Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact
Abstract
1. Introduction
2. Mechanistic Links from Exposure to Immunotoxicity
2.1. Polycyclic Aromatic Hydrocarbons (PAHs)
2.2. Particulate Matter (PM2.5, PM10)
2.3. Heavy Metals
2.4. Endocrine-Disrupting Chemicals (EDCs)
2.5. Emerging Pollutants
3. Transgenerational Epigenetic Inheritance of Immune Alterations
4. Cross-Pollutant Integration and Comparison
5. Future Research and Clinical Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHR | Aryl hydrocarbon receptor |
AOP | Adverse outcome pathway |
ARNT | AHR nuclear translocator |
Acetyl CoA | Acetyl coenzyme A |
BPA | Bisphenol A |
BPS | Bisphenol S |
DEHP | Di(2-ethylhexyl) phthalate |
DEP | Diesel exhaust particle |
DMR | Differentially methylated region |
DNMT | DNA methyltransferase |
EDC | Endocrine-disrupting chemical |
EWAS | Epigenome-wide association study |
HAT | Histone acetyltransferase |
HDAC | Histone deacetylase |
IFN-β | Interferon beta |
IFNγ | Interferon gamma |
IL | Interleukin |
KEAP1 | Kelch-like ECH-associated protein 1 |
MAPK | Mitogen-activated protein kinase |
MHC | Major histocompatibility complex |
MIA | Maternal immune activation |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NLRP3 | NOD-like receptor family pyrin domain containing 3 |
NRF2 | Nuclear factor erythroid 2–related factor 2 |
PAH | Polycyclic aromatic hydrocarbon |
PBMC | Peripheral blood mononuclear cell |
PE-MP | Polyethylene microplastic |
PM | Particulate matter |
PRR | Pattern recognition receptor |
ROS | Reactive oxygen species |
SAH | S-adenosyl homocysteine |
SAM | S-adenosyl methionine |
STAT | Signal transducer and activator of transcription |
TET | Ten-eleven translocation enzyme |
TLR | Toll-like receptor |
TLR4 | Toll-like receptor 4 |
TNF-α | Tumour necrosis factor alpha |
Th | T helper cell |
Treg | Regulatory T cell |
lncRNA | Long non-coding RNA |
miRNA | MicroRNA |
References
- Caren, L. Environmental Pollutants: Effects on the Immune System and Resistance to Infectious Disease. BioScience 1981, 31, 582–586. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Li, H.; Li, C.; Huo, X.; Hou, L.; Gong, Z. Immune Response Induced by Major Environmental Pollutants through Altering Neutrophils in Zebrafish Larvae. Aquat. Toxicol. 2018, 201, 99–108. [Google Scholar] [CrossRef]
- Park, K.; Moon, B.; Kwak, I. Responses of Multifunctional Immune Complement Component 1q (C1q) and Apoptosis-Related Genes in Macrophthalmus japonicus Tissues and Human Cells Following Exposure to Environmental Pollutants. Cell Stress Chaperones 2023, 28, 959–968. [Google Scholar] [CrossRef]
- Tanabe, T.; Yamaguchi, N.; Okuda, M.; Ishimaru, Y.; Takahashi, H. Immune System Reaction against Environmental Pollutants. Nihon Eiseigaku Zasshi 2015, 70, 115–119. [Google Scholar] [CrossRef]
- Fluegge, K. Humoral Immunity and Autism Spectrum Disorders. Immunol. Lett. 2017, 185, 90–92. [Google Scholar] [CrossRef]
- Timmermann, C.A.G.; Pedersen, H.S.; Budtz-Jørgensen, E.; Bjerregaard, P.; Oulhote, Y.; Weihe, P.; Grandjean, P. Environmental chemical exposures among Greenlandic children in relation to diet and residence. Int. J. Circumpolar Health 2019, 78, 1642090. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Levy, A.; Arbuckle, T.; Platt, R.; Marshall, J.; Dodds, L. Maternal Exposure to Metals and Persistent Pollutants and Cord Blood Immune System Biomarkers. Environ. Health 2015, 14, 4–11. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.; Tao, S.; Wang, Y.; Wang, S.; Liao, Y.; Zheng, P.; Yang, P. The Environmental Pollutant 3-Methyl-4-Nitrophenol Reduces the Regulatory T Cells in the Intestine. Toxicology 2022, 475, 153356. [Google Scholar] [CrossRef]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem? Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef] [PubMed]
- Rio, P.; Gasbarrini, A.; Gambassi, G.; Cianci, R. Pollutants, Microbiota and Immune System: Frenemies within the Gut. Front. Public Health 2024, 12, 1285186. [Google Scholar] [CrossRef] [PubMed]
- Liotti, A.; Ferrara, A.; Loffredo, S.; Galdiero, M.; Varricchi, G.; Di Rella, F.; Maniscalco, G.; Belardo, M.; Vastano, R.; Prencipe, R.; et al. Epigenetics: An Opportunity to Shape Innate and Adaptive Immune Responses. Immunology 2022, 167, 451–470. [Google Scholar] [CrossRef]
- Syed, S.; Resch, E.; Dehne, N. Epigenetic Regulation of Immunity. In Nijkamp and Parnham’s Principles of Immunopharmacology; Springer: Cham, Switzerland, 2019; pp. 95–110. [Google Scholar] [CrossRef]
- Igarashi, K.; Ideta-Otsuka, M.; Narita, M. The Current State and Future Development of Epigenetic Toxicology. Yakugaku Zasshi 2017, 137, 265–271. [Google Scholar] [CrossRef]
- Sahu, S.C. (Ed.) Toxicology and Epigenetics; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Sawalha, A. Epigenetics and T-Cell Immunity. Autoimmunity 2008, 41, 245–252. [Google Scholar] [CrossRef]
- Fernández-Morera, J.; Calvanese, V.; Rodríguez-Rodero, S.; Menéndez-Torre, E.; Fraga, M.; Fraga, M. Epigenetic Regulation of the Immune System in Health and Disease. Tissue Antigens 2010, 76, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.; Kelsey, K. Epigenetic Epidemiology as a Tool to Understand the Role of Immunity in Chronic Disease. Epigenomics 2016, 8, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Ruth, S. Epigenetic Regulation of Immune Cells in Health and Disease: A Comprehensive Review. IDOSR J. Sci. Technol. 2024, 10, 1–7. [Google Scholar] [CrossRef]
- Cocco, G.; Amiet, P. Epigenetics and Medicine. OBM Genet. 2021, 5, 133. [Google Scholar] [CrossRef]
- Suzuki, T.; Hidaka, T.; Kumagai, Y.; Yamamoto, M. Environmental Pollutants and the Immune Response. Nat. Immunol. 2020, 21, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Silveyra, P.; Floros, J. Air Pollution and Epigenetics: Effects on SP-A and Innate Host Defence in the Lung. Swiss Med. Wkly. 2012, 142, w13579. [Google Scholar] [CrossRef]
- Salvi, S.; Limaye, S. Effects of Air Pollution on Allergy and Asthma. In Textbook of Allergy for the Clinician; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Weinhouse, C. The Roles of Inducible Chromatin and Transcriptional Memory in Cellular Defense System Responses to Redox-Active Pollutants. Free Radic. Biol. Med. 2021, 172, 39–47. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, Z.; Wu, G.; Mao, Y.; Liu, L.; Wu, Q.; Dan, Y.; Tao, S.; Zhang, Q.; Sam, N.; et al. Emerging Role of Air Pollution in Autoimmune Diseases. Autoimmun. Rev. 2019, 18, 607–614. [Google Scholar] [CrossRef]
- Aguilera, J.; Han, X.; Cao, S.; Balmes, J.; Lurmann, F.; Tyner, T.; Lutzker, L.; Noth, E.; Hammond, S.; Sampath, V.; et al. Increases in Ambient Air Pollutants during Pregnancy Are Linked to Increases in Methylation of IL4, IL10, and IFNγ. Clin. Epigenet. 2022, 14, 115. [Google Scholar] [CrossRef]
- Jung, Y.; Aguilera, J.; Kaushik, A.; Ha, J.; Cansdale, S.; Yang, E.; Ahmed, R.; Lurmann, F.; Lutzker, L.; Hammond, S.; et al. Impact of Air Pollution Exposure on Cytokines and Histone Modification Profiles at Single-Cell Levels during Pregnancy. Sci. Adv. 2024, 10, eadp5227. [Google Scholar] [CrossRef]
- Alvarado-Cruz, I.; Alegría-Torres, J.; Montes-Castro, N.; Jiménez-Garza, O.; Quintanilla-Vega, B. Environmental Epigenetic Changes as Risk Factors for the Development of Diseases in Children: A Systematic Review. Ann. Glob. Health 2018, 84, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Tchernitchin, A.; Gaete, L. Influence of Environmental Pollutants on Human Gestation: Cause of Adult Pathologies. Rev. Chil. Pediatr. 2018, 89, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y. Air Pollution and Childhood Allergic Disease. Allergy Asthma Respir. Dis. 2016, 4, 248–256. [Google Scholar] [CrossRef]
- Kesper, D.; Brand, S.; Teich, R.; Dicke, T.; Garn, H.; Pfefferle, P.; Renz, H. Prenatal Acinetobacter lwoffii Exposure Leads to Protection against Experimentally Induced Asthma in Mice by Epigenetic Mechanisms. Pneumologie 2012, 66, 709–714. [Google Scholar] [CrossRef]
- Danieli, M.; Casciaro, M.; Paladini, A.; Bartolucci, M.; Sordoni, M.; Shoenfeld, Y.; Gangemi, S. Exposome: Epigenetics and Autoimmune Diseases. Autoimmun. Rev. 2024, 23, 103584. [Google Scholar] [CrossRef]
- Benitez, P.; Terrón, R. Epigenetics, Exposome and Development of the Intestinal Microbiota in the Neonate. GSC Biol. Pharm. Sci. 2020, 13, 199–210. [Google Scholar] [CrossRef]
- Adams, K.; Weber, K.; Johnson, S. Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. Int. J. Mol. Sci. 2020, 21, 8462. [Google Scholar] [CrossRef]
- Rogler, G.; Vavricka, S. Exposome in IBD: Recent Insights in Environmental Factors That Influence the Onset and Course of IBD. Inflamm. Bowel Dis. 2015, 21, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.A.G.; Steigleder, K.M.; Menta, P.L.R.; De Castro, M.M.; Milanski, M.; Leal, R.F. The Exposome-Diet-Epigenome Axis in Inflammatory Bowel Diseases—A Narrative Review. Dig. Med. Res. 2024, 7, 6. [Google Scholar] [CrossRef]
- Vineis, P.; Russo, F. Epigenetics and the Exposome: Environmental Exposure in Disease Etiology. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Wu, Y.; Tan, L.; Luo, Y.; Ding, C.; Tang, Z.; Shi, X.; Fan, W.; Song, S. Genistein Upregulates AHR to Protect against Environmental Toxin-Induced NASH by Inhibiting NLRP3 Inflammasome Activation and Reconstructing Antioxidant Defense Mechanisms. J. Nutr. Biochem. 2023, 121, 109436. [Google Scholar] [CrossRef]
- Dong, H.; Wu, X.; Wang, F.; Chen, H.; Feng, S.; Zhou, C.; Zhao, Z.; Si, L. Mechanism of Activation of TLR4/NF-κB/NLRP3 Signaling Pathway Induced by Heat Stress Disrupting the Filtration Barrier in Broiler. BMC Vet. Res. 2024, 20, 4111. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 Inflammasome Activation and Cell Death. Cell. Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhao, R.; Sun, Y.; Zhu, Y.; Zhong, J.; Zhao, G.; Zhu, N. Interleukin-6 Expression Was Regulated by Epigenetic Mechanisms in Response to Influenza Virus Infection or dsRNA Treatment. Mol. Immunol. 2011, 48, 1001–1008. [Google Scholar] [CrossRef]
- Sullivan, K.E.; Reddy, A.B.M.; Dietzmann, K.; Suriano, A.R.; Kocieda, V.P.; Stewart, M.; Bhatia, M. Epigenetic Regulation of Tumor Necrosis Factor Alpha. Mol. Cell. Biol. 2007, 27, 5147–5160. [Google Scholar] [CrossRef] [PubMed]
- Czimmerer, Z.; Halász, L.; Daniel, B.; Varga, Z.; Bene, K.; Domokos, A.; Hoeksema, M.A.; Shen, Z.; Berger, W.K.; Cseh, T.; et al. The Epigenetic State of IL-4-Polarized Macrophages Enables Inflammatory Cistromic Expansion and Extended Synergistic Response to TLR Ligands. Immunity 2022, 55, 2006–2026.e6. [Google Scholar] [CrossRef]
- Friedman, M.J.; Lee, H.; Lee, J.Y.; Oh, S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw. 2023, 23, e5. [Google Scholar] [CrossRef]
- Lau, C.; Adams, N.; Geary, C.; Weizman, O.; Rapp, M.; Pritykin, Y.; Leslie, C.; Sun, J. Epigenetic Control of Innate and Adaptive Immune Memory. Nat. Immunol. 2018, 19, 963–972. [Google Scholar] [CrossRef]
- Rückert, T.; Lareau, C.; Mashreghi, M.; Ludwig, L.; Romagnani, C. Clonal Expansion and Epigenetic Inheritance of Long-Lasting NK Cell Memory. Nat. Immunol. 2022, 23, 1551–1563. [Google Scholar] [CrossRef] [PubMed]
- Mujal, A.; Delconte, R.; Sun, J. Natural Killer Cells: From Innate to Adaptive Features. Annu. Rev. Immunol. 2021, 39, 417–447. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulos, D.; Hirsch, H.A.; Struhl, K. An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation. Cell 2009, 139, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Markopoulos, G.S.; Roupakia, E.; Marcu, K.B.; Kolettas, E. Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-to-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019, 8, 1143. [Google Scholar] [CrossRef]
- O’Brown, Z.K.; Van Nostrand, E.L.; Higgins, J.P.; Kim, S.K. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet. 2015, 11, e1005734. [Google Scholar] [CrossRef]
- Chen, G.; Huo, X.; Luo, X.; Cheng, Z.; Zhang, Y.; Xu, X. E-Waste Polycyclic Aromatic Hydrocarbon (PAH) Exposure Leads to Child Gut-Mucosal Inflammation and Adaptive Immune Response. Environ. Sci. Pollut. Res. 2021, 28, 53267–53281. [Google Scholar] [CrossRef]
- Andrews, F.; Smit, E.; Welch, B.; Ahmed, S.; Kile, M. Urinary Polycyclic Aromatic Hydrocarbons Concentrations and Hepatitis B Antibody Serology in the United States (NHANES, 2003–2014). Environ. Res. 2021, 200, 110801. [Google Scholar] [CrossRef]
- Dai, Y.; Deng, Q.; Liu, Q.; Zhang, L.; Gan, H.; Pan, X.; Gu, B.; Tan, L. Humoral Immunosuppression of Exposure to Polycyclic Aromatic Hydrocarbons and the Roles of Oxidative Stress and Inflammation. Environ. Pollut. 2024, 337, 123741. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhang, K.; Shi, J.; Gao, Y.; Zheng, J.; He, J.; Zhang, J.; Song, Y.; Zhang, R.; et al. Association between Heavy Metals Exposure and Persistent Infections: The Mediating Role of Immune Function. Front. Public Health 2024, 12, 1367644. [Google Scholar] [CrossRef]
- Yu, G.; Wu, L.; Su, Q.; Ji, X.; Zhou, J.; Wu, S.; Tang, Y.; Li, H. Neurotoxic Effects of Heavy Metal Pollutants in the Environment: Focusing on Epigenetic Mechanisms. Environ. Pollut. 2024, 337, 123563. [Google Scholar] [CrossRef]
- Glencross, D.; Ho, T.; Camiña, N.; Hawrylowicz, C.; Pfeffer, P. Air Pollution and Its Effects on the Immune System. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Sharavanan, V.J.; Sivaramakrishnan, M.; Sivarajasekar, N.; Senthilrani, N.; Kothandan, R.; Dhakal, N.; Sivamani, S.; Show, P.L.; Awual, M.R.; Naushad, M. Pollutants Inducing Epigenetic Changes and Diseases. Environ. Chem. Lett. 2020, 18, 325–343. [Google Scholar] [CrossRef]
- Mijač, S.; Banić, I.; Genc, A.-M.; Lipej, M.; Turkalj, M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. Medicina 2024, 60, 110. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Chen, Y.; Guo, X.; Zheng, Y.; Wang, Q.; Chen, Y.; Ni, Y.; Zhu, Y.; Joyce, B.T.; et al. Characterization of Genome-Wide H3K27ac Profiles Reveals a Distinct PM2.5-Associated Histone Modification Signature. Environ. Health 2015, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Huo, X.; Dai, Y.; Lu, X.; Hylkema, M.N.; Xu, X. Elevated Expression of AhR and NLRP3 Link Polycyclic Aromatic Hydrocarbon Exposure to Cytokine Storm in Preschool Children. Environ. Int. 2020, 139, 105720. [Google Scholar] [CrossRef]
- Luo, Y.H.; Kuo, Y.C.; Tsai, M.-H.; Ho, C.-C.; Tsai, H.T.; Hsu, C.Y.; Chen, Y.-C.; Lin, P. Interleukin-24 as a Target Cytokine of Environmental Aryl Hydrocarbon Receptor Agonist Exposure in the Lung. Toxicol. Appl. Pharmacol. 2017, 324, 1–11. [Google Scholar] [CrossRef]
- Fueldner, C.; Kohlschmidt, J.; Riemschneider, S.; Schulze, F.; Zoldan, K.; Esser, C.; Hauschildt, S.; Lehmann, J. Benzo(a)pyrene Attenuates the Pattern-Recognition-Receptor Induced Proinflammatory Phenotype of Murine Macrophages by Inducing IL-10 Expression in an Aryl Hydrocarbon Receptor-Dependent Manner. Toxicology 2018, 409, 80–90. [Google Scholar] [CrossRef]
- John, K.; Keshava, C.; Richardson, D.L.; Weston, A.; Nath, J. Immune Response Signatures of Benzo{alpha}pyrene Exposure in Normal Human Mammary Epithelial Cells in the Absence or Presence of Chlorophyllin. Cancer Genom. Proteom. 2009, 6, 1–11. [Google Scholar] [PubMed]
- Lauer, F.T.; Parvez, F.; Factor-Litvak, P.; Liu, X.; Santella, R.M.; Islam, T.; Eunus, M.; Alam, N.; Hasan, A.K.M.R.; Rahman, M.; et al. Changes in Human Peripheral Blood Mononuclear Cell (HPBMC) Populations and T-Cell Subsets Associated with Arsenic and Polycyclic Aromatic Hydrocarbon Exposures in a Bangladesh Cohort. PLoS ONE 2019, 14, e0220451. [Google Scholar] [CrossRef]
- Meldrum, K.; Gant, T.W.; Macchiarulo, S.; Leonard, M.O. Bronchial Epithelial Innate and Adaptive Immunity Signals Are Induced by Polycyclic Aromatic Hydrocarbons. Toxicol. Res. 2016, 5, 816–827. [Google Scholar] [CrossRef]
- Burchiel, S.W.; Luster, M.I. Signaling by Environmental Polycyclic Aromatic Hydrocarbons in Human Lymphocytes. Clin. Immunol. 2001, 98, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Moufarrij, S.; Srivastava, A.; Gomez, S.; Hadley, M.; Palmer, E.; Tran Austin, P.; Chisholm, S.; Roche, K.; Yu, A.; Li, J.; et al. Combining DNMT and HDAC6 Inhibitors Increases Anti-Tumor Immune Signaling and Decreases Tumor Burden in Ovarian Cancer. Sci. Rep. 2020, 10, 3470. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhu, Q.; Shi, Z.; Tu, Y.; Li, Q.; Zheng, W.; Yuan, Z.; Zu, X.; Hao, Y.; Chu, B.; et al. Dual Inhibitors of DNMT and HDAC Induce Viral Mimicry to Induce Antitumour Immunity in Breast Cancer. Cell Death Discov. 2024, 10, 18–95. [Google Scholar] [CrossRef] [PubMed]
- Sparfel, L.; Pinel-Marie, M.-L.; Boize, M.; Koscielny, S.; Desmots, S.; Pery, A.R.R.; Fardel, O. Transcriptional Signature of Human Macrophages Exposed to the Environmental Contaminant Benzo(a)pyrene. Toxicol. Sci. 2010, 114, 247–259. [Google Scholar] [CrossRef]
- Reyes-Palomares, A.; Gu, M.; Grubert, F.; Berest, I.; Sa, S.; Kasowski, M.; Arnold, C.; Shuai, M.; Srivas, R.; Miao, S.; et al. Remodeling of Active Endothelial Enhancers Is Associated with Aberrant Gene-Regulatory Networks in Pulmonary Arterial Hypertension. Nat. Commun. 2020, 11, 1673. [Google Scholar] [CrossRef]
- Thistlethwaite, P.A. Linking Vascular Remodeling and Inflammation in Pulmonary Arterial Hypertension: Is There a Common Root Cause? Am. J. Respir. Cell Mol. Biol. 2017, 57, 15–17. [Google Scholar] [CrossRef]
- Klingbeil, E.C.; Hew, K.M.; Nygaard, U.C.; Nadeau, K.C. Polycyclic Aromatic Hydrocarbons, Tobacco Smoke, and Epigenetic Remodeling in Asthma. Immunol. Res. 2014, 58, 369–373. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, H.; Lu, Q. Effect of Polycyclic Aromatic Hydrocarbons on Immunity. J. Transl. Autoimmun. 2022, 5, 100177. [Google Scholar] [CrossRef]
- Hew, K.M.; Walker, A.I.; Kohli, A.; Garcia, M.; Syed, A.; McDonald-Hyman, C.; Noth, E.M.; Mann, J.; Pratt, B.; Balmes, J.R.; et al. Childhood Exposure to Ambient Polycyclic Aromatic Hydrocarbons Is Linked to Epigenetic Modifications and Impaired Systemic Immunity in T Cells. Clin. Exp. Allergy 2015, 45, 238–248. [Google Scholar] [CrossRef]
- Xing, X.; He, Z.; Ziwei, W.; Mo, Z.; Chen, L.; Yang, B.-Y.; Zhang, Z.; Chen, S.; Ye, L.; Zhang, R.; et al. Association between H3K36me3 Modification and Methylation of LINE-1 and MGMT in Peripheral Blood Lymphocytes of PAH-Exposed Workers. Toxicol. Res. 2020, 9, 661–668. [Google Scholar] [CrossRef]
- Das, D.N.; Ravi, N. Influences of Polycyclic Aromatic Hydrocarbon on the Epigenome Toxicity and Its Applicability in Human Health Risk Assessment. Environ. Res. 2022, 213, 113677. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Yang, F.; Yang, L.; Li, Q.; Guo, J.-Q.; Liu, X.; Song, J.; Zhang, G.; Li, J.; et al. Potential Mechanisms Mediating PM2.5-Induced Alterations of H3N2 Influenza Virus Infection and Cytokine Production in Human Bronchial Epithelial Cells. Ecotoxicol. Environ. Saf. 2023, 259, 115069. [Google Scholar] [CrossRef]
- Vitucci, E.C.M.; Simmons, A.E.; Martin, E.M.; McCullough, S.D. Epithelial MAPK Signaling Directs Endothelial NRF2 Signaling and IL-8 Secretion in a Tri-Culture Model of the Alveolar-Microvascular Interface Following Diesel Exhaust Particulate (DEP) Exposure. Part. Fibre Toxicol. 2024, 21, 5–76. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Koh, Y.S. Impact of Ambient Particulate Matter on the Skin’s Immune System. J. Bacteriol. Virol. 2022, 52, 83–93. [Google Scholar] [CrossRef]
- Bhargava, A.; Shukla, A.; Bunkar, N.; Shandilya, R.; Lodhi, L.; Kumari, R.; Gupta, P.K.; Rahman, A.; Chaudhury, K.; Tiwari, R.R.; et al. Exposure to Ultrafine Particulate Matter Induces NF-κβ Mediated Epigenetic Modifications. Environ. Pollut. 2019, 252, 39–50. [Google Scholar] [CrossRef]
- Miousse, I.R.; Chalbot, M.-C.G.; Aykin-Burns, N.; Wang, X.; Basnakian, A.G.; Kavouras, I.G.; Koturbash, I. Epigenetic Alterations Induced by Ambient Particulate Matter in Mouse Macrophages. Environ. Mol. Mutagen. 2014, 55, 428–435. [Google Scholar] [CrossRef]
- Ji, H.; Brown, A.P.; Haczku, A.F. The “epiTet” of Air Pollution: Epigenetic Regulation of Airway Inflammation by Tet1. Int. Arch. Allergy Immunol. 2023, 184, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ren, X.; Sun, Z.; Duan, J. The Critical Role of Epigenetic Mechanism in PM2.5-Induced Cardiovascular Diseases. Genes Environ. 2021, 43, 47. [Google Scholar] [CrossRef]
- Wang, T.; Garcia, J.G.N.; Zhang, W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. Curr. Pharmacogenom. Person. Med. 2012, 10, 314–321. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, N.Y.; Kim, W.T. Biomarkers of Particulate Matter Exposure in Patients with Chronic Obstructive Pulmonary Disease: A Systematic Review. J. Thorac. Dis. 2023, 15, 3453–3465. [Google Scholar] [CrossRef]
- Kim, J.; Chung, S.J.; Kim, W.-J. Biomarkers of the Relationship of Particulate Matter Exposure with the Progression of Chronic Respiratory Diseases. Korean J. Intern. Med. 2024, 39, 25–33. [Google Scholar] [CrossRef]
- Mishra, P.K.; Kaur, P. Mitochondrial Biomarkers for Airborne Particulate Matter Associated Cardiovascular Diseases. Curr. Opin. Environ. Sci. Health 2023, 33, 100494. [Google Scholar] [CrossRef]
- Gavito-Covarrubias, D.; Ramírez-Díaz, I.; Guzmán-Linares, J.; Limón, I.D.; Manuel-Sánchez, D.M.; Molina-Herrera, A.; Coral-García, M.Á.; Anastasio, E.; Anaya-Hernández, A.; López-Salazar, P.; et al. Epigenetic Mechanisms of Particulate Matter Exposure: Air Pollution and Hazards on Human Health. Front. Genet. 2024, 15, 1306600. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, X.; Lu, X.; Zeng, Z.; Faas, M.M.; Xu, X. Exposure to Multiple Heavy Metals Associate with Aberrant Immune Homeostasis and Inflammatory Activation in Preschool Children. Chemosphere 2020, 257, 127257. [Google Scholar] [CrossRef] [PubMed]
- Anka, A.U.; Usman, A.B.; Kaoje, A.N.; Kabir, R.M.; Bala, A.; Arki, M.K.; Hossein-Khannazer, N.; Azizi, G. Potential Mechanisms of Some Selected Heavy Metals in the Induction of Inflammation and Autoimmunity. Eur. J. Inflamm. 2022, 20, 1–14. [Google Scholar] [CrossRef]
- Ahn, H.; Kim, J.; Kang, S.G.; Yoon, S.; Ko, H.-J.; Kim, P.-H.; Hong, E.-J.; An, B.-S.; Lee, E.; Lee, G.-S. Mercury and Arsenic Attenuate Canonical and Non-Canonical NLRP3 Inflammasome Activation. Sci. Rep. 2018, 8, 13659. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.Y.; Arancibia-Hernández, Y.L.; Loyola-Mondragón, D.Y.; Pedraza-Chaverri, J. Oxidative Stress and Its Role in Cd-Induced Epigenetic Modifications: Use of Antioxidants as a Possible Preventive Strategy. Oxygen 2022, 2, 177–210. [Google Scholar] [CrossRef]
- Jayawardena, U.A.; Ratnasooriya, W.D.; Wickramasinghe, D.D.; Udagama, P.V. Heavy Metal Mediated Innate Immune Responses of the Indian Green Frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular Profiles and Associated Th1 Skewed Cytokine Response. Sci. Total Environ. 2016, 566–567, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chang, H.-D.; Ivascu, C.; Qian, Y.; Rezai, S.; Okhrimenko, A.; Cosmi, L.; Maggi, L.; Eckhardt, F.; Wu, P.; et al. Loss of Methylation at the IFNG Promoter and CNS-1 Is Associated with the Development of Functional IFN-γ Memory in Human CD4+ T Lymphocytes. Eur. J. Immunol. 2013, 43, 793–804. [Google Scholar] [CrossRef]
- Li, J.L.; Dong, B.; Wu, Q.; Yang, Q.L.; Chen, Q.Y.; Chen, S.Y.; Tan, C.; Ju, Y.; Li, H. Association of DNA Methylation of IFNG Gene with No/Low Response to Hepatitis B Vaccine in Children. Zhonghua Yu Fang Yi Xue Za Zhi 2022, 56, 926–931. [Google Scholar] [CrossRef]
- Lin, L.; Xie, J.; Sánchez, O.F.; Bryan, C.; Freeman, J.L.; Yuan, C. Low Dose Lead Exposure Induces Alterations on Heterochromatin Hallmarks Persisting through SH-SY5Y Cell Differentiation. Chemosphere 2021, 264, 128486. [Google Scholar] [CrossRef]
- Ma, L.; Bai, Y.; Pu, H.; Gou, F.; Dai, M.; Wang, H.; He, J.; Zheng, T.; Cheng, N. Histone Methylation in Nickel-Smelting Industrial Workers. PLoS ONE 2015, 10, e0140339. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Bi, Z.; Fu, Y.; Li, L.; Wadgaonkar, P.; Almutairy, B.; Zhang, W.; Thakur, C.; Chen, F. Profiling of Histone H3 Trimethylation and Distinct Epigenetic Pattern of Chromosome Y in the Transformed Bronchial Epithelial Cells Induced by Consecutive Arsenic Treatment. Genes Dis. 2021, 9, 1160–1162. [Google Scholar] [CrossRef]
- Carvan, M.J.; Kalluvila, T.A.; Klingler, R.H.; Larson, J.K.; Pickens, M.; Mora-Zamorano, F.X.; Connaughton, V.P.; Sadler-Riggleman, I.; Beck, D.; Skinner, M.K. Mercury-Induced Epigenetic Transgenerational Inheritance of Abnormal Neurobehavior Is Correlated with Sperm Epimutations in Zebrafish. PLoS ONE 2017, 12, e0176155. [Google Scholar] [CrossRef]
- Pierron, F.; Heroin, D.; Daffe, G.; Daramy, F.; Barré, A.; Bouchez, O.; Romero-Ramirez, A.; Gonzalez, P.; Nikolski, M. Genetic and epigenetic interplay allows rapid transgenerational adaptation to metal pollution in zebrafish. Environ. epigenet 2022, 8, dvac022. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, Y.; Xu, C.; Lin, X.; Zang, Q.; Zhuang, T.; Jiang, L.; von Wettstein, D.; Liu, B. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS ONE 2012, 7, e41143. [Google Scholar] [CrossRef]
- Cheng, T.F.; Choudhuri, S.; Muldoon-Jacobs, K. Epigenetic targets of some toxicologically relevant metals: A review of the literature. J. Appl. Toxicol. 2012, 32, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Gascon, M. Prenatal exposure to endocrine-disrupting chemicals and asthma and allergic diseases. J. Investig. Allergol. Clin. Immunol. 2020, 30, 215–228. [Google Scholar] [CrossRef]
- Huang, T.Y.; Hirota, M.; Sasaki, D.; Kalra, R.S.; Chien, H.C.; Tamai, M.; Sarkar, S.; Mi, Y.; Miyagi, M.; Seto, Y.; et al. Phosphoenolpyruvate regulates the Th17 transcriptional program and inhibits autoimmunity. Cell Rep. 2023, 42, 112205. [Google Scholar] [CrossRef] [PubMed]
- Shree, N.; Ding, Z.; Flaws, J.; Choudhury, M. Role of microRNA in endocrine disruptor-induced immunomodulation of metabolic health. Metabolites 2022, 12, 1034. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Diao, W.; Wang, D.; Wei, Y.; Zhang, C.; Zen, K. MicroRNA-155 and microRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J. Immunol. 2014, 192, 1034–1043. [Google Scholar] [CrossRef]
- Xi, J.; Huang, Q.; Wang, L.; Ma, X.; Deng, Q.; Kumar, M.; Zhou, Z.; Li, L.; Zeng, Z.; Young, K.; et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene 2018, 37, 3151–3165. [Google Scholar] [CrossRef]
- Sahraei, M.; Chaube, B.; Liu, Y.; Sun, J.; Kaplan, A.; Price, N.; Ding, W.; Oyaghire, S.; Garcia-Milian, R.; Mehta, S.; et al. Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. J. Clin. Investig. 2019, 129, 5518–5536. [Google Scholar] [CrossRef]
- Shi, M.; Whorton, A.; Sekulovski, N.; MacLean, J.; Hayashi, K. Prenatal exposure to bisphenol A, E and S induces transgenerational effects on male reproductive functions in mice. Toxicol. Sci. 2019, 171, 312–324. [Google Scholar] [CrossRef]
- Lehle, J.; Lin, Y.; Gomez, A.; Chavez, L.; McCarrey, J. An in vitro approach reveals molecular mechanisms underlying endocrine disruptor-induced epimutagenesis. eLife 2024, 13, e93975. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liang, S.; Tang, Y.; Li, Y.; Xu, R.; Luo, L.; Wang, Q.; Zhang, X.; Liu, Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. Environ. Pollut. 2024, 345, 123393. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Lienlaf, M.; Wang, H.; Perez-Villarroel, P.; Lee, C.; Woan, K.; Rock-Klotz, J.; Sahakian, E.; Woods, D.; Pinilla-Ibarz, J.; et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J. Immunol. 2014, 193, 2850–2862. [Google Scholar] [CrossRef]
- Shobaki, N.; Gaur, P.; Nadre, R.; Verma, V.; Ordentlich, P.; Wang, L.; Jafarzadeh, N.; Traboulsi, W.; Mkrtichyan, M.; Gupta, S.; et al. Abstract LB566: Class 1 HDAC inhibition induces antitumor immunity by NF-κB-mediated enhanced metabolic fitness and generation of unique effector function enriched memory CD8 T cell subtype. Cancer Res. 2022, 82, LB566. [Google Scholar] [CrossRef]
- Katzmarski, N.; Domínguez-Andrés, J.; Cirovic, B.; Renieris, G.; Ciarlo, E.; Roy, L.; Lepikhov, K.; Kattler, K.; Gasparoni, G.; Händler, K.; et al. Transmission of trained immunity and heterologous resistance to infections across generations. Nat. Immunol. 2021, 22, 1382–1390. [Google Scholar] [CrossRef]
- Wolff, C.M.; Singer, D.; Schmidt, A.; Bekeschus, S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro- and nanoplastic of different types and sizes. J. Hazard. Mater. 2023, 459, 132194. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xuan, L.; Wang, Y.; Qu, C.; Yi, W.; Yang, J.; Pan, H.; Zhang, J.; Chen, C.; Bai, C.; et al. Exposure to polystyrene nanoplastics induces abnormal activation of innate immunity via the cGAS-STING pathway. Ecotoxicol. Environ. Saf. 2024, 275, 116255. [Google Scholar] [CrossRef]
- Yuan, Y.; Sepúlveda, M.S.; Bi, B.; Huang, Y.; Kong, L.; Yan, H.; Gao, Y. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio). Chemosphere 2022, 311, 137048. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Moriano, M.P.; Masiá, P.; Acle, S.; Ardura, A.; García-Vázquez, E.; Machado-Schiaffino, G. Changes in global methylation patterns of Mytilus galloprovincialis exposed to microplastics. Aquat. Toxicol. 2024, 276, 107115. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Banerjee, R.; Waly, R.; Urbano, A.; Gimenez, G.; Day, R.C.; Eccles, M.R.; Weeks, R.J.; Chatterjee, A. Locus-specific DNA methylation editing in melanoma cell lines using a CRISPR-based system. Cancers 2021, 13, 5433. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mondal, A.; Mukherjee, C.; Bhaduri, A.; Singh, M. Effects of micro- and nanoplastics on human genome. In Advances in Environmental Toxicology; Wiley: Hoboken, NJ, USA, 2024; pp. 265–283. [Google Scholar] [CrossRef]
- Chen, T.; Lin, Q.; Gong, C.; Wang, J.; Peng, R. Research progress on micro(nano)plastics exposure-induced miRNA-mediated biotoxicity. Toxics 2024, 12, 475. [Google Scholar] [CrossRef]
- Banikazemi, Z.; Farshadi, M.; Rajabi, A.; Homayounfal, M.; Sharifi, N.; Sharafati Chaleshtori, R. Nanoplastics: Focus on the role of microRNAs and long non-coding RNAs. Chemosphere 2022, 308, 136299. [Google Scholar] [CrossRef]
- Gareev, I.; Ramirez, M.d.J.E.; Goncharov, E.; Ivliev, D.; Shumadalova, A.V.; Ilyasova, T.S.; Wang, C. MiRNAs and lncRNAs in the regulation of innate immune signalling. Non-Coding RNA Res. 2023, 8, 534–541. [Google Scholar] [CrossRef]
- Wade, M.J.; Bucci, K.; Rochman, C.M.; Meek, M.H. Microplastic exposure is associated with epigenomic effects in the model organism Pimephales promelas (Fathead minnow). J. Hered. 2025, 116, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Sadler-Riggleman, I.; Skinner, M.K. Environment and the Epigenetic Transgenerational Inheritance of Disease; Caister Academic Press: Norfolk, UK, 2015; pp. 297–306. [Google Scholar] [CrossRef]
- Niu, Z.; Mohazzab-Hosseinian, S.; Breton, C.V. Transgenerational epigenetic inheritance: Perspectives and challenges. J. Allergy Clin. Immunol. 2023, 151, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Li, D.; Li, Y.; Italiani, P. In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 11769. [Google Scholar] [CrossRef]
- Hammel, J.H.; Cook, S.R.; Belanger, M.C.; Munson, J.M.; Pompano, R.R. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu. Rev. Biomed. Eng. 2021, 23, 461–491. [Google Scholar] [CrossRef] [PubMed]
- Alloisio, S.; Gambardella, C.; Giussani, V.; Faimali, M.; Steimberg, N.; De Angelis, I.; Caloni, F.; Baderna, D. In vitro approaches to environmental pollutants: New models, endpoints, and strategies. Altern. Anim. Exp. 2019, 36, 329–330. [Google Scholar] [CrossRef]
- Weber-Stadlbauer, U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl. Psychiatry 2017, 7, e1113. [Google Scholar] [CrossRef] [PubMed]
- Weber-Stadlbauer, U.; Richetto, J.; Zwamborn, R.A.J.; Slieker, R.C.; Meyer, U. Transgenerational modification of dopaminergic dysfunctions induced by maternal immune activation. Neuropsychopharmacology 2020, 46, 404–412. [Google Scholar] [CrossRef]
- Ronovsky, M.; Berger, S.; Zambon, A.; Reisinger, S.N.; Horvath, O.; Pollak, A.; Lindtner, C.; Berger, A.; Pollak, D.D. Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior. Brain Behav. Immun. 2017, 63, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Bunkar, N.; Kumar, R.; Bhargava, A.; Tiwari, R.R.; Chaudhury, K.; Goryacheva, I.Y.; Mishra, P.K. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci. Total Environ. 2019, 656, 760–777. [Google Scholar] [CrossRef]
- Qi, C.; Liu, Z.; Kılıç, G.; Sarlea, A.; Debisarun, P.A.; Liu, X.; Mekonnen, Y.A.; Li, W.; Grasshoff, M.; Alaswad, A.; et al. Epigenetic Reprogramming Mediates Monocyte and Heterologous T Cell-derived Cytokine Responses after BCG Vaccination. bioRxiv 2024. [Google Scholar] [CrossRef]
- Caldwell, B.A.; Li, L. Epigenetic regulation of innate immune dynamics during inflammation. J. Leukoc. Biol. 2024, 115, 589–606. [Google Scholar] [CrossRef]
- Kleeman, E.A.; Gubert, C.; Hannan, A.J. Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends Genet. 2022, 38, 662–675. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, W.-B. Sperm small non-coding RNAs and intergenerational inheritance. Natl. J. Androl. 2022, 28, 538–543. [Google Scholar]
- Bozack, A.K.; Trasande, L. Prenatal chemical exposures and the methylome: Current evidence and opportunities for environmental epigenetics. Epigenomics 2024, 16, 1443–1451. [Google Scholar] [CrossRef]
- Sbihi, H.; Jones, M.J.; MacIsaac, J.L.; Brauer, M.; Allen, R.W.; Sears, M.R.; Subbarao, P.; Mandhane, P.J.; Moraes, T.J.; Azad, M.B.; et al. Prenatal exposure to traffic-related air pollution, the gestational epigenetic clock, and risk of early-life allergic sensitization. J. Allergy Clin. Immunol. 2019, 144, 1729. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jannatun, N.; Zeng, Y.; Chu, T.; Liu, K.; Zhang, G.; Chen, C.; Li, Y. Impacts of microplastics on immunity. Front. Toxicol. 2022, 4, 956885. [Google Scholar] [CrossRef] [PubMed]
- Zhi, L.; Li, Z.; Su, Z.; Wang, J. Immunotoxicity of microplastics: Carrying pathogens and destroying the immune system. TrAC Trends Anal. Chem. 2024, 177, 117817. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Bi, L.; Liu, Y.; Peng, R. Immunotoxicity of Microplastics in Fish. Fish Shellfish Immunol. 2024, 150, 109619. [Google Scholar] [CrossRef]
- Ghosh, K.; Chatterjee, B.; Jayaprasad, A.G.; Kanade, S.R. The Persistent Organochlorine Pesticide Endosulfan Modulates Multiple Epigenetic Regulators with Oncogenic Potential in MCF-7 Cells. Sci. Total Environ. 2018, 624, 1612–1622. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, S.; Chang, J.; Quan, S.; Yang, T.; Zhao, M.; Wang, L.; Yang, X. Activation of the CCL22/CCR4 Causing EMT Process Remodeling under EZH2-Mediated Epigenetic Regulation in Cervical Carcinoma. J. Cancer 2024, 15, 6299–6314. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, Z.; Qian, Y.-C.; Jiang, C.-F.; Liu, W.; Liu, B.-H.; Jiang, B.-H. HDAC2- and EZH2-Mediated Histone Modifications Induce PDK1 Expression through miR-148a Downregulation in Breast Cancer Progression and Adriamycin Resistance. Cancers 2022, 14, 3600. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.T.; Yang, Y.; Chan, T.-F.; Lin, X.; Wong, A.S.T.; Lui, W.-Y.; Yuen, K.W.Y.; Kong, R.Y.C.; Lai, K.P.; Wu, R. Chromatin Modifiers: A New Class of Pollutants with Potential Epigenetic Effects Revealed by in Vitro Assays and Transcriptomic Analyses. Toxicology 2023, 484, 153413. [Google Scholar] [CrossRef]
- Mishra, P.K.; Bunkar, N.; Singh, R.D.; Kumar, R.; Gupta, P.K.; Tiwari, R.R.; Lodhi, L.; Bhargava, A.; Chaudhury, K. Comparative Profiling of Epigenetic Modifications among Individuals Living in Different High and Low Air Pollution Zones: A Pilot Study from India. Environ. Adv. 2021, 4, 100052. [Google Scholar] [CrossRef]
- Chen, C.-H.S.; Yuan, T.; Lu, T.; Lee, H.-Y.; Chen, Y.-H.; Lai, L.; Tsai, M.; Wu, C.-H.; Chan, C. Exposure-Associated DNA Methylation among People Exposed to Multiple Industrial Pollutants. Clin. Epigenet. 2024, 16, 705. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Tiwari, A.; Mishra, S. Metabolic Changes and Immunity Suppression Parameters as Biomarkers of Environmental Pollutants. In Biomonitoring of Pollutants in the Global South; Springer: Singapore, 2024; pp. 693–719. [Google Scholar] [CrossRef]
- Qiannan-Di, N.; Qianqian-Jiang, N.; Jiahui-Sun, N.; Haowei-Fu, N.; Qian-Xu, N. LncRNA PVT1 Mediates the Progression of Liver Necroptosis via ZBP1 Promoter Methylation under Nonylphenol Exposure. Sci. Total Environ. 2022, 844, 157185. [Google Scholar] [CrossRef]
- Li, H.; Ryu, M.; Rider, C.; Tse, W.; Clifford, R.; Aristizabal, M.; Wen, W.; Carlsten, C. Predominant DNMT and TET Mediate Effects of Allergen on the Human Bronchial Epithelium in a Controlled Air Pollution Exposure Study. J. Allergy Clin. Immunol. 2020, 147, 1671–1682. [Google Scholar] [CrossRef]
- Zou, Z.; Yoshimura, Y.; Yamanishi, Y.; Oki, S. Elucidating Disease-Associated Mechanisms Triggered by Pollutants via the Epigenetic Landscape Using Large-Scale ChIP-Seq Data. Epigenet. Chromatin 2023, 16, 34. [Google Scholar] [CrossRef]
- Escher, B.I.; Hackermüller, J.; Polte, T.; Scholz, S.; Aigner, A.; Altenburger, R.; Böhme, A.; Bopp, S.K.; Brack, W.; Busch, W.; et al. From the Exposome to Mechanistic Understanding of Chemical-Induced Adverse Effects. Environ. Int. 2017, 99, 97–106. [Google Scholar] [CrossRef]
- Olmedo-Suárez, M.Á.; Ramírez-Díaz, I.; Perez-Gonzalez, A.; Molina-Herrera, A.; Coral-García, M.Á.; Lobato, S.; Sarvari, P.; Barreto, G.; Rubio, K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022, 12, 513. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, B.; Zhang, F.; Chen, F.; Zhang, Y.; Guo, H.; Zhang, H. Epigenetic Biomarkers Screening of Non-Coding RNA and DNA Methylation Based on Peripheral Blood Monocytes in Smokers. Front. Genet. 2022, 13, 766553. [Google Scholar] [CrossRef] [PubMed]
- Joyce, B.T.; Zheng, Y.; Zhang, Z.; Liu, L.; Kocherginsky, M.; Murphy, R.L.; Achenbach, C.J.; Musa, J.; Wehbe, F.; Just, A.C.; et al. miRNA-Processing Gene Methylation and Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2018, 27, 550–557. [Google Scholar] [CrossRef]
- Maitre, L.; Bustamante, M.; Hernández-Ferrer, C.; Thiel, D.; Lau, C.E.; Siskos, A.P.; Vives-Usano, M.; Ruiz-Arenas, C.; Pelegrí-Sisó, D.; Robinson, O.; et al. Multi-Omics Signatures of the Human Early Life Exposome. Nat. Commun. 2022, 13, 7444. [Google Scholar] [CrossRef]
- Ogunjobi, T.T.; Gbayisomore, T.; Nneji, P.O.; Olofin, O.; Olowe, E.N.; Gigam-Ozuzu, C.D.; Afolabi, J.I.; Okwuokei, N.B.; Boluwaji, V.A.; Ojeniran, T.P.; et al. Environmental Epigenetics and Its Impacts on Disease Susceptibility: A Comprehensive Review. Medinformatics 2024. [Google Scholar] [CrossRef]
- Rozek, L.S.; Dolinoy, D.C.; Sartor, M.A.; Omenn, G.S. Epigenetics: Relevance and Implications for Public Health. Annu. Rev. Public Health 2014, 35, 105–122. [Google Scholar] [CrossRef]
- Witherspoon, N.O.; Trousdale, K.; Bearer, C.F.; Miller, R.L. The Public Health and Policy Implications of Epigenetics and Pediatric Health Research. Environ. Health Perspect. 2012, 120, A386. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J. Do Nutrients Counteract the Acute Cardiovascular Effects of Air Particles? The Role of Immuno-Epigenetics in Observational and Intervention Studies. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2016. Available online: https://dash.harvard.edu/handle/1/27201716 (accessed on 28 August 2025).
- Collins, N.; Phillips, N.L.H.; Reich, L.; Milbocker, K.A.; Roth, T.L. Epigenetic Consequences of Adversity and Intervention throughout the Lifespan: Implications for Public Policy and Healthcare. Epigenomes 2020, 1, 205–216. [Google Scholar] [CrossRef]
- Burgio, E.; Di Ciaula, A. Epigenetic Effects of Air Pollution. In Environmental Epigenetics; Springer: Cham, Switzerland, 2018; pp. 231–252. [Google Scholar] [CrossRef]
- Beerweiler, C.; Masanetz, R.; Schaub, B. Asthma and Allergic Diseases: Cross Talk of Immune System and Environmental Factors. Eur. J. Immunol. 2023, 53, eji.202249981. [Google Scholar] [CrossRef] [PubMed]
Model/System | Pollutant or Trigger | Epigenetic Mechanism | Generations Affected | Immune/Neuro Outcome | Reference |
---|---|---|---|---|---|
Mouse (MIA model) | Maternal immune activation | ↑ H3K27me3, sperm Nurr1 promoter hypermethylation | F1–F3 | Neuroimmune dysregulation | [130] |
Mouse (behavioural) | MIA → altered maternal care | Hippocampal gene expression dysregulation | F1–F2 | Depressive-like behaviour | [131] |
Zebrafish | Cadmium | Sustained DNA methylation at cep19 | F1–F4 | Immune-metabolic alterations | [99] |
Fathead minnow | Polyethylene microplastics (PE-MPs) | Germline DMRs in immune and hormone response genes | F1 | Epigenetic immune reprogramming | [123] |
Human (theoretical) | EDCs, metals, air pollution | DNA methylation, histone retention, ncRNA changes | F2–F3 (projected) | Allergy, immune dysregulation | [125] |
Cross-species | Airborne particulate matter (PM) | Germline oxidative stress, mtDNA methylation | Transgenerational | Chronic immune activation | [132] |
Mouse/epidemiologic | IFNγ, IL-1β, TNF signalling | CpG methylation, histone acetylation | F1–F3 | Epigenetic memory of cytokine responses | [133,134] |
Mouse | Paternal infection (T. gondii) | Sperm DNA methylation, histone retention | F1–F2 | Immune activation, behavioural changes | [135] |
Molecular Axis | Pollutants Involved | Key Effectors | Epigenetic Impact | References |
---|---|---|---|---|
TLR4–NF-κB signalling | MPs, metals, air pollution | IL-6, TNF-α, IL-1β | DNMT3A activation; ↑ H3 acetylation | [139,140] |
NLRP3 inflammasome | PM2.5, MPs, Cd, Pb | IL-1β, Caspase-1 | ↓ IL1B promoter methylation | [141] |
ROS–NRF2 axis | All pollutant classes | NRF2, IL-6, IL-1β | Oxidative DNA damage; global hypomethylation | [139] |
EZH2–DNMT3A–HDAC2 pathway | Endosulfan, BPA, DEHP, organochlorines | miR-148a, CCL22, PDK1 | ↑ H3K27me3; ↑ CpG methylation; ↓ histone acetylation | [142,143,144] |
TET1-mediated demethylation | PM2.5, O3, IL-33 | Th17 cytokines | ↓ Methylation at immune regulatory genes | [81] |
miRNA dysregulation | Plasticizers, MPs, air pollutants | miR-155, miR-21, lncRNAs | Cytokine feedback; chromatin remodelling | [147,148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, S.R.; Bangeppagari, M.; Lee, S.J. Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact. Curr. Issues Mol. Biol. 2025, 47, 703. https://doi.org/10.3390/cimb47090703
Reddy SR, Bangeppagari M, Lee SJ. Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact. Current Issues in Molecular Biology. 2025; 47(9):703. https://doi.org/10.3390/cimb47090703
Chicago/Turabian StyleReddy, Sandeep R, Manjunatha Bangeppagari, and Sang Joon Lee. 2025. "Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact" Current Issues in Molecular Biology 47, no. 9: 703. https://doi.org/10.3390/cimb47090703
APA StyleReddy, S. R., Bangeppagari, M., & Lee, S. J. (2025). Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact. Current Issues in Molecular Biology, 47(9), 703. https://doi.org/10.3390/cimb47090703