Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Reagent
2.2. Flow Cytometry Analysis
2.3. Nuclear Protein Isolation
2.4. Western Blot Analysis
2.5. Statistical Analysis
3. Results
3.1. LA Inhibits Cancer Stemness Marker CD44 in Gastric Cancer Cells
3.2. LA Inhibits Protein Expression Linked to Gastric Cancer Stemness Through the Nrf2-Mediated Pathway
3.3. LA Regulates Nrf2 Expression Through the Akt Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSC | Cancer stem cell |
HO-1 | heme oxygenase-1 |
LA | linolenic acid |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
SOX2 | SRY-box transcription factor 2 |
References
- Ilic, M.; Ilic, I. Epidemiology of stomach cancer. World J. Gastroenterol. 2022, 28, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Zhao, H.P.; Yu, Y.; Wang, J.H.; Guo, L.; Liu, J.Y.; Pu, J.; Lv, J. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J. Gastroenterol. 2023, 29, 2452–2468. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.J.G.; Perez-Silva, L.; Macias, R.I.R.; Asensio, M.; Peleteiro-Vigil, A.; Sanchez-Martin, A.; Cives-Losada, C.; Sanchon-Sanchez, P.; Sanchez De Blas, B.; Herraez, E.; et al. Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma. Cancers 2020, 12, 2116. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Tan, X.Y.; Ma, L.X.; Li, H.H.; Zhang, S.H.; Zeng, C.M.; Huang, L.N.; Xiong, J.X.; Fu, L. Targeting LGSN restores sensitivity to chem-otherapy in gastric cancer stem cells by triggering pyroptosis. Cell Death Dis. 2023, 14, 545. [Google Scholar] [CrossRef]
- Lee, C.H.; Tsai, H.Y.; Chen, C.L.; Chen, J.L.; Lu, C.C.; Fang, Y.P.; Wu, D.C.; Huang, Y.B.; Lin, M.W. Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Down-regulation. Biomedicines 2022, 10, 1350. [Google Scholar]
- Wahab, A.; Siddique, H.R. An update understanding of stemness and chemoresistance of prostate cancer. Expert Rev. Anticancer Ther. 2025, 25, 215–228. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, S.; Chen, R.; Xu, S.; Yu, G.; Ji, L. Interplay between Nrf2 and ROS in regulating epithelial-mesenchymal transition: Implications for cancer metastasis and therapy. Mol. Biol. Rep. 2025, 52, 628. [Google Scholar] [CrossRef]
- Kahroba, H.; Shirmohamadi, M.; Hejazi, M.S.; Samadi, N. The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci. 2019, 239, 116986. [Google Scholar] [CrossRef]
- Yoshida, G.J.; Saya, H. Molecular pathology underlying the robustness of cancer stem cells. Regen. Ther. 2021, 17, 38–50. [Google Scholar] [CrossRef]
- Alakuş, H.; Kaya, M.; Özer, H.; Eğilmez, H.R.; Karadayı, K. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a potential prognostic factor in patients with gastric adenocarcinoma. Arab. J. Gastroenterol. 2023, 24, 5–10. [Google Scholar] [CrossRef]
- Tang, L.; He, D.; Su, B. Nrf2: A critical participant in regulation of apoptosis, ferroptosis, and autophagy in gastric cancer. Acta Histochem. 2024, 126, 152203. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ling, R.; Lai, J.; Liu, Z.; Wang, Z.; Yang, H.; Kong, Y. CD44v6-mediated regulation of gastric cancer stem cells: A potential therapeutic target. Clin. Exp. Med. 2025, 25, 80. [Google Scholar] [CrossRef] [PubMed]
- Sihombing, A.M.; Murata, S.; Shimoji, M.; Miyake, T.; Takebayashi, K.; Kodama, H.; Tokuda, A.; Kojima, M.; Ueki, T.; Kitamura, N.; et al. CD44-positive Cancer Stem-like Cells as a Potential Source of Peritoneal Metastasis After Surgery. Anticancer Res. 2023, 43, 2491–2500. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Chen, Y.; Li, J.; Wang, J.; Shen, K.; Zhao, A.; Jin, H.; Zhang, G.; Xi, Q.; Xia, S.; et al. B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin. Med. J. (Engl.) 2023, 136, 1977–1989. [Google Scholar] [CrossRef]
- Hermansyah, D.; Syarifah, S.; Muhar, A.M.; Putra, A. Unveiling Paclitaxel-Induced Mesenchymal Stem Cells: Orchestrating Nrf2 Modulation and Apoptosis in CD44+/CD24- Cancer Stem Cells. Breast Cancer (Dove. Med. Press). 2024, 16, 319–328. [Google Scholar] [CrossRef]
- Feijó, P.M.; Rodrigues, V.D.; Viana, M.S.; Dos Santos, M.P.; Abdelhay, E.; Viola, J.P.; de Pinho, N.B.; Martucci, R.B. Effects of ω-3 supple-mentation on the nutritional status, immune, and inflammatory profiles of gastric cancer patients: A randomized controlled trial. Nutrition 2019, 61, 125–131. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Li, K.; Zhou, Y.; Hu, Y.; Chen, X.; Liang, S.; Jiang, L. Effects of EN combined with PN enriched with n-3 polyunsaturated fatty acids on immune related indicators and early rehabilitation of patients with gastric cancer: A randomized controlled trial. Clin. Nutr. 2022, 41, 1163–1170. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C. Effect of ω-3 polyunsaturated fatty acid-supplemented parenteral nutrition on inflammatory and immune function in postoperative patients with gastrointestinal malignancy: A meta-analysis of randomized control trials in China. Medicine 2018, 97, e0472. [Google Scholar] [CrossRef]
- Noreen, S.; Hashmi, B.; Aja, P.M.; Atoki, A.V. Health benefits of fish and fish by-products-a nutritional and functional perspective. Front Nutr. 2025, 12, 1564315. [Google Scholar] [CrossRef]
- Takić, M.; Ranković, S.; Girek, Z.; Pavlović, S.; Jovanović, P.; Jovanović, V.; Šarac, I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 4909. [Google Scholar] [CrossRef]
- Kawano, Y.; Iwama, E.; Tsuchihashi, K.; Shibahara, D.; Harada, T.; Tanaka, K.; Nagano, O.; Saya, H.; Nakanishi, Y.; Okamoto, I. CD44 variant-dependent regulation of redox balance in EGFR mutation-positive non-small cell lung cancer: A target for treatment. Lung Cancer 2017, 113, 72–78. [Google Scholar] [CrossRef]
- Nagano, O.; Okazaki, S.; Saya, H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 2013, 32, 5191–5198. [Google Scholar] [CrossRef]
- Mirzaei, S.; Paskeh, M.D.A.; Entezari, M.; Mirmazloomi, S.R.; Hassanpoor, A.; Aboutalebi, M.; Rezaei, S.; Hejazi, E.S.; Kakavand, A.; Heidari, H.; et al. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed. Pharmacother. 2022, 156, 113860. [Google Scholar] [CrossRef]
- Karami Fath, M.; Ebrahimi, M.; Nourbakhsh, E.; Zia Hazara, A.; Mirzaei, A.; Shafieyari, S.; Salehi, A.; Hoseinzadeh, M.; Payandeh, Z.; Barati, G. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol. Res. Pract. 2022, 237, 154010. [Google Scholar] [CrossRef] [PubMed]
- Zavros, Y. Initiation and Maintenance of Gastric Cancer: A Focus on CD44 Variant Isoforms and Cancer Stem Cells. Cell Mol. Gastroenterol. Hepatol. 2017, 4, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Kato, C.; Mori, H.; Matsuzaki, J.; Kameyama, K.; Saya, H.; Hatakeyama, M.; Suematsu, M.; Suzuki, H. Cancer Stem-Cell Marker CD44v9-Positive Cells Arise From Helicobacter pylori-Infected CAPZA1-Overexpressing Cells. Cell Mol. Gastroenterol. Hepatol. 2019, 8, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Chu, C.; Cheung, W.L.; Ng, L.; Lam, S.; Chow, A.; Lau, T.; Chen, M.; Li, Y.; et al. Identification of CD44+ cancer stem cells in human gastric cancer. Hepatogastroenterology 2013, 60, 949–954. [Google Scholar]
- Bitaraf, S.M.; Mahmoudian, R.A.; Abbaszadegan, M.; Mohseni Meybodi, A.; Taghehchian, N.; Mansouri, A.; Forghanifard, M.M.; Memar, B.; Gholamin, M. Association of Two CD44 Polymorphisms with Clinical Outcomes of Gastric Cancer Patients. Asian Pac. J. Cancer Prev. 2018, 19, 1313–1318. [Google Scholar] [CrossRef]
- Brungs, D.; Lochhead, A.; Iyer, A.; Illemann, M.; Colligan, P.; Hirst, N.G.; Splitt, A.; Liauw, W.; Vine, K.L.; Pathmanandavel, S.; et al. Expression of cancer stem cell markers is prognostic in metastatic gastroesophageal adenocarcinoma. Pathology 2019, 51, 474–480. [Google Scholar] [CrossRef]
- Razmi, M.; Ghods, R.; Vafaei, S.; Sahlolbei, M.; Saeednejad Zanjani, L.; Madjd, Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: A systematic review and meta-analysis. Cancer Cell Int. 2021, 21, 139. [Google Scholar] [CrossRef]
- Pereira, C.; Park, J.H.; Campelos, S.; Gullo, I.; Lemos, C.; Solorzano, L.; Martins, D.; Gonçalves, G.; Leitão, D.; Lee, H.J.; et al. Comparison of East-Asia and West-Europe cohorts explains disparities in survival outcomes and highlights predictive biomarkers of early gastric cancer aggressiveness. Int. J. Cancer 2022, 150, 868–880. [Google Scholar] [CrossRef]
- Li, L.; Gao, J.; Li, J.; Wang, J. MiR-711 regulates gastric cancer progression by targeting CD44. Cancer Biomark. 2022, 35, 71–81. [Google Scholar] [CrossRef]
- Ando, T.; Yamasaki, J.; Saya, H.; Nagano, O. CD44: A key regulator of iron metabolism, redox balance, and therapeutic resistance in cancer stem cells. Stem Cells 2025, 43, sxaf024. [Google Scholar] [CrossRef]
- Huang, W.; Wen, F.; Gu, P.; Liu, J.; Xia, Y.; Li, Y.; Zhou, J.; Song, S.; Ruan, S.; Gu, S.; et al. The inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du decoction on the drug resistance of gastric cancer stem cells based on ABC transporters. Chin. Med. 2022, 17, 93. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Xiao, L.; Dong, P.; Ma, Y.; Zhou, Y.; Yang, J.; Bian, B.; Xie, G.; Chen, L.; et al. Notum enhances gastric cancer stem-like cell properties through upregulation of Sox2 by PI3K/AKT signaling pathway. Cell Oncol. 2024, 47, 463–480. [Google Scholar] [CrossRef]
- Tsai, K.J.; Tsai, H.Y.; Tsai, C.C.; Chen, T.Y.; Hsieh, T.H.; Chen, C.L.; Mbuyisa, L.; Huang, Y.B.; Lin, M.W. Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway. Molecules 2021, 26, 6452. [Google Scholar] [CrossRef]
- Srinivasan, D.; Senbanjo, L.; Majumdar, S.; Franklin, R.B.; Chellaiah, M.A. Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2. J. Cell Biochem. 2019, 120, 2413–2428. [Google Scholar] [CrossRef]
- Kim, D.H.; Yoon, H.J.; Cha, Y.N.; Surh, Y.J. Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic. Res. 2018, 52, 1336–1347. [Google Scholar] [CrossRef]
- Ríos-Arrabal, S.; Puentes-Pardo, J.D.; Moreno-SanJuan, S.; Szuba, Á.; Casado, J.; García-Costela, M.; Escudero-Feliu, J.; Verbeni, M.; Cano, C.; González-Puga, C.; et al. Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53. J. Pers. Med. 2021, 11, 509. [Google Scholar] [CrossRef]
- Dai, J.; Shen, J.; Pan, W.; Shen, S.; Das, U.N. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis. 2013, 12, 71. [Google Scholar] [CrossRef]
- Tamarindo, G.H.; Ribeiro, C.F.; Silva, A.D.T.; Castro, A.; Caruso, Í.P.; Souza, F.P.; Taboga, S.R.; Loda, M.; Góes, R.M. The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells. Cancer Metab. 2024, 12, 24. [Google Scholar] [CrossRef]
- Ivanova, D.; Semkova, S.; Yaneva, Z.; Nikolova, B.; Zhelev, Z.; Bakalova, R.; Aoki, I. Docosahexaenoic Acid Potentiates the Anticancer Effect of the Menadione/Ascorbate Redox Couple by Increasing Mitochondrial Superoxide and Accelerating ATP Depletion. Anticancer Res. 2023, 43, 1213–1220. [Google Scholar] [CrossRef]
- Ulhe, A.; Raina, P.; Chaudhary, A.; Kaul-Ghanekar, R. Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines. Epigenetics 2025, 20, 2451551. [Google Scholar] [CrossRef]
- Nguyen, H.T.M.; Gunathilake, M.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. A higher dietary alpha-linolenic acid intake is associated with lower colorectal cancer risk based on MUC4 rs2246901 variant among Korean adults. Nutr. Res. 2024, 131, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Nolasco, C.; Pérez-Hernández, E.; Garza, S.; Park, H.G.; Brenna, J.T.; Castañeda-Hernández, G.; Reyes-López, C.A.S.; Pérez-Hernández, N.; Chávez-Piña, A.E. Antioxidative Action of Alpha-Linolenic Acid during Its Gastroprotective Effect in an Indomethacin-Induced Gastric Injury Model. Prev. Nutr. Food Sci. 2025, 30, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.S.; Zhou, S.; Nie, W.; Wang, L.; Lv, H.; Yuan, J. Phytogenic Antioxidants Prolong n-3 Fatty Acid-Enriched Eggs’ Shelf Life by Activating the Nrf-2 Pathway through Phosphorylation of MAPK. Foods 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Manni, A.; Xu, H.; Washington, S.; Aliaga, C.; Cooper, T.; Richie, J.P., Jr.; Bruggeman, R.; Prokopczyk, B.; Calcagnotto, A.; Trushin, N.; et al. The impact of fish oil on the chemopreventive efficacy of tamoxifen against development of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Cancer Prev. Res. 2010, 3, 322–330. [Google Scholar] [CrossRef]
- Fadallah, M.; Zahran, M.H.; El-Assmy, A.M.; Barakat, N.M.; Khater, S.; Awadalla, A.; Ahmed, A.E.; Ibrahiem, E.L.H.I.; Shokeir, A.A. Omega-3 polyunsaturated fatty acids: A modified approach for chemo-prevention of bladder cancer in a rat model and molecular studies of antineoplastic mechanisms. Mol. Biol. Rep. 2022, 49, 6357–6365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-L.; Ma, Y.-S.; Tsai, K.-J.; Tsai, H.-Y.; Yeh, L.-J.; Tsai, H.-W.; Yen, J.; Tsai, H.-W.; Lin, M.-W. Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells. Curr. Issues Mol. Biol. 2025, 47, 646. https://doi.org/10.3390/cimb47080646
Chen J-L, Ma Y-S, Tsai K-J, Tsai H-Y, Yeh L-J, Tsai H-W, Yen J, Tsai H-W, Lin M-W. Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells. Current Issues in Molecular Biology. 2025; 47(8):646. https://doi.org/10.3390/cimb47080646
Chicago/Turabian StyleChen, Jen-Lung, Yi-Shih Ma, Kuen-Jang Tsai, Hsin-Yi Tsai, Li-Jen Yeh, Hung-Wen Tsai, Judy Yen, Hong-Wen Tsai, and Ming-Wei Lin. 2025. "Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells" Current Issues in Molecular Biology 47, no. 8: 646. https://doi.org/10.3390/cimb47080646
APA StyleChen, J.-L., Ma, Y.-S., Tsai, K.-J., Tsai, H.-Y., Yeh, L.-J., Tsai, H.-W., Yen, J., Tsai, H.-W., & Lin, M.-W. (2025). Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells. Current Issues in Molecular Biology, 47(8), 646. https://doi.org/10.3390/cimb47080646