Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder
Abstract
1. Introduction
2. Maternal Immune Activation (MIA) and ASD Symptomatology
2.1. Immune Activation and Cytokine Signaling
2.2. Neurodevelopmental Changes
2.3. Molecular Factors
2.4. Symptom-Specific Pathways Affected by MIA
2.4.1. Social Withdrawal
- Cytokine Mediation. IL-6 and IL-17A are particularly implicated; blocking these cytokines in animal models prevents social deficits [5].
2.4.2. Cognitive Rigidity
- Impaired Synaptic Plasticity: MIA-induced neuroinflammation disrupts synaptic plasticity, leading to inflexible behavior and difficulty adapting to change (cognitive rigidity).
2.4.3. Heightened Anxiety
- Amygdala Hyperactivity: MIA increases reactivity in the amygdala, a key region for anxiety and stress responses.
- Behavioral Evidence: Offspring of MIA-exposed mothers show increased anxiety in behavioral tests (e.g., elevated plus maze, open field), and heightened physiological stress responses [28].
3. Environmental Co-Exposures: Pollutants and Infections
3.1. Immune System Dysregulation
3.2. Epigenetic and Genetic Interactions
3.3. Environmental Chemical Exposures, Oxidative Stress, and Mitochondrial Dysfunction
3.4. Microbiome Disruption
3.5. Neurodevelopmental Changes Related to Environmental Exposures
- Altered Synaptic Connectivity: Environmental exposures disrupt the formation and pruning of synapses, especially in brain regions involved in social behavior and communication.
- Impaired Myelination: Some pollutants interfere with the development of myelin, slowing neural transmission and affecting cognitive and behavioral functions.
4. Maternal Autoimmune Disease (e.g., SLE, Hashimoto’s) and ASD
4.1. Population-Based and Meta-Analytic Evidence
4.2. Autoantibody Transfer and Fetal Brain Impact
4.3. Chronic Maternal Inflammation and Cytokine Exposure
4.4. Epigenetic and Neurodevelopmental Changes
4.5. Clinical Implications
5. Cerebral Folate Deficiency (CFD) via Folate Receptor Alpha Autoantibodies
5.1. Folate Receptor Alpha Autoantibodies and Brain Folate Transport
5.2. Prevalence and Clinical Findings
5.3. Neurodevelopmental Consequences
5.3.1. Language Delay
5.3.2. Poor Attention
5.3.3. Seizures
5.4. Treatment and Clinical Correlates
5.5. Additional Neurodevelopmental Changes
6. Comprehensive Summary
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorder |
MIA | Maternal Immune Activation |
SLE | Systemic Lupus Erythematosus |
CFD | Cerebral Folate Deficiency |
FRα | Folate Receptor alpha |
E/I | Excitatory/Inhibitory |
References
- Chiarotti, F.; Venerosi, A. Epidemiology of Autism Spectrum Disorders: A Review of Worldwide Prevalence Estimates Since 2014. Brain Sci. 2020, 10, 274. [Google Scholar] [CrossRef]
- McLellan, J.; Kim, D.H.J.; Bruce, M.; Ramirez-Celis, A.; Van de Water, J.V. Maternal Immune Dysregulation and Autism–Understanding the Role of Cytokines, Chemokines and Autoantibodies. Front. Psychiatry 2022, 13. [Google Scholar] [CrossRef]
- McEwan, F.; Glazier, J.D.; Hager, R. The Impact of Maternal Immune Activation on Embryonic Brain Development. Front. Neurosci. 2023, 17, 1146710. [Google Scholar] [CrossRef] [PubMed]
- Ravaccia, D.; Ghafourian, T. Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder. Biomedicines 2020, 8, 557. [Google Scholar] [CrossRef]
- Zawadzka, A.; Cieślik, M.; Adamczyk, A. The Role of Maternal Immune Activation in the Pathogenesis of Autism: A Review of the Evidence, Proposed Mechanisms and Implications for Treatment. Int. J. Mol. Sci. 2021, 22, 11516. [Google Scholar] [CrossRef] [PubMed]
- Parker-Athill, E.C.; Tan, J. Maternal Immune Activation and Autism Spectrum Disorder: Interleukin-6 Signaling as a Key Mechanistic Pathway. Neurosignals 2010, 18, 113–128. [Google Scholar] [CrossRef]
- Hughes, H.K.; Mills Ko, E.; Rose, D.; Ashwood, P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front. Cell. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.B.; Willis, D.E.; Rodriguez, E.L.; Schwarz, J.M. Maternal Immune Activation as an Epidemiological Risk Factor for Neurodevelopmental Disorders: Considerations of Timing, Severity, Individual Differences, and Sex in Human and Rodent Studies. Front. Neurosci. 2023, 17, 1135559. [Google Scholar] [CrossRef]
- Majerczyk, D.; Ayad, E.G.; Brewton, K.L.; Saing, P.; Hart, P.C. Systemic Maternal Inflammation Promotes ASD via IL-6 and IFN-γ. Biosci. Rep. 2022, 42, BSR20220713. [Google Scholar] [CrossRef]
- Carter, M.; Casey, S.; O’Keeffe, G.W.; Gibson, L.; Gallagher, L.; Murray, D.M. Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Front. Psychiatry 2022, 13, 823096. [Google Scholar] [CrossRef]
- Frye, R.E.; Sequeira, J.M.; Quadros, E.V.; James, S.J.; Rossignol, D.A. Cerebral Folate Receptor Autoantibodies in Autism Spectrum Disorder. Mol. Psychiatry 2013, 18, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Slattery, J.; Delhey, L.; Furgerson, B.; Strickland, T.; Tippett, M.; Sailey, A.; Wynne, R.; Rose, S.; Melnyk, S.; et al. Folinic Acid Improves Verbal Communication in Children with Autism and Language Impairment: A Randomized Double-Blind Placebo-Controlled Trial. Mol. Psychiatry 2018, 23, 247–256. [Google Scholar] [CrossRef]
- Smith, S.E.P.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal Immune Activation Alters Fetal Brain Development through Interleukin-6. J. Neurosci. 2007, 27, 10695–10702. [Google Scholar] [CrossRef]
- Anastasescu, C.M.; Gheorman, V.; Stoicanescu, E.-C.; Popescu, F.; Gheorman, V.; Udriștoiu, I. Immunological Biomarkers in Autism Spectrum Disorder: The Role of TNF-Alpha and Dependent Trends in Serum IL-6 and CXCL8. Life 2024, 14, 1201. [Google Scholar] [CrossRef]
- Estes, M.L.; McAllister, A.K. Maternal Immune Activation: Implications for Neuropsychiatric Disorders. Science 2016, 353, 772–777. [Google Scholar] [CrossRef]
- Sarieva, K.; Kagermeier, T.; Khakipoor, S.; Atay, E.; Yentür, Z.; Becker, K.; Mayer, S. Human Brain Organoid Model of Maternal Immune Activation Identifies Radial Glia Cells as Selectively Vulnerable. Mol. Psychiatry 2023, 28, 5077–5089. [Google Scholar] [CrossRef]
- Lombardo, M.V.; Moon, H.M.; Su, J.; Palmer, T.D.; Courchesne, E.; Pramparo, T. Maternal Immune Activation Dysregulation of the Fetal Brain Transcriptome and Relevance to the Pathophysiology of Autism Spectrum Disorder. Mol. Psychiatry 2018, 23, 1001–1013. [Google Scholar] [CrossRef]
- Gzieło, K.; Piotrowska, D.; Litwa, E.; Popik, P.; Nikiforuk, A. Maternal Immune Activation Affects Socio-Communicative Behavior in Adult Rats. Sci. Rep. 2023, 13, 1918. [Google Scholar] [CrossRef] [PubMed]
- Osokine, I.; Erlebacher, A. Inflammation and Autism: From Maternal Gut to Fetal Brain. Trends Mol. Med. 2017, 23, 1070–1071. [Google Scholar] [CrossRef] [PubMed]
- Tartaglione, A.M.; Villani, A.; Ajmone-Cat, M.A.; Minghetti, L.; Ricceri, L.; Pazienza, V.; De Simone, R.; Calamandrei, G. Maternal Immune Activation Induces Autism-like Changes in Behavior, Neuroinflammatory Profile and Gut Microbiota in Mouse Offspring of Both Sexes. Transl. Psychiatry 2022, 12, 384. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Huang, Y.; Zhu, Y.; Zhao, Y.; Kong, X. The Role of Maternal Immune Activation in Immunological and Neurological Pathogenesis of Autism. J. Neurorestoratol. 2023, 11, 100030. [Google Scholar] [CrossRef]
- Ayoub, G. Autism Spectrum Disorder as a Multifactorial Disorder: The Interplay of Genetic Factors and Inflammation. Int. J. Mol. Sci. 2025, 26, 6483. [Google Scholar] [CrossRef]
- Antoon, J.W.; Williams, D.J.; Bruce, J.; Sekmen, M.; Zhu, Y.; Grijalva, C.G. Influenza with and Without Oseltamivir Treatment and Neuropsychiatric Events Among Children and Adolescents. JAMA Neurol. 2025. [Google Scholar] [CrossRef]
- Dutra, M.L.; Dias, P.; Freiberger, V.; Ventura, L.; Comim, C.M.; Martins, D.F.; Bobinski, F. Maternal Immune Activation Induces Autism-like Behavior and Reduces Brain-Derived Neurotrophic Factor Levels in the Hippocampus and Offspring Cortex of C57BL/6 Mice. Neurosci. Lett. 2023, 793, 136974. [Google Scholar] [CrossRef]
- Ahire, C.; Kaur, G. Targeting the P2X7 Receptor Signaling Pathway: Unlocking Therapeutic Strategies for Autism Spectrum Disorder. Brain Behav. Immun. Health 2025, 47, 101037. [Google Scholar] [CrossRef]
- Gardner, R.M.; Brynge, M.; Sjöqvist, H.; Dalman, C.; Karlsson, H. Maternal Immune Activation and Autism in Offspring: What Is the Evidence for Causation? Biol. Psychiatry 2024, S0006322324017608. [Google Scholar] [CrossRef] [PubMed]
- Quagliato, L.A.; de Matos, U.; Nardi, A.E. Maternal Immune Activation Generates Anxiety in Offspring: A Translational Meta-Analysis. Transl. Psychiatry 2021, 11, 245. [Google Scholar] [CrossRef]
- Vitor-Vieira, F.; Patriarcha, P.P.; Rojas, V.C.T.; Parreiras, S.S.; Giusti, F.C.V.; Giusti-Paiva, A. Influence of Maternal Immune Activation on Autism-like Symptoms and Coping Strategies in Male Offspring. Physiol. Behav. 2024, 275, 114432. [Google Scholar] [CrossRef]
- Careaga, M.; Murai, T.; Bauman, M.D. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biol. Psychiatry 2017, 81, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Ellul, P.; Fourcade, G.; Mhanna, V.; Coatnoan, N.; Bodula, S.; Seilhean, D.; Mouton, L.; Marguerit, G.; Delorme, R.; Mi, T.; et al. Maternal Immune Activation Imprints a Regulatory T Cell Deficiency in Offspring That Drives an Autism-like Phenotype. bioRxiv 2025, 631430. [Google Scholar] [CrossRef]
- Kalkbrenner, A.E.; Schmidt, R.J.; Penlesky, A.C. Environmental Chemical Exposures and Autism Spectrum Disorders: A Review of the Epidemiological Evidence. Curr. Probl. Pediatr. Adolesc. Health Care 2014, 44, 277–318. [Google Scholar] [CrossRef]
- Duque-Cartagena, T.; Dalla, M.D.B.; Mundstock, E.; Neto, F.K.; Espinoza, S.A.R.; de Moura, S.K.; Zanirati, G.; Padoin, A.V.; Jimenez, J.G.P.; Stein, A.T.; et al. Environmental Pollutants as Risk Factors for Autism Spectrum Disorders: A Systematic Review and Meta-Analysis of Cohort Studies. BMC Public Health 2024, 24, 2388. [Google Scholar] [CrossRef]
- Botelho, R.M.; Silva, A.L.M.; Borbely, A.U. The Autism Spectrum Disorder and Its Possible Origins in Pregnancy. Int. J. Environ. Res. Public Health 2024, 21, 244. [Google Scholar] [CrossRef] [PubMed]
- Keil-Stietz, K.; Lein, P.J. Gene × Environment Interactions in Autism Spectrum Disorders; Current Topics in Developmental Biology: Amsterdam, The Netherlands, 2023; pp. 221–284. [Google Scholar]
- Otaru, S.; Lawrence, D.A. Autism: Genetics, Environmental Stressors, Maternal Immune Activation, and the Male Bias in Autism. Explor. Neuroprot. Ther. 2022, 2, 141–161. [Google Scholar] [CrossRef]
- Unveiling the Environmental Dimensions of Autism Spectrum Disorder|Step Ahead ABA. Available online: https://www.stepaheadaba.com/blog/environmental-causes-risk-factors-of-autism (accessed on 20 July 2025).
- Davinelli, S.; Medoro, A.; Siracusano, M.; Savino, R.; Saso, L.; Scapagnini, G.; Mazzone, L. Oxidative Stress Response and NRF2 Signaling Pathway in Autism Spectrum Disorder. Redox Biol. 2025, 83, 103661. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Chauhan, V.; Chauhan, A. Oxidative Stress and Mitochondrial Dysfunction in ASDs; World Scientific: River Edge, NJ, USA, 2014; pp. 407–427. [Google Scholar] [CrossRef]
- Kuźniar-Pałka, A. The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology, Diagnosis and Treatment. Biomedicines 2025, 13, 388. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, V.; Rajagopalan, K.; Jayaramayya, K.; Jeevanandam, M.; Iyer, M. Mitochondrial Dysfunction: A Hidden Trigger of Autism? Genes. Dis. 2020, 8, 629–639. [Google Scholar] [CrossRef]
- Suprunowicz, M.; Tomaszek, N.; Urbaniak, A.; Zackiewicz, K.; Modzelewski, S.; Waszkiewicz, N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024, 16, 549. [Google Scholar] [CrossRef]
- Zhao, B.; Rehati, P.; Yang, Z.; Cai, Z.; Guo, C.; Li, Y. The Potential Toxicity of Microplastics on Human Health. Sci. Total Environ. 2024, 912, 168946. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhou, N.; Chen, Y.; Ling, Z.; Xiang, P. Microplastics in the Human Body: A Comprehensive Review of Exposure, Distribution, Migration Mechanisms, and Toxicity. Sci. Total Environ. 2024, 946, 174215. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Kumar, D.; Prajapati, K.B.; Mahajan, A.K.; Pant, D.; Yadav, A.; Giri, A.; Manda, S.; Bhandari, S.; et al. Microplastics Influencing Aquatic Environment and Human Health: A Review of Source, Determination, Distribution, Removal, Degradation, Management Strategy and Future Perspective. J. Environ. Manag. 2025, 375, 124249. [Google Scholar] [CrossRef] [PubMed]
- Thongkorn, S.; Kanlayaprasit, S.; Kasitipradit, K.; Lertpeerapan, P.; Panjabud, P.; Hu, V.W.; Jindatip, D.; Sarachana, T. Investigation of Autism-Related Transcription Factors Underlying Sex Differences in the Effects of Bisphenol A on Transcriptome Profiles and Synaptogenesis in the Offspring Hippocampus. Biol. Sex. Differ. 2023, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, J.; Kim, H.; Ko, I.O.; Jo, E.-K.; Choi, E.-J.; Lee, H.-J.; Shim, I.; Woo, H.; Choi, J.; Kim, G.-H.; et al. Pre/Post-Natal Exposure to Microplastic as a Potential Risk Factor for Autism Spectrum Disorder. Environ. Int. 2022, 161, 107121. [Google Scholar] [CrossRef]
- Su, Z.; Kong, R.; Huang, C.; Wang, K.; Liu, C.; Gu, X.; Wang, H.L. Exposure to Polystyrene Nanoplastics Causes Anxiety and Depressive-like Behavior and down-Regulates EAAT2 Expression in Mice. Arch. Toxicol. 2025, 99, 2595–2609. [Google Scholar] [CrossRef] [PubMed]
- Khaliulin, I.; Hamoudi, W.; Amal, H. The Multifaceted Role of Mitochondria in Autism Spectrum Disorder. Mol. Psychiatry 2025, 30, 629–650. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Blau, N. Cerebral Folate Deficiency. Dev. Med. Child. Neurol. 2004, 46, 843–851. [Google Scholar] [CrossRef]
- Chen, C.; Lin, C.; Lin, M. Maternal Autoimmune Disease and Risk of Offspring Autism Spectrum Disorder—A Nationwide Population-Based Cohort Study. Front. Psychiatry 2023, 14. [Google Scholar] [CrossRef]
- Khachadourian, V.; Arildskov, E.S.; Grove, J.; O’Reilly, P.F.; Buxbaum, J.D.; Reichenberg, A.; Sandin, S.; Croen, L.A.; Schendel, D.; Hansen, S.N.; et al. Familial Confounding in the Associations between Maternal Health and Autism. Nat. Med. 2025, 31, 996–1007. [Google Scholar] [CrossRef]
- Mazón-Cabrera, R.; Liesenborgs, J.; Brône, B.; Vandormael, P.; Somers, V. Novel Maternal Autoantibodies in Autism Spectrum Disorder: Implications for Screening and Diagnosis. Front. Neurosci. 2023, 17, 1067833. [Google Scholar] [CrossRef]
- Torres, G.; Mourad, M.; Iqbal, S.; Moses-Fynn, E.; Pandita, A.; Siddhartha, S.S.; Sood, R.A.; Srinivasan, K.; Subbaiah, R.T.; Tiwari, A.; et al. Conceptualizing Epigenetics and the Environmental Landscape of Autism Spectrum Disorders. Genes 2023, 14, 1734. [Google Scholar] [CrossRef]
- Ariza, J.; Hurtado, J.; Rogers, H.; Ikeda, R.; Dill, M.; Steward, C.; Creary, D.; Water, J.V.; Martínez-Cerdeño, V. Maternal Autoimmune Antibodies Alter the Dendritic Arbor and Spine Numbers in the Infragranular Layers of the Cortex. PLoS ONE 2017, 12, e0183443. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.; Iosif, A.-M.; Cichewicz, K.; Canales, C.; Rahbarian, D.; Corea, M.; Bauman, M.; Nord, A.S.; Water, J.V. Gestational Autoantibody Exposure Impacts Early Brain Development in a Rat Model of MAR Autism. Mol. Psychiatry 2025, 30, 3018–3028. [Google Scholar] [CrossRef]
- McLellan, J.; Croen, L.; Iosif, A.-M.; Yoshida, C.; Ashwood, P.; Yolken, R.H.; Water, J.V. Altered Cytokine and Chemokine Profile Linked to Autoantibody and Pathogen Reactivity in Mothers of Autistic Children. Front. Psychiatry 2024, 15. [Google Scholar] [CrossRef]
- Khashan, A.S.; O’Keeffe, G.W. The Impact of Maternal Inflammatory Conditions During Pregnancy on the Risk of Autism: Methodological Challenges. Biol. Psychiatry Glob. Open Sci. 2024, 4, 100287. [Google Scholar] [CrossRef]
- Nardone, S.; Elliott, E. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 329. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Sequeira, J.M.; Quadros, E.V. Autoantibodies to Folate Receptors in the Cerebral Folate Deficiency Syndrome. N. Engl. J. Med. 2005, 352, 1985–1991. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1141. [Google Scholar] [CrossRef]
- Phunsawat, P.; Chiangjong, W.; Chutipongtanate, S.; Dumrongwongsiri, O.; Thommachot, P.; Butdawong, W.; Chuthapisith, J. Folate Receptor Alpha Autoantibodies in Children with Autism Spectrum Disorder. Biomarkers 2022, 27, 715–719. [Google Scholar] [CrossRef]
- Ahmavaara, K.; Ayoub, G. Cerebral Folate Deficiency in Autism Spectrum Disorder. Tech. Neurosurg. Neurol. 2022, 4, 1–2. [Google Scholar] [CrossRef]
- Ayoub, G. Neurodevelopment of Autism: Critical Periods, Stress and Nutrition. Cells 2024, 13, 1968. [Google Scholar] [CrossRef] [PubMed]
- Ahmavaara, K.; Ayoub, G. Stress and Folate Impact Neurodevelopmental Disorders. J. Health Care Res. 2024, 5, 1–6. [Google Scholar] [CrossRef]
- Stefanyshyn, V.; Stetsyuk, R.; Hrebeniuk, O.; Ayoub, G.; Fishchuk, L.; Rossokha, Z.; Gorovenko, N. Analysis of the Association Between the SLC19A1 Genetic Variant (Rs1051266) and Autism Spectrum Disorders, Cerebral Folate Deficiency, and Clinical and Laboratory Parameters. J. Mol. Neurosci. MN 2025, 75, 42. [Google Scholar] [CrossRef]
- Sequeira, J.M.; Desai, A.; Berrocal-Zaragoza, M.I.; Murphy, M.M.; Fernandez-Ballart, J.D.; Quadros, E.V. Exposure to Folate Receptor Alpha Antibodies during Gestation and Weaning Leads to Severe Behavioral Deficits in Rats: A Pilot Study. PLoS ONE 2016, 11, e0152249. [Google Scholar] [CrossRef]
- Srivastava, V.; O’Reilly, C. Characteristics of Cerebrospinal Fluid in Autism Spectrum Disorder—A Systematic Review. Neurosci. Biobehav. Rev. 2025, 174, 106202. [Google Scholar] [CrossRef]
- Ramaekers, V.; Blau, N.; Sequeira, J.; Nassogne, M.-C.; Quadros, E. Folate Receptor Autoimmunity and Cerebral Folate Deficiency in Low-Functioning Autism with Neurological Deficits. Neuropediatrics 2007, 38, 276–281. [Google Scholar] [CrossRef]
- Panda, P.K.; Sharawat, I.K.; Saha, S.; Gupta, D.; Palayullakandi, A.; Meena, K. Efficacy of Oral Folinic Acid Supplementation in Children with Autism Spectrum Disorder: A Randomized Double-Blind, Placebo-Controlled Trial. Eur. J. Pediatr. 2024, 183, 4827–4835. [Google Scholar] [CrossRef] [PubMed]
- Renard, E.; Leheup, B.; Guéant-Rodriguez, R.-M.; Oussalah, A.; Quadros, E.V.; Guéant, J.L. Folinic Acid Improves the Score of Autism in the EFFET Placebo-Controlled Randomized Trial. Biochimie 2020, 173, 57–61. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Hou, F.; Li, Y.; Wang, W.; Guo, L.; Zhang, C.; Li, L.; Lu, C. Safety and Efficacy of High-Dose Folinic Acid in Children with Autism: The Impact of Folate Metabolism Gene Polymorphisms. Nutrients 2025, 17, 1602. [Google Scholar] [CrossRef]
- Giorlandino, C.; Margiotti, K.; Fabiani, M.; Mesoraca, A. Folinic Acid Supplementation During Pregnancy in Two Women with Folate Receptor Alpha Autoantibodies: Potential Prevention of Autism Spectrum Disorder in Offspring. Clin. Transl. Neurosci. 2025, 9, 30. [Google Scholar] [CrossRef]
- Sequeira, J.M.; Ramaekers, V.T.h.; Quadros, E.V. The Diagnostic Utility of Folate Receptor Autoantibodies in Blood. Clin. Chem. Lab. Med. 2013, 51, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; McCarty, P.J.; Werner, B.A.; Scheck, A.C.; Collins, H.L.; Adelman, S.J.; Rossignol, D.A.; Quadros, E.V. Binding Folate Receptor Alpha Autoantibody Is a Biomarker for Leucovorin Treatment Response in Autism Spectrum Disorder. J. Pers. Med. 2024, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Liu, D.; Wu, H.; Zhu, R.; Deng, Y.; Yao, L.; Xiao, Y.; Lorimer, G.H.; Ghiladi, R.A.; Xu, X.; et al. Serum Binding Folate Receptor Autoantibodies Lower in Autistic Boys and Positively-Correlated with Folate. Biomed. Pharmacother. 2024, 172, 116191. [Google Scholar] [CrossRef] [PubMed]
Symptom | Mechanism Involved | Impact on Fetal Brain/ASD |
---|---|---|
Increased ASD risk | Maternal infection/systemic inflammation | Increased ASD risk in population studies [8,14,26] |
Social Withdrawal | Pro-inflammatory Cytokines (IL-6, IL-17A, IFN-γ), impaired connectivity | Microglial activation, neuroinflammation, synaptic dysfunction [5,9,14,16] |
Cognitive Rigidity | Abnormal synaptic pruning, excitatory/inhibitory imbalance | Cognitive, social and behavioral deficits [16,17,19,24] |
Heightened Anxiety | Oxidative stress, mitochondrial dysfunction | Impaired energy metabolism, neuronal stress [5,25,27,28] |
Cognitive Dysfunction | Gene expression dysregulation (e.g., FMR1, CHD8, mTOR) | Altered neurogenesis, synaptic connectivity [16,17] |
Mechanism | Role in ASD Pathogenesis | Reference |
---|---|---|
Pro-inflammatory cytokines (IL-6, IL-17A) | Disrupted synaptic development, neuroinflammation, microglial activation | [5,8,10,30] |
Oxidative stress, mitochondrial dysfunction | Neuronal injury, reduced synaptic plasticity, energy impairment | [5,37,38,39,48] |
Environmental pollutants | Immune activation, oxidative/epigenetic changes, altered brain development | [32,36] |
Gene–environment and epigenetic interactions | Exacerbated ASD risk and severity in genetically susceptible individuals | [32,36] |
Microbiome disruption | Modified immune and neural maturation | [41] |
Maternal infection/systemic inflammation | Increased ASD rates, biomarker identification, dose–response effects | [8,10,32] |
Mechanism | Impact on Fetus/ASD Pathogenesis | References |
---|---|---|
Maternal brain-reactive autoantibodies | Direct neuronal binding, synaptic disruption, ASD-like behaviors in animal models | [50,52,54,55] |
Chronic maternal inflammation (IL-6, IL-17A, etc.) | Microglial activation, abnormal neurodevelopment, heightened ASD risk | [9,50,56,57] |
Epigenetic and gene–environment interactions | Aberrant gene regulation, altered neural circuit assembly | [2,53] |
Population risk association | Elevated ASD incidence in offspring of mothers with autoimmune/inflammatory conditions | [26,50,51] |
Mechanism | ASD-Associated Outcomes | References |
---|---|---|
FRα autoantibody-mediated CFD | Language delay, attention deficits, seizures | [60,61] |
Impaired brain folate transport | White matter/myelination deficits | [60,67] |
FRAA positivity in ASD | High subgroup prevalence, worse outcomes | [60,61] |
Folinic acid (not folic acid) supplementation | Improved language, behavior, overall function | [12,60,69,70,71] |
Animal modeling of antibody exposure | ASD-like and cognitive phenotypes | [66] |
Factor | Effect |
---|---|
Maternal Immune Activation (MIA) |
|
Environmental Co-Exposures |
|
Maternal Autoimmune Diseases (SLE, Hashimoto’s, RA, etc.) |
|
Cerebral Folate Deficiency (CFD) via Folate Receptor Alpha Autoantibodies (FRαA) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoub, G. Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder. Curr. Issues Mol. Biol. 2025, 47, 721. https://doi.org/10.3390/cimb47090721
Ayoub G. Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder. Current Issues in Molecular Biology. 2025; 47(9):721. https://doi.org/10.3390/cimb47090721
Chicago/Turabian StyleAyoub, George. 2025. "Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder" Current Issues in Molecular Biology 47, no. 9: 721. https://doi.org/10.3390/cimb47090721
APA StyleAyoub, G. (2025). Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder. Current Issues in Molecular Biology, 47(9), 721. https://doi.org/10.3390/cimb47090721