Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants
Abstract
1. Introduction
2. Intestinal Protozoan Infections in Children: Pathogenesis, Clinical Manifestations, and Impact on the Intestinal Barrier
3. Mucins as a Component of Innate Immunity in Infections with Giardia lamblia and Entamoeba histolytica
4. Maternal Antibodies and Breastfeeding in the Defense Against Parasitic Protozoan Infections in Infancy
5. Infections with E. histolytica and G. lamblia and the Potential Role of Human Milk Oligosaccharides in Infant Protective Mechanisms
6. The Role of Lactoferrin in Limiting Intestinal Protozoan Infections
7. Melatonin as a Natural Guardian in Early Life and Parasitic Defense
8. Breast Milk as a Reservoir of Microorganisms That Positively Influence the Reduction in Protozoan Infections
9. Maternal Diet and the Bioactivity of Human Milk
10. Maternal Nutritional Status and Immunoprotective Quality of Breast Milk
11. Lifestyle Related Modulation of Milk Composition
12. Suggestions for Future Research
- Observational cohort studies investigating the relationship between maternal dietary patterns, particularly fiber intake, probiotic consumption, and overall nutrient density—and the incidence of intestinal protozoal infections (e.g., G. lamblia, E. histolytica) in exclusively breastfed infants. Such studies could help clarify whether maternal diet directly modulates infant susceptibility to parasitic infections through changes in the milk’s immunological profile.
- Controlled dietary intervention trials assessing the effects of specific maternal nutritional interventions (e.g., high-fiber diets, probiotic supplementation, or vitamin D intake) on the concentration and activity of mucosal defense-related components in milk, such as mucins (e.g., MUC1, MUC2) and lactoferrin. Longitudinal measurements of these bioactives in breast milk, combined with clinical follow-up of infant health outcomes, would help establish causal links between diet and milk-mediated immunoprotection.
- Mechanistic studies exploring how maternal gut-derived metabolites, such as SCFAs or bioactive peptides, are transferred to the mammary gland and influence the synthesis or secretion of immune factors in milk.
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CD | Cluster of differentiation |
CRD | Carbohydrate recognition domain |
EGFR/ERK MAPK | Epidermal growth factor receptor/extracellular signal-regulated kinase mitogen-activated protein kinase |
Gal | Galactose |
GalNAc | N-acetylgalactosamine |
GPR | G protein-coupled receptor |
HDAC | Histone deacetylase |
HMO | Human milk oligosaccharides |
IgA | Immunoglobulin A |
IL-6 | Interleukin 6 |
LFampin | Lactoferrampin |
LFcin | Lactoferricin |
LF | Lactoferrin |
Mel-LCNPs | Melatonin-loaded nanoparticles composed of lecithin and chitosan |
MUC | Mucin |
NF- κB | Nuclear factor kappa B |
NK | Natural killer cells |
PEM | Protein-energy malnutrition |
ROS | Reactive oxygen species |
sIgA | Secretory immunoglobulin A |
SCFA | Short-chain fatty acids |
SOD | Superoxide dismutase |
TNF-α | Tumor necrosis factor alpha |
VAS | Vitamin A supplementation |
VSPs | Variant-specific surface protein |
ZO-1 | Zonula occludens-1 |
References
- Meng, F.; Uniacke-Lowe, T.; Ryan, A.C.; Kelly, A.L. The Composition and Physico-Chemical Properties of Human Milk: A Review. Trends Food Sci. Technol. 2021, 112, 608–621. [Google Scholar] [CrossRef]
- Turin, C.G.; Ochoa, T.J. The Role of Maternal Breast Milk in Preventing Infantile Diarrhea in the Developing World. Curr. Trop. Med. Rep. 2014, 1, 97–105. [Google Scholar] [CrossRef]
- Özdemir, S.A.; Şahin, Ö.N.; Briana, D.D. Human Milk Composition: Nutrients and Bioactive Factors. In Breastfeeding and Metabolic Programming; Springer International Publishing: Cham, Switzerland, 2023; Volume 60, pp. 3–15. ISBN 9783031332784. [Google Scholar]
- Berkhout, M.D.; Ioannou, A.; Kavanal Jayaprakash, Y.; Plugge, C.M.; Belzer, C. Milk and Mucin Glycans Orchestrate a Synthetic Infant Gut Microbiota Structure. FEMS Microbiol. Ecol. 2025, 101, fiaf069. [Google Scholar] [CrossRef] [PubMed]
- France, T.C.; Kennedy, E.; O’Regan, J.; Goulding, D.A. Current Perspectives on the Use of Milk Fat Globule Membrane in Infant Milk Formula. Crit. Rev. Food Sci. Nutr. 2024, 1–16. [Google Scholar] [CrossRef]
- Peterson, J.A.; Hamosh, M.; Scallan, C.D.; Ceriani, R.L.; Henderson, T.R.; Mehta, N.R.; Armand, M.; Hamosh, P. Milk Fat Globule Glycoproteins in Human Milk and in Gastric Aspirates of Mother’s Milk-Fed Preterm Infants. Pediatr. Res. 1998, 44, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Solaymani-Mohammadi, S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front. Immunol. 2022, 13, 817468. [Google Scholar] [CrossRef] [PubMed]
- Bode, L.; Jantscher-Krenn, E. Structure-Function Relationships of Human Milk Oligosaccharides. Adv. Nutr. 2012, 3, 383S–391S. [Google Scholar] [CrossRef]
- Bührer, C.; Ensenauer, R.; Jochum, F.; Kalhoff, H.; Koletzko, B.; Lawrenz, B.; Mihatsch, W.; Posovszky, C.; Rudloff, S. Infant Formulas with Synthetic Oligosaccharides and Respective Marketing Practices: Position Statement of the German Society for Child and Adolescent Medicine e.V. (DGKJ), Commission for Nutrition. Mol. Cell. Pediatr. 2022, 9, 14. [Google Scholar] [CrossRef]
- Szyller, H.; Antosz, K.; Batko, J.; Mytych, A.; Dziedziak, M.; Wrześniewska, M.; Braksator, J.; Pytrus, T. Bioactive Components of Human Milk and Their Impact on Child’s Health and Development, Literature Review. Nutrients 2024, 16, 1487. [Google Scholar] [CrossRef]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef]
- Dombrowska-Pali, A.; Wiktorczyk-Kapischke, N.; Chrustek, A.; Olszewska-Słonina, D.; Gospodarek-Komkowska, E.; Socha, M.W. Human Milk Microbiome—A Review of Scientific Reports. Nutrients 2024, 16, 1420. [Google Scholar] [CrossRef]
- Boix-Amorós, A.; Collado, M.C.; Mira, A. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation. Front. Microbiol. 2016, 7, 492. [Google Scholar] [CrossRef]
- Gilchrist, C.A.; Petri, S.E.; Schneider, B.N.; Reichman, D.J.; Jiang, N.; Begum, S.; Watanabe, K.; Jansen, C.S.; Elliott, K.P.; Burgess, S.L.; et al. Role of the Gut Microbiota of Children in Diarrhea Due to the Protozoan Parasite Entamoeba histolytica. J. Infect. Dis. 2016, 213, 1579–1585. [Google Scholar] [CrossRef]
- Iebba, V.; Santangelo, F.; Totino, V.; Pantanella, F.; Monsia, A.; Di Cristanziano, V.; Di Cave, D.; Schippa, S.; Berrilli, F.; D’Alfonso, R. Gut Microbiota Related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis Infections in Humans from Côte d’Ivoire. J. Infect. Dev. Ctries. 2016, 10, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Riba, A.; Hassani, K.; Walker, A.; van Best, N.; von Zeschwitz, D.; Anslinger, T.; Sillner, N.; Rosenhain, S.; Eibach, D.; Maiga-Ascofaré, O.; et al. Disturbed Gut Microbiota and Bile Homeostasis in Giardia -Infected Mice Contributes to Metabolic Dysregulation and Growth Impairment. Sci. Transl. Med. 2020, 12, eaay7019. [Google Scholar] [CrossRef]
- Ahmed, M. Intestinal Parasitic Infections in 2023. Gastroenterol. Res. 2023, 16, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Weström, B.; Arévalo Sureda, E.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.-J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front. Immunol. 2020, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Cernada, M.; Neu, J.; Pérez-Martínez, G.; Gormaz, M.; Vento, M. Factors Influencing Gastrointestinal Tract and Microbiota Immune Interaction in Preterm Infants. Pediatr. Res. 2015, 77, 726–731. [Google Scholar] [CrossRef]
- Klotz, C.; Aebischer, T. The Immunological Enigma of Human Giardiasis. Curr. Trop. Med. Rep. 2015, 2, 119–127. [Google Scholar] [CrossRef]
- Abdel-Hafeez, E.H.; Belal, U.S.; Abdellatif, M.Z.M.; Naoi, K.; Norose, K. Breast-Feeding Protects Infantile Diarrhea Caused by Intestinal Protozoan Infections. Korean J. Parasitol. 2013, 51, 519–524. [Google Scholar] [CrossRef]
- Sardinha-Silva, A.; Alves-Ferreira, E.V.C.; Grigg, M.E. Intestinal Immune Responses to Commensal and Pathogenic Protozoa. Front. Immunol. 2022, 13, 963723. [Google Scholar] [CrossRef]
- Astiazaran-Garcia, H.; Lopez-Teros, V.; Valencia, M.E.; Vazquez-Ortiz, F.; Sotelo-Cruz, N.; Quihui-Cota, L. Giardia lamblia Infection and Its Implications for Vitamin A Liver Stores in School Children. Ann. Nutr. Metab. 2010, 57, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Katayama, Y.; Takada, H.; Hirakawa, J.; Kuwayama, H.; Yamaji, H.; Ogura, K.; Meda, S.; Omata, M. Silent Infection of Giardia lamblia Causing Bleeding through Vitamin K Malabsorption. J. Gastroenterol. Hepatol. 2001, 16, 1171–1174. [Google Scholar] [CrossRef]
- Cordingley, F.T.; Crawford, G.P.M. Giardia Infection Causes Vitamin B12 Deficiency. Aust. N. Z. J. Med. 1986, 16, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Ramírez, T.; Seco-Hidalgo, V.; Calderon-Espinosa, E.; Garcia-Ramon, D.; Lopez, A.; Calvopiña, M.; Guadalupe, I.; Chico, M.; Mejia, R.; Chis Ster, I.; et al. Epidemiology of Giardiasis and Assemblages A and B and Effects on Diarrhea and Growth Trajectories during the First 8 Years of Life: Analysis of a Birth Cohort in a Rural District in Tropical Ecuador. PLoS Negl. Trop. Dis. 2023, 17, e0011777. [Google Scholar] [CrossRef] [PubMed]
- Tellez, A.; Winiecka-Krusnell, J.; Paniagua, M.; Linder, E. Antibodies in Mother’s Milk Protect Children against Giardiasis. Scand. J. Infect. Dis. 2003, 35, 322–325. [Google Scholar] [CrossRef]
- Dhubyan Mohammed Zaki, Z. Prevalence of Entamoeba histolytica and Giardia lamblia Associated with Diarrhea in Children Referring to Lbn Al-Atheer Hospital in Mosul, Iraq. Arch. Razi Inst. 2022, 77, 73–79. [Google Scholar] [CrossRef]
- Aguiar, A.; Saraiva, S.; Pontes, M.; Coelho, E. Eosinophilia in a Newborn: A Case of Giardiasis and Milk Allergy. Acta Med. Port. 2011, 24, 463–466. [Google Scholar]
- Adam, R.D. Giardia duodenalis: Biology and Pathogenesis. Clin. Microbiol. Rev. 2021, 34, e0002419. [Google Scholar] [CrossRef]
- Liu, J.; Ma’ayeh, S.; Peirasmaki, D.; Lundström-Stadelmann, B.; Hellman, L.; Svärd, S.G. Secreted Giardia intestinalis Cysteine Proteases Disrupt Intestinal Epithelial Cell Junctional Complexes and Degrade Chemokines. Virulence 2018, 9, 879–894. [Google Scholar] [CrossRef]
- Fekete, E.; Allain, T.; Sosnowski, O.; Anderson, S.; Lewis, I.A.; Buret, A.G. Giardia spp.-Induced Microbiota Dysbiosis Disrupts Intestinal Mucin Glycosylation. Gut Microbes 2024, 16, 2412676. [Google Scholar] [CrossRef] [PubMed]
- Zibaei, M.; Firoozeh, F.; Azargoon, A. Infantile Amoebiasis: A Case Report. Case Rep. Infect. Dis. 2012, 2012, 614398. [Google Scholar] [CrossRef]
- Güven, A. Amebiasis in the Newborn. Indian J. Pediatr. 2003, 70, 437–438. [Google Scholar] [CrossRef]
- Uddin, M.J.; Leslie, J.L.; Petri, W.A. Host Protective Mechanisms to Intestinal Amebiasis. Trends Parasitol. 2021, 37, 165–175. [Google Scholar] [CrossRef]
- Mondal, D.; Haque, R.; Sack, R.B.; Kirkpatrick, B.D.; Petri, W.A. Attribution of Malnutrition to Cause-Specific Diarrheal Illness: Evidence from a Prospective Study of Preschool Children in Mirpur, Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 2009, 80, 824–826. [Google Scholar] [CrossRef] [PubMed]
- Magon, P. Neonatal Amoebiasis. Indian J. Pediatr. 2010, 77, 903–904. [Google Scholar] [CrossRef]
- Espinosa-Cantellano, M.; Martínez-Palomo, A. Pathogenesis of Intestinal Amebiasis: From Molecules to Disease. Clin. Microbiol. Rev. 2000, 13, 318–331. [Google Scholar] [CrossRef]
- Kahng, J.; Kim, S.-Y. A Case of Neonatal Amoebiasis with After-Birth Vomiting and Bloody Stool. Korean J. Pediatr. 2007, 50, 1257. [Google Scholar] [CrossRef]
- Jantscher-Krenn, E.; Lauwaet, T.; Bliss, L.A.; Reed, S.L.; Gillin, F.D.; Bode, L. Human Milk Oligosaccharides Reduce Entamoeba histolytica Attachment and Cytotoxicity in Vitro. Br. J. Nutr. 2012, 108, 1839–1846. [Google Scholar] [CrossRef]
- Labruyère, E.; Thibeaux, R.; Olivo-Marin, J.-C.; Guillén, N. Crosstalk between Entamoeba histolytica and the Human Intestinal Tract during Amoebiasis. Parasitology 2019, 146, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Betanzos, A.; Javier-Reyna, R.; García-Rivera, G.; Bañuelos, C.; González-Mariscal, L.; Schnoor, M.; Orozco, E. The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage. PLoS ONE 2013, 8, e65100. [Google Scholar] [CrossRef]
- Hansson, G.C. Mucins and the Microbiome. Annu. Rev. Biochem. 2020, 89, 769–793. [Google Scholar] [CrossRef]
- Roskens, H.; Erlandsen, S.L. Inhibition of in Vitro Attachment of Giardia trophozoites by Mucin. J. Parasitol. 2002, 88, 869–873. [Google Scholar] [CrossRef]
- Zenian, A.; Gillin, F.D. Interactions of Giardia lamblia with Human Intestinal Mucus: Enhancement of Trophozoite Attachment to Glass 1. J. Protozool. 1985, 32, 664–668. [Google Scholar] [CrossRef]
- Zenian, A.J.; Gillin, F. Intestinal Mucus Protects Giardia lamblia from Killing by Human Milk. J. Protozool. 1987, 34, 22–26. [Google Scholar] [CrossRef]
- Amat, C.B.; Motta, J.P.; Fekete, E.; Moreau, F.; Chadee, K.; Buret, A.G. Cysteine Protease–Dependent Mucous Disruptions and Differential Mucin Gene Expression in Giardia duodenalis Infection. Am. J. Pathol. 2017, 187, 2486–2498. [Google Scholar] [CrossRef] [PubMed]
- Hicks, S.J.; Theodoropoulos, G.; Carrington, S.D.; Corfield, A.P. The Role of Mucins in Host-Parasite Interactions: Part I—Protozoan Parasites. Parasitol. Today 2000, 16, 480–481. [Google Scholar] [CrossRef] [PubMed]
- Cuellar, P.; Hernández-Nava, E.; García-Rivera, G.; Chávez-Munguía, B.; Schnoor, M.; Betanzos, A.; Orozco, E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front. Cell. Infect. Microbiol. 2017, 7, 372. [Google Scholar] [CrossRef] [PubMed]
- Dey, I.; Chadee, K. Prostaglandin E 2 Produced by Entamoeba histolytica Binds to EP4 Receptors and Stimulates Interleukin-8 Production in Human Colonic Cells. Infect. Immun. 2008, 76, 5158–5163. [Google Scholar] [CrossRef]
- Lawrence, R.M. Transmission of Infectious Diseases Through Breast Milk and Breastfeeding. In Breastfeeding; Elsevier: Amsterdam, The Netherlands, 2011; pp. 406–473. [Google Scholar]
- Mahmud, M.A.; Chappell, C.L.; Hossain, M.M.; Huang, D.B.; Habib, M.; DuPont, H.L. Impact of Breast-Feeding on Giardia lamblia Infections in Bilbeis, Egypt. Am. J. Trop. Med. Hyg. 2001, 65, 257–260. [Google Scholar] [CrossRef]
- Morrow, A.L.; Reves, R.R.; West, M.S.; Guerrero, M.L.; Ruiz-Palacios, G.M.; Pickering, L.K. Protection against Infection with Giardia lamblia by Breast-Feeding in a Cohort of Mexican Infants. J. Pediatr. 1992, 121, 363–370. [Google Scholar] [CrossRef]
- Akisu, C. Effect of Human Milk and Colostrum on Entamoeba histolytica. World J. Gastroenterol. 2004, 10, 741. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Mondal, D.; Duggal, P.; Kabir, M.; Roy, S.; Farr, B.M.; Sack, R.B.; Petri, W.A. Entamoeba histolytica Infection in Children and Protection from Subsequent Amebiasis. Infect. Immun. 2006, 74, 904–909. [Google Scholar] [CrossRef]
- Guerrero-Manríquez, G.G.; Sánchez-Ibarra, F.; Avila, E.E. Inhibition of Entamoeba histolytica Proteolytic Activity by Human Salivary IgA Antibodies. APMIS 1998, 106, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Leon-Sicairos, N.; Lopez-Soto, F.; Reyes-Lopez, M.; Godinez-Vargas, D.; Ordaz-Pichardo, C.; de la Garza, M. Amoebicidal Activity of Milk, Apo-Lactoferrin, SIgA and Lysozyme. Clin. Med. Res. 2006, 4, 106–113. [Google Scholar] [CrossRef]
- Téllez, A.; Palm, D.; Weiland, M.; Alemán, J.; Winiecka-Krusnell, J.; Linder, E.; Svärd, S. Secretory Antibodies against Giardia intestinalis in Lactating Nicaraguan Women. Parasite Immunol. 2005, 27, 163–169. [Google Scholar] [CrossRef]
- Islam, A.; Stoll, B.J.; Ljungstrom, I.; Biswas, J.; Nazrul, H.; Huldt, G. The Prevalence of Entamoeba histolytica in Lactating Women and in Their Infants in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 1988, 82, 99–103. [Google Scholar] [CrossRef]
- Korpe, P.S.; Liu, Y.; Siddique, A.; Kabir, M.; Ralston, K.; Ma, J.Z.; Haque, R.; Petri, W.A. Breast Milk Parasite-Specific Antibodies and Protection From Amebiasis and Cryptosporidiosis in Bangladeshi Infants: A Prospective Cohort Study. Clin. Infect. Dis. 2013, 56, 988–992. [Google Scholar] [CrossRef]
- Newburg, D.S.; Ruiz-Palacios, G.M.; Altaye, M.; Chaturvedi, P.; Meinzen-Derr, J.; de Lourdes Guerrero, M.; Morrow, A.L. Innate Protection Conferred by Fucosylated Oligosaccharides of Human Milk against Diarrhea in Breastfed Infants. Glycobiology 2004, 14, 253–263. [Google Scholar] [CrossRef]
- Newburg, D.S. Glycobiology of Human Milk. Biochemistry 2013, 78, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, J.T.; Lebrilla, C.B.; Mills, D.A.; German, J.B.; Freeman, S.L. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate. Annu. Rev. Nutr. 2014, 34, 143–169. [Google Scholar] [CrossRef] [PubMed]
- Cano-Mancera, R.; López-Revilla, R. Inhibition of the Adhesion of Entamoeba histolytica Trophozoites to Human Erythrocytes by Carbohydrates. Parasitol. Res. 1987, 74, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzam, S. The Effect of Human Milk Oligosaccharides on Neglected Infectious Diseases. Master’s Thesis, University of California, San Diego, CA, USA, 2018. [Google Scholar]
- Długosz, A.; Wróblewska, J.; Kołaczyk, P.; Wróblewska, W. The Role of Lactoferrin in Combating Candida spp. Infections Through Regulation of Oxidative Stress, Immune Response, and Nutritional Support in Women and Newborns. Molecules 2025, 30, 2416. [Google Scholar] [CrossRef]
- Villavicencio, A.; Rueda, M.S.; Turin, C.G.; Ochoa, T.J. Factors Affecting Lactoferrin Concentration in Human Milk: How Much Do We Know? Biochem. Cell Biol. 2017, 95, 12–21. [Google Scholar] [CrossRef]
- Czosnykowska-Łukacka, M.; Orczyk-Pawiłowicz, M.; Broers, B.; Królak-Olejnik, B. Lactoferrin in Human Milk of Prolonged Lactation. Nutrients 2019, 11, 2350. [Google Scholar] [CrossRef]
- Frontera, L.S.; Moyano, S.; Quassollo, G.; Lanfredi-Rangel, A.; Rópolo, A.S.; Touz, M.C. Lactoferrin and Lactoferricin Endocytosis Halt Giardia Cell Growth and Prevent Infective Cyst Production. Sci. Rep. 2018, 8, 18020. [Google Scholar] [CrossRef]
- Anand, N. Antiparasitic Activity of the Iron-Containing Milk Protein Lactoferrin and Its Potential Derivatives against Human Intestinal and Blood Parasites. Front. Parasitol. 2024, 2, 1330398. [Google Scholar] [CrossRef]
- Turchany, J.M.; Mccaffery, J.M.; Aley, S.B.; Gillin, F.D. Ultrastructural Effects of Lactoferring Binding on Giardia lamblia Trophozoites. J. Eukaryot. Microbiol. 1997, 44, 68–72. [Google Scholar] [CrossRef]
- Aguilar-Diaz, H.; Canizalez-Roman, A.; Nepomuceno-Mejia, T.; Gallardo-Vera, F.; Hornelas-Orozco, Y.; Nazmi, K.; Bolscher, J.G.M.; Carrero, J.C.; Leon-Sicairos, C.; Leon-Sicairos, N. Parasiticidal Effect of Synthetic Bovine Lactoferrin Peptides on the Enteric Parasite Giardia intestinalis. Biochem. Cell Biol. 2017, 95, 82–90. [Google Scholar] [CrossRef]
- Ochoa, T.J.; Chea-Woo, E.; Campos, M.; Pecho, I.; Prada, A.; McMahon, R.J.; Cleary, T.G. Impact of Lactoferrin Supplementation on Growth and Prevalence of Giardia Colonization in Children. Clin. Infect. Dis. 2008, 46, 1881–1883. [Google Scholar] [CrossRef] [PubMed]
- Ordaz-Pichardo, C.; León-Sicairos, N.; Hernández-Ramírez, V.I.; Talamás-Rohana, P.; de la Garza, M. Effect of Bovine Lactoferrin in a Therapeutic Hamster Model of Hepatic Amoebiasis 1 This Article Is Part of a Special Issue Entitled Lactoferrin and Has Undergone the Journal’s Usual Peer Review Process. Biochem. Cell Biol. 2012, 90, 425–434. [Google Scholar] [CrossRef]
- Reyes-López, M.; Ramírez-Rico, G.; Serrano-Luna, J.; de la Garza, M. Activity of Apo-Lactoferrin on Pathogenic Protozoa. Pharmaceutics 2022, 14, 1702. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Bernatoniene, J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021, 13, 129. [Google Scholar] [CrossRef]
- Chrustek, A.; Sinkiewicz-Darol, E.; Lampka, M.; Olszewska-Słonina, D.; Sperkowska, B.; Linowiecka, K. Effect of Pasteurization on Melatonin Concentration in Human Breast Milk. Postep. Hig. Med. Dosw. 2022, 76, 220–227. [Google Scholar] [CrossRef]
- Katzer, D.; Pauli, L.; Mueller, A.; Reutter, H.; Reinsberg, J.; Fimmers, R.; Bartmann, P.; Bagci, S. Melatonin Concentrations and Antioxidative Capacity of Human Breast Milk According to Gestational Age and the Time of Day. J. Hum. Lact. 2016, 32, NP105–NP110. [Google Scholar] [CrossRef]
- Pereira, Q.L.C.; de Castro Pernet Hara, C.; Fernandes, R.T.S.; Fagundes, D.L.G.; do Carmo França-Botelho, A.; Gomes, M.A.; França, E.L.; Honorio-França, A.C. Human Colostrum Action against Giardia lamblia Infection Influenced by Hormones and Advanced Maternal Age. Parasitol. Res. 2018, 117, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Al-Hadraawy, S.K.; Al-ghurabi, M.E.; Al-musawi, M.M.; Alzeyadi, M. Ghrelin and Melatonin as Biomarkers in Patients with Giardiasis. Biotechnol. Biotechnol. Equip. 2016, 30, 553–557. [Google Scholar] [CrossRef]
- de Queiroz, A.A.; França, E.L.; Gadenz, G.R.B.; Dalcin, L.D.L.; Fujimori, M.; França, D.C.H.; Gomes, M.A.; Honorio-França, A.C. Correlation between Melatonin and Colostral Regulatory T Cells in Giardia lamblia Infection. Biomolecules 2024, 14, 744. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.; El-atif, M.B.A.; Alaa, H.; Abdelaziz, M.; Mustafa, M.; Masour, M.; Magdy, S.; Mohsen, S.; El Karamany, Y.; Farid, A. Discovering the Anti-Parasitic Activity of Melatonin Loaded Lecithin/Chitosan Nanoparticles against Giardiasis and Cryptosporidiosis in Balb/c Infected Mice. Beni-Suef Univ. J. Basic Appl. Sci. 2025, 14, 12. [Google Scholar] [CrossRef]
- França-Botelho, A.C.; França, J.L.; Oliveira, F.M.S.; Franca, E.L.; Honório-França, A.C.; Caliari, M.V.; Gomes, M.A. Melatonin Reduces the Severity of Experimental Amoebiasis. Parasit. Vectors 2011, 4, 62. [Google Scholar] [CrossRef]
- Kutty, P.K. Breastfeeding and Risk of Parasitic Infection-a Review. Asian Pac. J. Trop. Biomed. 2014, 4, 847–858. [Google Scholar] [CrossRef]
- Hall, A.; Hewitt, G.; Tuffrey, V.; De Silva, N. A Review and Meta-analysis of the Impact of Intestinal Worms on Child Growth and Nutrition. Matern. Child Nutr. 2008, 4, 118–236. [Google Scholar] [CrossRef]
- Contraindications to Breastfeeding. Available online: https://www.cdc.gov/breastfeeding-special-circumstances/hcp/contraindications/index.html?utm_source=chatgpt.com (accessed on 18 August 2025).
- Bhattacharyya, C.; Barman, D.; Tripathi, D.; Dutta, S.; Bhattacharya, C.; Alam, M.; Choudhury, P.; Devi, U.; Mahanta, J.; Rasaily, R.; et al. Influence of Maternal Breast Milk and Vaginal Microbiome on Neonatal Gut Microbiome: A Longitudinal Study during the First Year. Microbiol. Spectr. 2023, 11, e0496722. [Google Scholar] [CrossRef]
- Gao, Y.; Nanan, R.; Macia, L.; Tan, J.; Sominsky, L.; Quinn, T.P.; O’Hely, M.; Ponsonby, A.-L.; Tang, M.L.K.; Collier, F.; et al. The Maternal Gut Microbiome during Pregnancy and Offspring Allergy and Asthma. J. Allergy Clin. Immunol. 2021, 148, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Peng, X.; Zhang, T.; Qiang, Y.; Li, X.; Zhang, W. Temporal Dynamics and Species-Level Complexity of Prevotella spp. in the Human Gut Microbiota: Implications for Enterotypes and Health. Front. Microbiol. 2024, 15, 1414000. [Google Scholar] [CrossRef]
- Fekete, E.; Allain, T.; Siddiq, A.; Sosnowski, O.; Buret, A.G. Giardia spp. and the Gut Microbiota: Dangerous Liaisons. Front. Microbiol. 2021, 11, 618106. [Google Scholar] [CrossRef]
- Sun, W.; Tao, L.; Qian, C.; Xue, P.; Du, S.; Tao, Y. Human Milk Oligosaccharides: Bridging the Gap in Intestinal Microbiota between Mothers and Infants. Front. Cell. Infect. Microbiol. 2025, 14, 1386421. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed]
- Overby, H.B.; Ferguson, J.F. Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross Talk and Modulate Obesity and Hypertension. Curr. Hypertens. Rep. 2021, 23, 8. [Google Scholar] [CrossRef]
- Nogal, A.; Valdes, A.M.; Menni, C. The Role of Short-Chain Fatty Acids in the Interplay between Gut Microbiota and Diet in Cardio-Metabolic Health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef]
- Berni Canani, R.; Di Costanzo, M.; Leone, L. The Epigenetic Effects of Butyrate: Potential Therapeutic Implications for Clinical Practice. Clin. Epigenetics 2012, 4, 4. [Google Scholar] [CrossRef]
- Docampo, M.D.; da Silva, M.B.; Lazrak, A.; Nichols, K.B.; Lieberman, S.R.; Slingerland, A.E.; Armijo, G.K.; Shono, Y.; Nguyen, C.; Monette, S.; et al. Alloreactive T Cells Deficient of the Short-Chain Fatty Acid Receptor GPR109A Induce Less Graft-versus-Host Disease. Blood 2022, 139, 2392–2405. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.-H.; Park, J.H.; Jeon, W.-M.; Han, K.-S. Butyrate Modulates Bacterial Adherence on LS174T Human Colorectal Cells by Stimulating Mucin Secretion and MAPK Signaling Pathway. Nutr. Res. Pract. 2015, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, B.G.; Kim, J.H.; Chun, J.; Im, J.P.; Kim, J.S. Sodium Butyrate Inhibits the NF-Kappa B Signaling Pathway and Histone Deacetylation, and Attenuates Experimental Colitis in an IL-10 Independent Manner. Int. Immunopharmacol. 2017, 51, 47–56. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; et al. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef]
- Saleem, G.N.; Gu, R.; Qu, H.; Bahar Khaskheli, G.; Rashid Rajput, I.; Qasim, M.; Chen, X. Therapeutic Potential of Popular Fermented Dairy Products and Its Benefits on Human Health. Front. Nutr. 2024, 11, 1328620. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.P.; Perelman, D.; Durand, L.R.; Robinson, J.L.; Cunanan, K.M.; Sudakaran, S.; Sabetan, R.; Madrigal-Moeller, M.J.; Dant, C.; Sonnenburg, E.D.; et al. Effects of Fermented and Fiber-Rich Foods on Maternal & Offspring Microbiome Study (FeFiFo-MOMS)—Study Design and Methods. Contemp. Clin. Trials 2025, 150, 107834. [Google Scholar] [CrossRef]
- Wang, Y.; Rui, B.; Ze, X.; Liu, Y.; Yu, D.; Liu, Y.; Li, Z.; Xi, Y.; Ning, X.; Lei, Z.; et al. Sialic Acid-Based Probiotic Intervention in Lactating Mothers Improves the Neonatal Gut Microbiota and Immune Responses by Regulating Sialylated Milk Oligosaccharide Synthesis via the Gut–Breast Axis. Gut Microbes 2024, 16, 2334967. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.; Liu, B.; Wang, F.; Lu, Z.; Jin, M.; Wang, Y. Maternal Consumption of a Fermented Diet Protects Offspring against Intestinal Inflammation by Regulating the Gut Microbiota. Gut Microbes 2022, 14, 2057779. [Google Scholar] [CrossRef]
- Ortiz-Andrellucchi, A.; Sánchez-Villegas, A.; Rodríguez-Gallego, C.; Lemes, A.; Molero, T.; Soria, A.; Peña-Quintana, L.; Santana, M.; Ramírez, O.; García, J.; et al. Immunomodulatory Effects of the Intake of Fermented Milk with Lactobacillus casei DN114001 in Lactating Mothers and Their Children. Br. J. Nutr. 2008, 100, 834–845. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- Xi, M.; Yan, Y.; Duan, S.; Li, T.; Szeto, I.M.-Y.; Zhao, A. Short-Chain Fatty Acids in Breast Milk and Their Relationship with the Infant Gut Microbiota. Front. Microbiol. 2024, 15, 1356462. [Google Scholar] [CrossRef]
- Herías, M.V.; Cruz, J.R.; González-Cossío, T.; Nave, F.; Carlsson, B.; Hanson, L.Å. The Effect of Caloric Supplementation on Selected Milk Protective Factors in Undernourished Guatemalan Mothers. Pediatr. Res. 1993, 34, 217–221. [Google Scholar] [CrossRef] [PubMed]
- van den Elsen, L.W.J.; Garssen, J.; Burcelin, R.; Verhasselt, V. Shaping the Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention? Front. Pediatr. 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Al-Beltagi, M. Human Milk Oligosaccharide Secretion Dynamics during Breastfeeding and Its Antimicrobial Role: A Systematic Review. World J. Clin. Pediatr. 2025, 14, 104797. [Google Scholar] [CrossRef]
- Fatimah; Massi, M.N.; Febriani, A.D.B.; Hatta, M.; Karuniawati, A.; Rauf, S.; Wahyuni, S.; Hamid, F.; Alasiry, E.; Patellongi, I.; et al. The Role of Exclusive Breastfeeding on SIgA and Lactoferrin Levels in Toddlers Suffering from Acute Respiratory Infection: A Cross-Sectional Study. Ann. Med. Surg. 2022, 77, 103644. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Schorling, J.B.; McAuliffe, J.F.; De Souza, M.A. Diarrhea as a Cause and an Effect of Malnutrition: Diarrhea Prevents Catch-up Growth and Malnutrition Increases Diarrhea Frequency and Duration. Am. J. Trop. Med. Hyg. 1992, 47, 28–35. [Google Scholar] [CrossRef]
- Baqui, A.; Sack, R.; Black, R.; Chowdhury, H.; Yunus, M.; Siddique, A. Cell-Mediated Immune Deficiency and Malnutrition Are Independent Risk Factors for Persistent Diarrhea in Bangladeshi Children. Am. J. Clin. Nutr. 1993, 58, 543–548. [Google Scholar] [CrossRef]
- Maares, M.; Keil, C.; Straubing, S.; Robbe-Masselot, C.; Haase, H. Zinc Deficiency Disturbs Mucin Expression, O-Glycosylation and Secretion by Intestinal Goblet Cells. Int. J. Mol. Sci. 2020, 21, 6149. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef]
- Astiazarán-García, H.; Iñigo-Figueroa, G.; Quihui-Cota, L.; Anduro-Corona, I. Crosstalk between Zinc Status and Giardia Infection: A New Approach. Nutrients 2015, 7, 4438–4452. [Google Scholar] [CrossRef]
- Thornton, K.A.; Mora-Plazas, M.; Marín, C.; Villamor, E. Vitamin A Deficiency Is Associated with Gastrointestinal and Respiratory Morbidity in School-Age Children. J. Nutr. 2014, 144, 496–503. [Google Scholar] [CrossRef]
- Mayo-Wilson, E.; Imdad, A.; Herzer, K.; Yakoob, M.Y.; Bhutta, Z.A. Vitamin A Supplements for Preventing Mortality, Illness, and Blindness in Children Aged under 5: Systematic Review and Meta-Analysis. BMJ 2011, 343, d5094. [Google Scholar] [CrossRef]
- Ullah, I.; Lang, M. Key Players in the Regulation of Iron Homeostasis at the Host-Pathogen Interface. Front. Immunol. 2023, 14, 1279826. [Google Scholar] [CrossRef]
- Hussein, E.M.; Zaki, W.M.; Ahmed, S.A.; Almatary, A.M.; Nemr, N.I.; Hussein, A.M. Predominance of Giardia lamblia Assemblage A among Iron Deficiency Anaemic Pre-School Egyptian Children. Parasitol. Res. 2016, 115, 1537–1545. [Google Scholar] [CrossRef]
- Qin, Y.; Shi, W.; Zhuang, J.; Liu, Y.; Tang, L.; Bu, J.; Sun, J.; Bei, F. Variations in Melatonin Levels in Preterm and Term Human Breast Milk during the First Month after Delivery. Sci. Rep. 2019, 9, 17984. [Google Scholar] [CrossRef] [PubMed]
- Häusler, S.; Lanzinger, E.; Sams, E.; Fazelnia, C.; Allmer, K.; Binder, C.; Reiter, R.J.; Felder, T.K. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024, 16, 1422. [Google Scholar] [CrossRef] [PubMed]
- Rosen-Carole, C.B.; Greenman, S.; Wang, H.; Sonawane, S.; Misra, R.; O’Connor, T.; Järvinen, K.; D’Angio, C.; Young, B.E. Association between Maternal Stress and Premature Milk Cortisol, Milk IgA, and Infant Health: A Cohort Study. Front. Nutr. 2024, 11, 1270523. [Google Scholar] [CrossRef] [PubMed]
- Groer, M.; Davis, M.; Steele, K. Associations between Human Milk SIgA and Maternal Immune, Infectious, Endocrine, and Stress Variables. J. Hum. Lact. 2004, 20, 153–158. [Google Scholar] [CrossRef]
- Moirasgenti, M.; Doulougeri, K.; Panagopoulou, E.; Theodoridis, T. Psychological Stress Reduces the Immunological Benefits of Breast Milk. Stress Heal 2019, 35, 681–685. [Google Scholar] [CrossRef]
- Tartibian, B.; Massart, A. The Effect of Moderate Intensity Aerobic Exercise on Breast Milk IgA Concentrations. New Approaches Exerc. Physiol. 2019, 1, 21–36. [Google Scholar] [CrossRef]
- Lovelady, C.A.; Hunter, C.P.; Geigerman, C. Effect of Exercise on Immunologic Factors in Breast Milk. Pediatrics 2003, 111, e148–e152. [Google Scholar] [CrossRef] [PubMed]
- Koivula, T.; Lempiäinen, S.; Rinne, P.; Hollmén, M.; Sundberg, C.J.; Rundqvist, H.; Minn, H.; Heinonen, I. Acute Exercise Mobilizes CD8+ Cytotoxic T Cells and NK Cells in Lymphoma Patients. Front. Physiol. 2023, 13, 1078512. [Google Scholar] [CrossRef]
- Koivula, T.; Lempiäinen, S.; Neuvonen, J.; Norha, J.; Hollmén, M.; Sundberg, C.J.; Rundqvist, H.; Minn, H.; Rinne, P.; Heinonen, I. The Effect of Exercise and Disease Status on Mobilization of Anti-Tumorigenic and pro-Tumorigenic Immune Cells in Women with Breast Cancer. Front. Immunol. 2024, 15, 1394420. [Google Scholar] [CrossRef] [PubMed]
Parasite | Type of Evidence | Presence and Specificity of Antibodies | Observed Effect | Ref. |
---|---|---|---|---|
Entamoeba histolytica | Mother–infant observational study | sIgA in milk and saliva | Despite 67% of mothers being infected, only 2 infant samples were positive; suggesting potential protection via breastfeeding (no statistical analysis was reported) | [59] |
Entamoeba histolytica | Direct analysis of breast milk | CRD-specific sIgA (Gal/GalNAc lectin) | Higher breast milk sIgA levels were associated with reduced risk of infection and 64% lower risk of amebic diarrhea (HR = 0.356; 95% CI: 0.149–0.849; p = 0.020) | [60] |
Giardia lamblia | Direct analysis of breast milk | sIgA specific to recombinant cyst wall protein | No association between breast milk sIgA levels and infection or diarrhea (no statistical analysis was reported) | [60] |
Entamoeba histolytica | Comparison: breast-fed vs. non-breast-fed | Serum IgE | Lower infection rate (p < 0.05) and lower IgE (p < 0.01) in infected breast-fed infants compared to infected non-breast-fed | [21] |
Giardia lamblia | Comparison: breast-fed vs. non-breast-fed | Serum IgE | Lower infection rate (p < 0.05) and lower IgE (p < 0.01) in infected breast-fed infants compared to infected non-breast-fed) | [21] |
Nutrient Deficiency | Presence and Specificity of Antibodies | Immunological/Clinical Consequence |
---|---|---|
Protein-energy malnutrition | ↓ LF, ↓ sIgA | Reduced antimicrobial and gut-protective activity; associated with increased risk and severity of diarrheal illness/persistence [111,112] |
Zinc deficiency | ↓ mucin synthesis, ↓ sIgA | Weakened mucosal barrier; increased susceptibility to giardiasis and diarrheal disease; zinc supplementation can reduce Giardia-associated diarrhea in some settings [113,114,115] |
Vitamin A deficiency | ↓ sIgA, compromised mucosal immunity | Altered epithelial integrity and immune regulation; higher diarrheal morbidity reported in several cohorts; VAS reduces diarrhea incidence in meta-analyses (heterogeneous effects across studies) [116,117] |
Iron deficiency | ↓ LF functionality | Lowered pathogen iron sequestration and impaired mucosal defenses; giardiasis is associated with iron deficiency; quantitative risk increase for giardiasis in iron-deficient infants is not well established [118,119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, J.; Długosz, A.; Wróblewski, M.; Nuszkiewicz, J.; Sutkowy, P.; Woźniak, A. Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants. Curr. Issues Mol. Biol. 2025, 47, 674. https://doi.org/10.3390/cimb47080674
Wróblewska J, Długosz A, Wróblewski M, Nuszkiewicz J, Sutkowy P, Woźniak A. Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants. Current Issues in Molecular Biology. 2025; 47(8):674. https://doi.org/10.3390/cimb47080674
Chicago/Turabian StyleWróblewska, Joanna, Anna Długosz, Marcin Wróblewski, Jarosław Nuszkiewicz, Paweł Sutkowy, and Alina Woźniak. 2025. "Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants" Current Issues in Molecular Biology 47, no. 8: 674. https://doi.org/10.3390/cimb47080674
APA StyleWróblewska, J., Długosz, A., Wróblewski, M., Nuszkiewicz, J., Sutkowy, P., & Woźniak, A. (2025). Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants. Current Issues in Molecular Biology, 47(8), 674. https://doi.org/10.3390/cimb47080674