] [CrossRef]
- Gnjec, A.; D’Costa, K.J.; Laws, S.M.; Hedley, R.; Balakrishnan, K.; Taddei, K.; Martins, G.; Paton, A.; Verdile, G.; Gandy, S.E.; et al. Association of alleles carried at TNFA -850 and BAT1 -22 with Alzheimer’s disease. J. Neuroinflamm. 2008, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Ensembl Genome Browser 98. Available online: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=7:22726526-22727526;v=rs1800795;vdb=variation;vf=415970384 (accessed on 20 May 2019).
- Roses, A.D. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 1996, 47, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J.; et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43, 1467–1472. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Neu, S.C.; Pa, J.; Kukull, W.; Beekly, D.; Kuzma, A.; Gangadharan, P.; Wang, L.S.; Romero, K.; Arneric, S.P.; Redolfi, A.; et al. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis. JAMA Neurol. 2017, 74, 1178–1189. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Torres, F.; Mastroianni, F.; Colacicco, A.M.; Basile, A.M.; Capurso, C.; D’Introno, A.; Del Parigi, A.; Capurso, A. Apolipoprotein E in Southern Italy: Protective effect of epsilon 2 allele in early- and late-onset sporadic Alzheimer’s disease. Neurosci. Lett. 2000, 292, 79–82. [Google Scholar] [CrossRef]
- Chen, J.; Shu, H.; Wang, Z.; Liu, D.; Shi, Y.; Xu, L.; Zhang, Z. Protective effect of APOE epsilon 2 on intrinsic functional connectivity of the entorhinal cortex is associated with better episodic memory in elderly individuals with risk factors for Alzheimer’s disease. Oncotarget 2016, 7, 58789–58801. [Google Scholar] [CrossRef][Green Version]
- Terreni, L.; Fogliarino, S.; Quadri, P.; Ruggieri, R.M.; Piccoli, F.; Tettamanti, M.; Lucca, U.; Forloni, G. Tumor necrosis factor alpha polymorphism C-850T is not associated with Alzheimer’s disease and vascular dementia in an Italian population. Neurosci. Lett. 2003, 344, 135–137. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, L.; Meng, Q.; Gao, Q. Association Between Interleukin-1A, Interleukin-1B, and Bridging integrator 1 Polymorphisms and Alzheimer’s Disease: A standard and Cumulative Meta-analysis. Mol. Neurobiol. 2017, 54, 736–747. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Liao, P.C.; Lin, C.; Wu, C.W.; Huang, H.M.; Lin, C.C.; Chuo, L.J. Lack of association between interleukin-1alpha polymorphism and Alzheimer disease or vascular dementia. Alzheimer Dis. Assoc. Disord. 2003, 17, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Fidani, L.; Goulas, A.; Mirtsou, V.; Petersen, R.C.; Tangalos, E.; Crook, R.; Hardy, J. Interleukin-1A polymorphism is not associated with late onset Alzheimer’s disease. Neurosci. Lett. 2002, 323, 81–83. [Google Scholar] [CrossRef]
- Green, E.K.; Harris, J.M.; Lemmon, H.; Lambert, J.C.; Chartier-Harlin, M.C.; St Clair, D.; Mann, D.M.; Iwatsubo, T.; Lendon, C.L. Are interleukin-1 gene polymorphisms risk factors or disease modifiers in AD? Neurology 2002, 58, 1566–1568. [Google Scholar] [CrossRef] [PubMed]
- Rebeck, G.W. Confirmation of the genetic association of interleukin-1A with early onset sporadic Alzheimer’s disease. Neurosci. Lett. 2000, 293, 75–77. [Google Scholar] [CrossRef]
- Shawkatová, I.; Javor, J.; Párnická, Z.; Vrazda, L.; Novák, M.; Buc, M. No association between cytokine gene polymorphism and risk of Alzheimer’s disease in Slovaks. Acta Neurobiol. Exp. 2010, 70, 303–307. [Google Scholar]
- Licastro, F.; Grimaldi, L.M.; Bonafè, M.; Martina, C.; Olivieri, F.; Cavallone, L.; Giovanietti, S.; Masliah, E.; Franceschi, C. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol. Aging 2003, 24, 921–926. [Google Scholar] [CrossRef]
- Nishimura, M.; Sakamoto, T.; Kaji, R.; Kawakami, H. Influence of polymorphisms in the genes for cytokines and glutathione S-transferase omega on sporadic Alzheimer’s disease. Neurosci. Lett. 2004, 368, 140–143. [Google Scholar] [CrossRef]
- Licastro, F.; Porcellini, E.; Caruso, C.; Lio, D.; Corder, E.H. Genetic risk profiles for Alzheimer’s disease: Integration of APOE genotype and variants that up-regulate inflammation. Neurobiol. Aging 2007, 28, 1637–1643. [Google Scholar] [CrossRef]
- Gilsanz, P.; Quesenberry, C.P., Jr.; Mayeda, E.R.; Glymour, M.M.; Farias, S.T.; Whitmer, R.A. Stressors in Midlife and Risk of Dementia: The Role of Race and Education. Alzheimer Dis. Assoc. Disord. 2019, 33, 200–205. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Tarumi, T.; Eagan, D.E.; Tanaka, H.; Vaghasia, M.; Haley, A.P. Indirect effects of elevated body mass index on memory performance through altered cerebral metabolite concentrations. Psychosom. Med. 2012, 74, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Kharabian Masouleh, S.; Arélin, K.; Horstmann, A.; Lampe, L.; Kipping, J.A.; Luck, T.; Riedel-Heller, S.G.; Schroeter, M.L.; Stumvoll, M.; Villringer, A.; et al. Higher body mass index in older adults is associated with lower gray matter volume: Implications for memory performance. Neurobiol. Aging 2016, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Luukkonen, R.; Batty, G.D.; Ferrie, J.E.; Pentti, J.; Nyberg, S.T.; Shipley, M.J.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 2018, 14, 601–609. [Google Scholar] [CrossRef] [PubMed]
Characteristic | AD (n = 107) | HC (n = 110) | p |
---|---|---|---|
Age, mean (SD), years | 73.77 (7.3) | 73.03 (7.5) | 0.462 |
Gender, n (%) | |||
Male | 35 (32.7) | 37 (33.6) | 0.885 |
Female | 72 (67.3) | 73 (66.4) | |
APOEε4+, n (%) | 51 (48.6) | 29 (26.6) | 0.001 |
MMSE, median (IQR), score | 19 (15–27) | 28 (28–29.25) | <0.001 |
Education, median (IQR), years | 12 (8–15) | 14 (11–16) | 0.004 |
BMI, median (IQR), kg/m2 | 25.45 (23.18–28.93) | 27.36 (24.29–30.9) | 0.009 |
Family history of dementia, n (%) | 36 (33.6) | 16 (14.5) | 0.001 |
APOE | AD (n = 105) | HC (n = 109) | p |
---|---|---|---|
Genotype, n (%) | |||
2/2 | 1 (1.0) | 2 (1.8) | 0.005 |
2/3 | 7 (6.7) | 15 (13.8) | |
3/3 | 46 (43.8) | 63 (57.8) | |
3/4 | 44 (41.9) | 25 (22.9) | |
4/4 | 4 (3.8) | 0 (0) | |
2/4 | 3 (2.9) | 4 (3.7) | |
Alleles, n (%) | |||
2 | 12 (5.7) | 23 (10.6) | |
3 | 143 (68.1) | 166 (76.1) | 0.001 |
4 | 55 (26.2) | 29 (13.3) |
SNP | Genotype/Alleles | AD | HC | p |
---|---|---|---|---|
TNFα –850 | n = 98 | n = 106 | ||
Genotype, n (%) | ||||
CC | 81 (82.7) | 91 (85.8) | 0.522 | |
CT | 16 (16.3) | 15 (14.2) | ||
TT | 1 (1.0) | 0 (0.0) | ||
CT + TT | 17 (17.3) | 15 (14.2) | 0.531 | |
Alleles, n (%) | ||||
C | 178 (90.8) | 197 (92.9) | 0.471 * | |
T | 18 (9.2) | 15 (7.1) | ||
ILA –889 | n = 107 | n = 109 | ||
Genotype, n (%) | ||||
CC | 59 (55.1) | 56 (51.4) | 0.761 | |
CT | 41 (38.3) | 47 (43.1) | ||
TT | 7 (6.5) | 6 (5.5) | ||
CT + TT | 48 (44.9) | 53 (48.6) | 0.579 | |
Alleles, n (%) | ||||
C | 159 (74.3) | 159 (72.9) | 0.748 | |
T | 55 (25.7) | 59 (27.1) | ||
IL6 –174 | n = 107 | n = 109 | ||
Genotype, n (%) | ||||
CC | 26 (24.3) | 27 (24.8) | 0.798 | |
CG | 66 (61.7) | 70 (64.2) | ||
GG | 15 (14.0) | 12 (11.0) | ||
Alleles, n (%) | ||||
C | 118 (55.1) | 124 (56.9) | 0.716 | |
G | 96 (44.9) | 94 (43.1) |
SNP | Genotype/Alleles | EOAD | LOAD | HC | p |
---|---|---|---|---|---|
TNFα –850 | n = 17 | n = 81 | n = 106 | ||
Genotype, n (%) | |||||
CC | 16 (94.1) | 65 (80.2) | 91 (85.8) | 0.413 1 | |
CT | 1 (5.9) | 15 (18.5) | 15 (14.2) | 0.696 2 | |
TT | 0 (0.0) | 1 (1.2) | 0 (0.0) | 0.363 3 | |
Alleles, n (%) | |||||
C | 33 (97.1) | 145 (89.5) | 197 (92.9) | 0.322 | |
T | 1(2.9) | 17(10.5) | 15 (7.1) | ||
ILA –889 | n = 17 | n = 90 | n = 109 | ||
Genotype, n (%) | |||||
CC | 9 (52.9) | 50 (55.6) | 56 (51.4) | 0.418 1 | |
CT | 8 (47.1) | 33 (36.6) | 47 (43.1) | 0.608 2 | |
TT | 0 (0.0) | 7 (7.8) | 6 (5.5) | 0.588 3 | |
Alleles, n (%) | |||||
C | 26 (76.5) | 133 (73.9) | 159 (72.9) | 0.833 | |
T | 8 (23.5) | 47 (26.1) | 59 (27.1) |
SNPs | Model | β | SE | Wald Statistics | OR (95% CI) | p | |
---|---|---|---|---|---|---|---|
TNFα –850C > T | CC | Ref. | |||||
CT+TT | dominant1 | 0.23 | 0.39 | 0.37 | 1.26 (0.59–2.70) | 0.545 | |
dominant2 | 0.33 | 0.41 | 0.66 | 1.39 (0.62–3.09) | 0.417 | ||
IL1A –889C > T | CC | Ref. | |||||
CT+TT | dominant1 | −0.15 | 0.27 | 0.3 | 0.86 (0.50–1.47) | 0.585 | |
dominant2 | −0.14 | 0.28 | 0.26 | 0.87 (0.50–1.51) | 0.61 | ||
CC+CT | Ref. | ||||||
TT | recessive1 | 0.19 | 0.58 | 0.11 | 1.21 (0.39–3.73) | 0.744 | |
recessive2 | 0.21 | 0.59 | 0.13 | 1.23 (0.39–3.93) | 0.724 |
Genotypes | Frequencies | Logistic Regression | ||||
---|---|---|---|---|---|---|
HC | AD | β; SE; Wald | Odds Ratio (95% CI) | p Value | ||
n (%) | n (%) | |||||
APOEε4 | TNFα –850T | n = 105 | n = 96 | |||
0.005 | ||||||
– | – | 66 (62.9) | 39 (40.6) | Ref. | ||
– | + | 13 (12.4) | 10 (10.4) | 0.26; 0.47; 0.32 | 1.30 (0.52–3.25) | 0.572 |
+ | – | 24 (22.9) | 41 (42.7) | 1.06; 0.33; 10.55 | 2.89 (1.52–5.49) | 0.001 |
+ | + | 2 (1.9) | 6 (6.3) | 1.63; 0.84; 3.73 | 5.08 (0.98–26.40) | 0.053 |
APOEε4 | IL1A –889T | n = 109 | n = 105 | |||
0.012 | ||||||
– | – | 42 (38.53) | 30 (28.57) | Ref. | ||
– | + | 38 (34.86) | 24 (22.86) | −0.12; 0.35; 0.12 | 0.88 (0.44–1.77) | 0.728 |
+ | – | 14 (12.85) | 27 (25.71) | 0.99; 0.41; 5.96 | 2.7 (1.22–5.99) | 0.015 |
+ | + | 15 (13.76) | 24 (22.86) | 0.81; 0.41; 3.93 | 2.24 (1.01–4.97) | 0.047 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pšemeneckienė, G.; Petrikonis, K.; Rastenytė, D. Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population. Medicina 2019, 55, 689. https://doi.org/10.3390/medicina55100689
Pšemeneckienė G, Petrikonis K, Rastenytė D. Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population. Medicina. 2019; 55(10):689. https://doi.org/10.3390/medicina55100689
Chicago/Turabian StylePšemeneckienė, Greta, Kęstutis Petrikonis, and Daiva Rastenytė. 2019. "Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population" Medicina 55, no. 10: 689. https://doi.org/10.3390/medicina55100689
APA StylePšemeneckienė, G., Petrikonis, K., & Rastenytė, D. (2019). Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population. Medicina, 55(10), 689. https://doi.org/10.3390/medicina55100689