Role of Anti-Inflammatory and Antioxidant Properties of Natural Products in Curing Cardiovascular Diseases
Abstract
1. Introduction
2. Hypoxic Conditions and Cardiovascular Diseases
3. Role of Hypoxia and Hypoxia-Inducible Factors in Cardiovascular Disease
3.1. Hypoxia-Inducible Factor (HIF) Pathway
3.2. Hypoxia-Induced Oxidative Stress and Inflammation in Cardiovascular Disease
3.3. Fibrosis and Cardiac Remodelling
4. Anti-Hypoxic Properties of Natural Plant Compounds in Protecting Cardiovascular Complications
4.1. Flavonoids
4.2. Alkaloids
4.3. Saponins
4.4. Polysaccharides
5. Application of Natural Compounds with Antioxidant and Anti-Inflammatory Property in Cardiovascular Disease
5.1. Phytosterols
Sitostenol
5.2. Polyphenols
Luteolin
5.3. Fatty Acid
Linolenic Acid
5.4. Carotenoids
5.4.1. Astaxanthin
5.4.2. Crocin
5.5. Organosulfur Compounds
Allicin
6. Application of the Role of Nutritional Compounds in Diet Against Cardiovascular Diseases
7. Multitherapeutic Approach for Addressing CVDs
8. Future Perspective
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshaikh, M.K.; Filippidis, F.T.; Baldove, J.P.; Majeed, A.; Rawaf, S. Women in Saudi Arabia and the prevalence of cardiovascular risk factors: A systematic review. J. Environ. Public Health 2016, 2016, e7479357. [Google Scholar] [CrossRef]
- Adam, T.; Sharif, A.I.A.; Alamri, T.S.M.; Al-Nashri, R.A.O.; Alluwimi, A.I.M.; Samkri, A.Y.; Alharthi, M.A.; Moafa, A.Y.; Alsaadi, N.A.; Alraimi, A.M.S.; et al. The State of cardiac rehabilitation in Saudi Arabia: Barriers, facilitators, and policy implications. Cureus 2023, 15, e48279. [Google Scholar] [CrossRef]
- Wang, L.; Lei, J.; Wang, R.; Li, K. Non-traditional risk factors as contributors to cardiovascular disease. Rev. Cardiovasc. Med. 2023, 24, 134. [Google Scholar] [CrossRef]
- Magenta, A.; Greco, S.; Gaetano, C.; Martelli, F. Oxidative stress and microRNAs in vascular diseases. Int. J. Mol. Sci. 2013, 14, 17319–17346. [Google Scholar] [CrossRef]
- Del Río, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837. [Google Scholar] [CrossRef]
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Wang, X.; Hu, J.; Lian, X.; Zhu, T.; Zhang, H.; Gu, N.; Li, J. PTPRO promotes oxidized low-density lipoprotein induced oxidative stress and cell apoptosis through toll-like receptor 4/nuclear factor κB pathway. Cell. Physiol. Biochem. 2017, 42, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.S.; Li, H.K.; Zhang, W.D. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin. J. Nat. Med. 2019, 17, 321–330. [Google Scholar] [CrossRef]
- Kim, G.H.; Ryan, J.J.; Archer, S.L. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid. Redox Signal 2013, 18, 1920–1936. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, S.P. Reactive oxygen molecules, oxidant injury and renal disease. Pediatr. Nephrol. 1991, 5, 733–742. [Google Scholar] [CrossRef]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef]
- Lee, S.K.; Arunkumar, S.; Sirajudeen, K.N.; Singh, H.J. Glutathione system in young spontaneously hypertensive rats. J. Physiol. Biochem. 2010, 66, 321–327. [Google Scholar] [CrossRef] [PubMed]
- de Cavanagh, E.M.; Ferder, L.F.; Ferder, M.D.; Stella, I.Y.; Toblli, J.E.; Inserra, F. Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: Effects of losartan and atenolol. Am. J. Hypertens. 2010, 23, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xiang, W.; Potts, J.; Floyd, M.; Sharan, C.; Yang, H.; Ross, J.; Nyanda, A.M.; Guo, Z. Reduction in extracellular superoxide dismutase activity in African-American patients with hypertension. Free Radic. Biol. Med. 2006, 41, 1384–1391. [Google Scholar] [CrossRef]
- Kashyap, M.K.; Yadav, V.; Sherawat, B.S.; Jain, S.; Kumari, S.; Khullar, M.; Sharma, P.C.; Nath, R. Different antioxidants status, total antioxidant power and free radicals in essential hypertension. Mol. Cell. Biochem. 2005, 277, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Kedziora-Kornatowska, K.; Czuczejko, J.; Pawluk, H.; Kornatowski, T.; Motyl, J.; Szadujkis Szadurski, L.; Szewczyk-Golec, K.; Kedziora, J. The markers of oxidative stress and activity of the antioxidant system in the blood of elderly patients with essential arterial hypertension. Cell Mol. Biol. Lett. 2004, 9, 635–641. [Google Scholar]
- Kidd, P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern. Med. Rev. 2011, 16, 355–364. [Google Scholar]
- Kishimoto, Y.; Tani, M.; Uto-Kondo, H.; Iizuka, M.; Saita, E.; Sone, H.; Kurata, H.; Kondo, K. Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. Eur. J. Nutr. 2010, 49, 119–126. [Google Scholar] [CrossRef]
- Cao, H.; Xu, H.; Zhu, G.; Liu, S. Isoquercetin ameliorated hypoxia/reoxygenation-induced H9C2 cardiomyocyte apo ptosis via a mitochondrial-dependent pathway. Biomed. Pharmacother. 2017, 95, 938–943. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Mohammed, H.M.; Khadrawy, S.M.; Galaly, S.R. Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signalling, and amelioration of oxidative stress and inflammation. Chem. Interact. 2017, 277, 146–158. [Google Scholar] [CrossRef]
- Visioli, F.; Artaria, C. Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 2017, 8, 39–63. [Google Scholar] [CrossRef]
- Libby, P. Vascular biology of atherosclerosis: Overview and state of art. Am. J. Cardiol. 2003, 91, 3–6. [Google Scholar] [CrossRef]
- Chang, H.L.; Jong-Hoon, K. A review on the medicinal potentials of ginseng and ginsenoids on cardiovascular diseases. J. Ginseng Res. 2014, 38, 161–166. [Google Scholar]
- Kim, J.-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018, 42, 264–269. [Google Scholar] [CrossRef]
- Singh, S.; Majumdar, D.K. Evaluation of anti-inflammatory activity of fatty acids of Ocimum sanctum fixed oil. Indian J. Exp. Biol. 1997, 35, 380–383. [Google Scholar] [PubMed]
- Xing, L.; Jiang, M.; Dong, L.; Gao, J.; Hou, Y.; Bai, G.; Luo, G. Cardioprotective effects of the YiQi FuMai injection and isolated compounds on attenuating chronic heart failure via NF-κB in activation and cytokine suppression. J. Ethnopharmocol. 2013, 148, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Mo, C.; Wang, L.; Zhang, J.; Numazawa, S.; Tang, H.; Tang, X.; Han, X.; Li, J.; Yang, M.; Wang, Z.; et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal. 2014, 20, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.W.; Hsu, K.C.; Lee, J.W.; Ham, M.; Huh, J.Y.; Shin, H.J.; Kim, W.S.; Kim, J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E955–E964. [Google Scholar] [CrossRef]
- Lau, A.J.; Yang, G.; Rajaraman, G.; Baucom, C.C.; Chang, T.K. Evaluation of Ginkgo biloba extract as an activator of human glucocorticoid receptor. J. Ethnopharmacol. 2013, 145, 670–675. [Google Scholar] [CrossRef]
- Zhang, R.; Han, D.; Li, Z.; Shen, C.; Zhang, Y.; Li, J.; Yan, G.; Li, S.; Hu, B.; Li, J.; et al. Ginkgolide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front. Pharmacol. 2018, 9, 109, Correction in Front. Pharmacol. 2025, 15, 1492520. [Google Scholar] [CrossRef]
- Choi, E.S.; Yoon, J.J.; Han, B.H.; Jeong, D.H.; Lee, Y.J.; Kang, D.G.; Lee, H.S. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine 2018, 38, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Y.; Xu, D. Apigenin protects myocardium by inhibiting the TGF-β1-mediated Smad signaling transduction pathway in acute myocardial infarcted rats. J. Funct. Foods 2017, 30, 48–55. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Liu, Z.; Ma, Z.; An, D.; Xu, D. Apigenin attenuates myocardial infarction-induced cardiomyocyte injury by modulating Parkin-mediated mitochondrial autophagy. J. Biosci. 2020, 45, 1–9. [Google Scholar] [CrossRef]
- Gao, R.-F.; Li, X.; Xiang, H.-Y.; Yang, H.; Lv, C.-Y.; Sun, X.-L.; Chen, H.-Z.; Gao, Y.; Yang, J.-S.; Luo, W.; et al. The covalent NLRP3-inflammasome inhibitor oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int. Immunopharmacol. 2021, 90, 107133. [Google Scholar] [CrossRef]
- Arnab, S.; Bhattacharjee, S.; Mandal, D.P. Induction of apoptosis by Eugenol and Capsaicin in Human gastric cancer AGS Cells-Elucidating the Role of p53. Asian Pac. J. Cancer Prev. 2015, 16, 6753–6759. [Google Scholar]
- Mukherjee, S.; Chopra, H.; Goyal, R.; Jin, S.; Dong, Z.; Das, T.; Bhattacharya, T. Therapeutic effect of targeted antioxidant natural products. Nanoscale Res. Lett. 2024, 19, 144. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 2014, 76, 39–56. [Google Scholar] [CrossRef]
- Javaheri, S.; Shukla, R.; Zeigler, H.; Wexler, L. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J. Am. Coll. Cardiol. 2007, 49, 2028–2034. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef]
- Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Wolf, P.L.; Escudero, R.; Deutsch, R.; Jamieson, S.W.; Thistlethwaite, P.A. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med. 2000, 342, 626–633. [Google Scholar] [CrossRef]
- Sluimer, J.C.; Daemen, M.J. Novel concepts in atherogenesis: Angiogenesis and hypoxia in atherosclerosis. J. Pathol. J. Pathol. Soc. Great Br. Irel. 2009, 218, 7–29. [Google Scholar] [CrossRef]
- Moulton, K.S. Angiogenesis in atherosclerosis: Gathering evidence beyond speculation. Curr. Opin. Lipidol. 2006, 17, 548–555. [Google Scholar] [CrossRef]
- Tabas, I.; Bornfeldt, K.E. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 2020, 126, 1209–1227. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408. [Google Scholar] [CrossRef]
- Kaelin, W.G., Jr.; Ratcliffe, P.J. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Schofield, C.J.; Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Jain, R.K.; Carmeliet, P. SnapShot: Tumour angiogenesis. Cell 2012, 149, 1408. [Google Scholar] [CrossRef]
- Epstein, A.C.; Gleadle, J.M.; McNeill, L.A.; Hewitson, K.S.; O’Rourke, J.; Mole, D.R.; Mukherji, M.; Metzen, E.; Wilson, M.I.; Dhanda, A.; et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001, 107, 43–54. [Google Scholar] [CrossRef]
- Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G., Jr. HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 2001, 292, 464–468. [Google Scholar] [CrossRef]
- Adluri, R.S.; Thirunavukkarasu, M.; Dunna, N.R.; Zhan, L.; Oriowo, B.; Takeda, K.; Sanchez, J.A.; Otani, H.; Maulik, G.; Fong, G.-H.; et al. Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1−/−) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid. Redox Signal. 2011, 15, 1789–1797. [Google Scholar] [CrossRef]
- Oriowo, B.; Thirunavukkarasu, M.; Selvaraju, V.; Adluri, R.S.; Zhan, L.; Takeda, K.; Fong, G.-H.; Sanchez, J.A.; Maulik, N. Targeted gene deletion of prolyl hydroxylase domain protein 3 triggers angiogenesis and preserves cardiac function by stabilizing hypoxia inducible factor 1 alpha following myocardial infarction. Curr. Pharm. Des. 2014, 20, 1305–1310. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Pradeep, S.R.; Oriowo, B.; Lim, S.T.; Maloney, M.; Ahmed, S.; Taylor, N.; Russell, D.M.; Socrates, P.; Batko, E.; et al. Stabilization of Transcription Factor, HIF-1α by Prolyl hydroxylase 1 Knockout Reduces Cardiac Injury After Myocardial Infarction in Mice. Cells 2025, 14, 423. [Google Scholar] [CrossRef]
- Pradeep, S.R.; Lim, S.T.; Thirunavukkarasu, M.; Joshi, M.; Cernuda, B.; Palesty, J.A.; Maulik, N. Protective effect of cardiomyocyte-specific prolyl-4-hydroxylase 2 inhibition on ischemic injury in a mouse MI model. J. Am. Coll. Surg. 2022, 235, 240–254. [Google Scholar] [CrossRef]
- Zhou, H.; Toan, S. Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury. Biomolecules 2020, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Kalogeris, T.; Bao, Y.; Korthuis, R.J. Mitochondrial reactive oxygen species: A double-edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014, 2, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- Janaszak-Jasiecka, A.; Siekierzycka, A.; Płoska, A.; Dobrucki, I.T.; Kalinowski, L. Endothelial dysfunction driven by hypoxia—The influence of oxygen deficiency on NO bioavailability. Biomolecules 2021, 11, 982. [Google Scholar] [CrossRef]
- Hoek, T.L.V.; Becker, L.B.; Shao, Z.H.; Li, C.Q.; Schumacker, P.T. Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ. Res. 2000, 86, 541–548. [Google Scholar] [CrossRef]
- Mallet, R.T.; Manukhina, E.B.; Ruelas, S.S.; Caffrey, J.L.; Downey, H.F. Cardio protection by intermittent hypoxia conditioning: Evidence, mechanisms, and therapeutic potential. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H216–H232. [Google Scholar] [CrossRef] [PubMed]
- González-Candia, A.; Candia, A.A.; Paz, A.; Mobarec, F.; Urbina-Varela, R.; del Campo, A.; Herrera, E.A.; Castillo, R.L. Cardioprotective antioxidant and anti-inflammatory mechanisms induced by intermittent hypobaric hypoxia. Antioxidants 2022, 11, 1043. [Google Scholar] [CrossRef]
- Dobaczewski, M.; Chen, W.; Frangogiannis, N.G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell. Cardiol. 2011, 51, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chu, M.; Hong, J.; Shang, J.; Xu, D. Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: A role for caveolae and caveolin-1/PTEN mediated pathway. J. Thorac. Dis. 2014, 6, 1458. [Google Scholar] [PubMed]
- Althurwi, H.N.; Abdel-Rahman, R.F.; Soliman, G.A.; Ogaly, H.A.; Alkholifi, F.K.; Abd-Elsalam, R.M.; Alqasoumi, S.I.; Abdel-Kader, M.S. Protective Effect of Beta-Carotene against Myeloperoxidase-Mediated Oxidative Stress and Inflammation in Rat Ischemic Brain Injury. Antioxidants 2022, 11, 2344. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, T.-K.; Kim, D.W.; Ahn, J.H.; Lee, C.-H.; Kim, J.-D.; Shin, M.C.; Cho, J.H.; Lee, J.-C.; Won, M.-H.; et al. Astaxanthin Confers a Significant Attenuation of Hippocampal Neuronal Loss Induced by Severe Ischemia-Reperfusion Injury in Gerbils by Reducing Oxidative Stress. Mar. Drugs 2022, 20, 267. [Google Scholar] [CrossRef]
- Jaussaud, J.; Biais, M.; Calderon, J.; Chevaleyre, J.; Duchez, P.; Ivanovic, Z.; Couffinhal, T.; Barandon, L. Hypoxia-preconditioned mesenchymal stromal cells improve cardiac function in a swine model of chronic myocardial ischaemia. Eur. J. Cardio-Thorac. Surg. 2013, 43, 1050–1057. [Google Scholar] [CrossRef]
- Yan, F.; Yao, Y.; Chen, L.; Li, Y.; Sheng, Z.; Ma, G. Hypoxic preconditioning improves survival of cardiac progenitor cells: Role of stromal cell derived factor-1α–CXCR4 axis. PLoS ONE 2012, 7, e37948. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, C.; Shen, M.; Yang, M.; Jin, Z.; Ding, L.; Jiang, W.; Yang, J.; Chen, H.; Cao, F.; et al. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res. Ther. 2017, 8, 89. [Google Scholar] [CrossRef]
- Paw, M.; Kusiak, A.A.; Nit, K.; Litewka, J.J.; Piejko, M.; Wnuk, D.; Sarna, M.; Fic, K.; Stopa, K.B.; Hammad, R.; et al. Hypoxia enhances anti-fibrotic properties of extracellular vesicles derived from hiPSCs via the miR302b-3p/TGFβ/SMAD2 axis. BMC Med. 2023, 21, 412. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tian, Y.; Liu, N.; Chen, Y.; Chen, X.; Yuan, G.; Chang, A.; Chang, X.; Wu, J.; Zhou, H. Mitochondrial stress as a central player in the pathogenesis of hypoxia-related myocardial dysfunction: New insights. Int. J. Med. Sci. 2024, 21, 2502. [Google Scholar] [CrossRef] [PubMed]
- Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Morales, H.; Poblano, J.; Berlanga, L.; Castillo-Tobías, I.; Silva-Belmares, S.Y.; Cobos-Puc, L.E. Plant Antioxidants: Therapeutic Potential in Cardiovascular Diseases. Compounds 2024, 4, 479–502. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, J.; Peng, L.; Zhang, Q.; Rong, X.; Luo, Y.; Li, J. Flavonoids: Potential therapeutic agents for cardiovascular disease. Heliyon 2024, 10, e32563. [Google Scholar] [CrossRef]
- Li, X.; Jia, P.; Huang, Z.; Liu, S.; Miao, J.; Guo, Y.; Wu, N.; Jia, D. Lycopene Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Mitochondrial Permeability Transition Pore Opening. Drug Des. Devel. Ther. 2019, 13, 2331–2342. [Google Scholar] [CrossRef]
- Oruc, S.; Gönül, Y.; Tunay, K.; Oruc, O.A.; Bozkurt, M.F.; Karavelioğlu, E.; Bağcıoğlu, E.; Coşkun, K.S.; Celik, S. The Antioxidant and Antiapoptotic Effects of Crocin Pretreatment on Global Cerebral Ischemia Reperfusion Injury Induced by Four Vessels Occlusion in Rats. Life Sci. 2016, 154, 79–86. [Google Scholar] [CrossRef]
- Song, J.; Li, S.; Zhang, B.; Wu, J.; Zhong, A. Quercetin protects human coronary artery endothelial cells against hypoxia/reoxygenation-induced mitochondrial apoptosis via the Nrf2/HO-1 axis. Biomed. Res. 2024, 45, 197–207. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Li, S.; Mo, L. Cardioprotective effect of quercetin against ischemia/reperfusion injury is mediated through NO system and mitochondrial K-ATP channels. Cell J. 2021, 23, 184. [Google Scholar]
- Chang, X.; Zhang, T.; Meng, Q.; Wang, S.; Yan, P.; Wang, X.; Luo, D.; Zhou, X.; Ji, R. Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxidative Med. Cell. Longev. 2021, 2021, 5529913. [Google Scholar] [CrossRef]
- Xiong, D.; Wang, X.; Wang, H.; Chen, X.; Li, H.; Li, Y.; Zhong, M.; Gao, J.; Zhao, Z.; Ren, W. Quercetin inhibits cardiomyocyte apoptosis via Sirt3/SOD2/mitochondrial reactive oxygen species during myocardial ischemia–reperfusion injury. Heliyon 2024, 10, e39031. [Google Scholar] [CrossRef]
- Zhang, X.; Du, Q.; Yang, Y.; Wang, J.; Dou, S.; Liu, C.; Duan, J. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed. Pharmacother. 2017, 91, 1042–1052. [Google Scholar] [CrossRef]
- Liu, D.; Luo, H.; Qiao, C. SHP-1/STAT3 interaction is related to luteolin-induced myocardial ischemia protection. Inflammation 2022, 45, 88–99. [Google Scholar] [CrossRef]
- Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.-A.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E782–E792. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, C.; Upaganalawar, A.; Balaraman, R. Protection against in vivo focal myocardial ischemia/reperfusion injury-induced arrhythmias and apoptosis by hesperidin. Free Radic. Res. 2009, 43, 817–827. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Wang, J.; Xu, W.; Yi, C.; Ma, R.; Jiang, H. Short-term hesperidin pretreatment attenuates rat myocardial ischemia/reperfusion injury by inhibiting high mobility group box 1 protein expression via the PI3K/Akt pathway. Cell. Physiol. Biochem. 2016, 39, 1850–1862. [Google Scholar] [CrossRef]
- Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.A.; Karaman, R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 2009, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Ma, A.; Chen, Y. Cardioprotective effect of berberine against myocardial ischemia/reperfusion injury via attenuating mitochondrial dysfunction and apoptosis. Int. J. Clin. Exp. Med. 2015, 8, 14513. [Google Scholar]
- Huang, Z.; Han, Z.; Ye, B.; Dai, Z.; Shan, P.; Lu, Z.; Dai, K.; Wang, C.; Huang, W. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur. J. Pharmacol. 2015, 762, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhao, Q.; Huang, Y.; Meng, S.; Chen, X.; Zhang, G.; Chi, Y.; Xu, D.; Yin, Z.; Jiang, H.; et al. Berberine ameliorates chronic intermittent hypoxia-induced cardiac remodelling by preserving mitochondrial function, role of SIRT6 signalling. J. Cell. Mol. Med. 2024, 28, e18407. [Google Scholar] [CrossRef]
- Wang, L.; Ma, H.; Xue, Y.; Shi, H.; Ma, T.; Cui, X. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways. Exp. Ther. Med. 2018, 15, 1225–1232. [Google Scholar] [CrossRef]
- Hu, F.; Hu, T.; Qiao, Y.; Huang, H.; Zhang, Z.; Huang, W.; Liu, J.; Lai, S. Berberine inhibits excessive autophagy and protects myocardium against ischemia/reperfusion injury via the RhoE/AMPK pathway. Int. J. Mol. Med. 2024, 53, 49. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, W.; Tang, Y.; Bai, W.; Yang, F.; Xie, L.; Li, X.; Zhou, S.; Pan, S.; Chen, Q.; et al. l-Tetrahydropalmatine, an active component of Corydalis yanhusuo WT Wang, protects against myocardial ischaemia-reperfusion injury in rats. PLoS ONE 2012, 7, e38627. [Google Scholar]
- Xin, G.-J.; Liu, Z.-X.; Chen, Y.-Y.; Zhang, H.-Y.; Guo, F.; Peng, H.; Li, L.; Han, X.; Liu, J.-X.; Fu, J.-H. Tetrahydropalmatine inhibiting mitophagy through ULK1/FUNDC1 pathway to alleviate hypoxia/reoxygenation injury in H9c2 cells. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Medica 2024, 49, 1286–1294. [Google Scholar]
- Han, B.-J.; Cao, G.-Y.; Jia, L.-Y.; Zheng, G.; Zhang, L.; Sheng, P.; Xie, J.-Z.; Zhang, C.-F. Cardioprotective effects of tetrahydropalmatine on acute myocardial infarction in rats. Am. J. Chin. Med. 2024, 50, 1887–1904. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhuri, P.K. Structural characteristics, bioavailability and cardioprotective potential of saponins. Integr. Med. Res. 2018, 7, 33–43. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Q.; Pei, K.; Zhang, M.; Mao, C.; Zhong, X.; Huang, Y.; Dai, Y.; Yin, R.; Chen, Z.; et al. Ginsenoside Rg1 reduces cardiac inflammation against myocardial ischemia/reperfusion injury by inhibiting macrophage polarization. J. Ginseng Res. 2024, 48, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Gao, Z.; Guo, M.; Pan, D.; Zhang, H.; Du, J.; Shi, D. Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2024, 15, 1353662. [Google Scholar] [CrossRef]
- Li, Q.; Xiang, Y.; Chen, Y.; Tang, Y.; Zhang, Y. Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK. Cell. Physiol. Biochem. 2018, 44, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Lyu, D.; Zhang, M.; Shang, H.; Lu, Q. Dioscin alleviates cardiac dysfunction in acute myocardial infarction via rescuing mitochondrial malfunction. Front. Cardiovasc. Med. 2022, 9, 783426. [Google Scholar] [CrossRef]
- Wang, H.W.; Liu, H.J.; Cao, H.; Qiao, Z.Y.; Xu, Y.W. Diosgenin protects rats from myocardial inflammatory injury induced by ischemia-reperfusion. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 246. [Google Scholar] [CrossRef]
- Du, P.; Xu, L.; Wang, Y.; Jiao, T.; Cheng, J.; Zhang, C.; Tapu, S.R.; Dai, J.; Li, J. Astragaloside IV ameliorates pressure overload-induced heart failure by enhancing angiogenesis through HSF1/VEGF pathway. Heliyon 2024, 10, e37019. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Lu, L.; Zhao, X.; Gao, X.; Wang, Y. Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1α accumulation via phosphatidylinositol 3-kinase/Akt pathway. J. Pharmacol. Exp. Ther. 2011, 338, 485–491. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Chu, D.; Ma, X.; Yu, T.; Liu, X.; Hu, C. Astragaloside IV improves angiogenesis under hypoxic conditions by enhancing hypoxia-inducible factor-1α SUMOylation. Mol. Med. Rep. 2021, 23, 244. [Google Scholar] [CrossRef]
- Si, J.; Wang, N.; Wang, H.; Xie, J.; Yang, J.; Yi, H.; Shi, Z.; Ma, J.; Wang, W.; Yang, L.; et al. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury. PLoS ONE 2014, 9, e107832. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Tang, F.; Zhang, J.; Luan, A.; Mei, M.; Xu, C.; Zhang, S.; Wang, H.; Maslov, L.N. Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-κB signaling pathway. Phytother. Res. 2015, 29, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wu, Y.; Fan, Z.; Liu, Y.; Zeng, J. Astragalus polysaccharide protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury: The role of PI3K/AKT, Bax/Bcl-2 and caspase-3. Mol. Med. Rep. 2016, 14, 904–910. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, M.; Li, X.; Zhao, Y.; Shao, J.; Liu, Z.; Lin, L.; Xu, Q.; Wang, L.; Lu, X.; et al. Anti-inflammatory Therapies for Coronary Heart Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 726341. [Google Scholar] [CrossRef]
- Francis, G.; Kerem, Z.; Makkar, H.P.S.; Becker, K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002, 88, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Nutr. Food Chem. 2004, 7, 67–78. [Google Scholar] [CrossRef]
- Li, W.J.; Nie, S.P.; Yan, Y.; Zhu, S.B.; Xie, M.Y. the protective effect of Ganoderma atrum polysaccharide against anoxia/reoxygenation injury in neonatal rat cardiomyocytes. Life Sci. 2009, 85, 634–641. [Google Scholar] [CrossRef]
- Li, W.J.; Nie, S.P.; Chen, Y.; Xie, M.Y.; He, M.; Yu, Q.; Yan, Y. Ganoderma atrum polysaccharide protects cardiomyocytes against anoxia/reoxygenation-induced oxidative stress by mitochondrial pathway. J. Cell. Biochem. 2010, 110, 191–200. [Google Scholar] [CrossRef]
- Liuand, C.; Huang, Y. Chinese herbal medicine on cardio vascular diseases and the mechanisms of action. Front. Pharmacol. 2016, 7, 469. [Google Scholar]
- Yang, X.; He, T.; Han, S.; Zhang, X.; Sun, Y.; Xing, Y.; Shang, H. The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxidative Med. Cell. Longev. 2019, 2019, 3231424. [Google Scholar] [CrossRef]
- Wong, H.S.; Chen, N.; Leong, P.K.; Ko, K.M. β-sitosterol enhances cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration: Protection against oxidant injury in H9c2 cells and rat hearts. Phytother. Res. 2014, 28, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wilmot, K.A.; Ghasemzadeh, N.; Molloy, D.L.; Burkman, G.; Mekonnen, G.; Gongora, M.C.; Quyyumi, A.A.; Sperling, L.S. Mediterranean dietary patterns and cardiovascular health. Annu. Rev. Nutr. 2015, 35, 425–449. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, M.; Qin, C.; Wang, Z.; Chen, J.; Wang, R.; Hu, J.; Zou, Q.; Niu, X. Niu Resveratrol attenuates myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction. Front. Pharmacol. 2022, 13, 906073. [Google Scholar]
- Chang, X.; Zhang, T.; Zhang, W.; Zhao, Z.; Sun, J. Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. Oxidative Med. Cell. Longev. 2020, 2020, 5430407. [Google Scholar] [CrossRef]
- Banerjee, S. Reconsideration of Eating Time of Citrus and Fibrous Fruits to Assure Maximum Health Benefits by Proper Nutrition: Empirical vs. Theoretical. Food Sci. Rep. 2020, 1, 58–67. [Google Scholar]
- Sun, Y.-X.; Liu, T.; Dai, X.-L.; Zheng, Q.-S.; Hui, B.-D.; Jiang, Z.-F. Treatment with Lutein Provides Neuroprotection in Mice Subjected to Transient Cerebral Ischemia. J. Asian Nat. Prod. Res. 2014, 16, 1084–1093. [Google Scholar] [CrossRef]
- Li, M.; Tian, X.; An, R.; Yang, M.; Zhang, Q.; Xiang, F.; Liu, H.; Wang, Y.; Xu, L.; Dong, Z. All-Trans Retinoic Acid Ameliorates the Early Experimental Cerebral Ischemia–Reperfusion Injury in Rats by Inhibiting the Loss of the Blood–Brain Barrier via the JNK/P38MAPK Signaling Pathway. Neurochem. Res. 2018, 43, 1283–1296, Erratum in Neurochem. Res. 2018, 43, 1703. [Google Scholar] [CrossRef]
- Bhakuni, P.; Chandra, M.; Misra, M.K. Effect of Ascorbic Acid Supplementation on Certain Oxidative Stress Parameters in the Post Reperfusion Patients of Myocardial Infarction. Mol. Cell. Biochem. 2006, 290, 153–158. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, M.; Qian, W.; Song, J. Vitamin D Attenuates Myocardial Ischemia–Reperfusion Injury by Inhibiting Inflammation via Suppressing the RhoA/ROCK/NF-ĸB Pathway. Biotechnol. Appl. Biochem. 2019, 66, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Salehi, C.; Seiiedy, M.; Soraya, H.; Fazli, F.; Ghasemnejad-Berenji, M. Pretreatment with Bisoprolol and Vitamin E Alone or in Combination Provides Neuroprotection against Cerebral Ischemia/Reperfusion Injury in Rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 2021, 394, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Shi, L.; Wang, M.; Zhang, L.; Gong, Z.; Luo, S.; Wang, X.; Zhang, Q.; Zhang, X. Folic Acid Ameliorates Synaptic Impairment Following Cerebral Ischemia/Reperfusion Injury via Inhibiting Excessive Activation of NMDA Receptors. J. Nutr. Biochem. 2023, 112, 109209. [Google Scholar] [CrossRef] [PubMed]
- Sergi, C.M. Epigallocatechin gallate for Parkinson’s disease. Clin. Exp. Pharmacol. Physiol. 2022, 49, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with a high-fat diet. J. Food Sci. 2011, 76, H7–H10. [Google Scholar] [CrossRef]
- Campos-Sánchez, J.C.; Guardiola, F.A.; Esteban, M.Á. In vitro immune-depression and anti-inflammatory activities of cantharidin on gilthead seabream (Sparus aurata) leucocytes activated by λ-carrageenan. Fish Shellfish Immunol. 2024, 148, 109470. [Google Scholar] [CrossRef]
- Niu, X.; Sun, W.; Tang, X.; Chen, J.; Zheng, H.; Yang, G.; Yao, G. Bufalin alleviates inflammatory response and oxidative stress in experimental severe acute pancreatitis through activating Keap1-Nrf2/HO-1 and inhibiting NF-κB pathways. Int. Immunopharmacol. 2024, 142, 113113. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Li, D.; Li, S.-H.; Gao, Q.; Luo, Q.; Cheng, Y.-X. Ganospirones A−G, Seven undescribed spiro-meroterpenoids from Ganoderma lucidum and their biological activities. Phytochemistry 2024, 227, 114226. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Di, L.; Dai, W.; Lu, Q.; Yan, Y.; Yang, Z.; Li, R.; Cheng, Y. ChemInform Abstract: Applanatumin A, A new dimeric meroterpenoid from Ganoderma applanatum that displays potent antifibrotic activity. Org. Lett. 2015, 17, 1110–1113. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Tian, L.; Di, L.; Yan, Y.-M.; Wei, X.-Y.; Wang, X.-F.; Cheng, Y.-X. (±)-Sinensilactam A, a pair of rare hybrid metabolites with Smad3 phosphorylation inhibition from Ganoderma sinensis. Org. Lett. 2015, 17, 1565–1568. [Google Scholar] [CrossRef]
- Kumaran, K.S.; Prince, P.S.M. Protective effect of caffeic acid on cardiac markers and lipid peroxide metabolism in cardiotoxic rats: An in vivo and in vitro study. Metabolism 2010, 59, 1172–1180. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Su, H.-H.; Chen, K.; Liao, J.-M.; Yao, Y.-T.; Chen, Y.-H.; Wang, M.; Chu, Y.-C.; Wang, Y.-H.; Huang, S.-S. Paeonol protects against myocardial ischemia/reperfusion-induced injury by mediating apoptosis and autophagy crosstalk. Front. Pharmacol. 2021, 11, 586498. [Google Scholar] [CrossRef]
- Nizamutdinova, I.T.; Jin, Y.C.; Kim, J.S.; Yean, M.H.; Kang, S.S.; Kim, Y.S.; Lee, J.H.; Seo, H.G.; Kim, H.J.; Chang, K.C. Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. Planta Medica 2008, 74, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Z.; Dong, F.; Li, J.; Niu, P.; Ta, Q.; Kan, J.; Ma, C.; Han, M.; Yu, J.; et al. Clarifying the mechanism of apigenin against blood-brain barrier disruption in ischemic stroke using systems pharmacology. Mol. Divers. 2024, 28, 609–630. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Fu, F.; Lai, Q.; Zhang, L.; Liu, T.; Yu, B.; Kou, J.; Li, F. Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy. J. Ginseng Res. 2022, 46, 255–265. [Google Scholar] [CrossRef]
- Huang, Q.; Yao, Y.; Wang, Y.; Li, J.; Chen, J.; Wu, M.; Guo, C.; Lou, J.; Yang, W.; Zhao, L.; et al. Ginsenoside Rb2 inhibits p300-mediated SF3A2 acetylation at lysine 10 to promote Fscn1 alternative splicing against myocardial ischemic/reperfusion injury. J. Adv. Res. 2023, 65, 365–379. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.-H.; Zhang, Y.; Zheng, F.; Gao, F.; Sun, J.; Shi, G. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin. Med. 2022, 17, 73. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Shen, X.; Wang, Y.; Wang, S.; Zhang, Y.; Yao, X.; Xu, Y.; Sang, M.; Pan, J.; et al. Geniposide possesses the protective effect on myocardial injury by inhibiting oxidative stress and ferroptosis via activation of the Grsf1/GPx4 Axis. Front. Pharmacol. 2022, 13, 879870. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Sun, S.; Xu, Y.; Wan, D.; Feng, S.; Tian, Z.; Zhu, H. Catalpol attenuates ischemic stroke by promoting neurogenesis and angiogenesis via the SDF–1α/CXCR4 pathway. Phytomedicine 2024, 128, 155362. [Google Scholar] [CrossRef]
- Bai, X.; Wang, W.-X.; Fu, R.-J.; Yue, S.-J.; Gao, H.; Chen, Y.-Y.; Tang, Y.-P. Therapeutic potential of hydroxysafflor yellow A on cardio-cerebrovascular diseases. Front. Pharmacol. 2020, 11, 01265. [Google Scholar] [CrossRef]
- Yu, C.; Cai, X.; Liu, X.; Liu, J.; Zhu, N. Betulin alleviates myocardial ischemiareperfusion injury in rats via regulating the Siti1/NLRP3/NF-κB signaling pathway. Inflammation 2021, 44, 1096–1107. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Q.; Yang, J.; Wang, C.; Cao, J.; Sun, J.; Fan, Z.; Fu, L. Artemisinin suppresses myocardial ischemia-reperfusion injury via NLRP3 inflammasome mechanism. Mol. Cell. Biochem. 2020, 474, 171–180. [Google Scholar] [CrossRef]
- Zhu, J.-R.; Lu, H.-D.; Guo, C.; Fang, W.-R.; Zhao, H.-D.; Zhou, J.-S.; Wang, F.; Zhao, Y.-L.; Li, Y.-M.; Zhang, Y.-D.; et al. Berberine attenuates ischemia-reperfusion injury through inhibiting HMGB1 release and NF-κB nuclear translocation. Acta Pharmacol. Sin. 2018, 39, 1706–1715. [Google Scholar] [CrossRef]
- Mendoza, R.; Bailon, D.; Bernardo, J.; Jimenez, R.; Te-Rosano, A.; Tiongco, R. Colchicine in patients with acute myocardial infarction: An updated meta-analysis of randomized controlled trials. Eur. Heart J. 2021, 42, 1273. [Google Scholar] [CrossRef]
- Wu, X.; Liu, L.; Zheng, Q.; Ye, H.; Yang, H.; Hao, H.; Li, P. Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta Pharm. Sin. B 2022, 13, 113–127. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, J.; Jin, L.; Chen, J.; Xu, R.; Zhao, Y.; Yan, T.; Wan, H. Salvianolic-acid-Bloaded HA self-healing hydrogel promotes diabetic wound healing through promotion of anti-inflammation and angiogenesis. Int. J. Mol. Sci. 2023, 24, 6844. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Malhotra, R.K.; Khan, S.I.; Sarkar, S.; Susrutha, P.; Singh, V.; Goyal, S.; Nag, T.C.; Ray, R.; Bhatia, J. Fisetin attenuates isoproterenol-induced cardiac ischemic injury in vivo by suppressing RAGE/NF-B mediated oxidative stress, apoptosis and inflammation. Phytomedicine 2019, 56, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Han, J.; Ren, H.; Yang, W.; Zhang, X.; Zheng, Q.; Wang, D. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart. Oxidative Med. Cell. Longev. 2016, 2016, 8194690. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Liu, Z.; Han, M.-L.; Hou, Y.-L.; Guo, C.-L. The effect and mechanism of hyperoside on high glucose-induced oxidative stress injury of myocardial cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 2018, 49, 518–523. [Google Scholar]
- Ramprasath, T.; Senthamizharasi, M.; Vasudevan, V.; Sasikumar, S.; Yuvaraj, S.; Selvam, G.S. Naringenin confers protection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells. J. Physiol. Biochem. 2014, 70, 407–415. [Google Scholar] [CrossRef]
- Scarabelli, T.M.; Mariotto, S.; Abdel-Azeim, S.; Shoji, K.; Darra, E.; Stephanou, A.; Chen-Scarabelli, C.; Marechal, J.D.; Knight, R.; Ciampa, A. Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion induced injury. FEBS Lett. 2009, 583, 531–541. [Google Scholar] [CrossRef]
- Hu, W.-S.; Lin, Y.-M.; Kuo, W.-W.; Pan, L.-F.; Yeh, Y.-L.; Li, Y.-H.; Kuo, C.-H.; Chen, R.-J.; Padma, V.V.; Chen, T.-S. Suppression of isoproterenol-induced apoptosis in H9c2 cardiomyoblast cells by daidzein through activation of Akt. Chin. J. Physiol. 2016, 59, 323–330. [Google Scholar] [CrossRef]
- Cai, X.; Yang, C.; Shao, L.; Zhu, H.; Wang, Y.; Huang, X.; Wang, S.; Hong, L. Targeting NOX 4 by petunidin improves anoxia/reoxygenation-induced myocardium injury. Eur. J. Pharmacol. 2020, 888, 173414. [Google Scholar] [CrossRef] [PubMed]
- Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Ojha, S.; Kumari, S.; Bhatia, J.; Arya, D.S. Mangiferin protect myocardial insults through modulation of MAPK/TGF-pathways. Eur. J. Pharmacol. 2016, 776, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, H.; Wan, S.-P.; Zeng, Q.-T.; Cheng, L.-X.; Jiang, L.-L.; Peng, Y.-D. Cardioprotective effects of Malvidin against isoproterenol-induced myocardial infarction in rats: A mechanistic study. Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 2017, 23, 2007. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Gao, X.; Zhou, X.; Li, J.; Ma, X.; Huang, M.; Wuken, S.; Tu, P.; An, C.; Chai, X. The alkaloids of Corydalis hendersonii Hemsl. contribute to the cardioprotective effect against ischemic injury in mice by attenuating cardiomyocyte apoptosis via p38 MAPK signaling pathway. Chin. Med. 2023, 18, 29. [Google Scholar] [CrossRef]
- Chandimali, N.; Gyeong Bak, S.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Ooi, B.K.; Chan, K.-G.; Goh, B.H.; Yap, W.H. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front. Pharmacol. 2018, 9, 1308. [Google Scholar] [CrossRef]
- Sun, Z.; Mohamed, M.A.A.; Park, S.Y.; Yi, T.H. Fucosterol protects cobalt chloride induced inflammation by the inhibition of hypoxia-inducible factor through PI3K/Akt pathway. Int. Immunopharmacol. 2015, 29, 642–647. [Google Scholar] [CrossRef]
- Jahan, N.; Rahman, K.; Ali, S. Cardioprotective and antilipidemic potential of Cyperus rotundus in chemically induced cardiotoxicity. Int. J. Agric. Biol. 2012, 14, 989–992. [Google Scholar]
- Hussein, G.; Goto, H.; Oda, S.; Sankawa, U.; Matsumoto, K.; Watanabe, H. Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol. Pharm. Bull. 2006, 29, 684–688. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Guo, Y.; Yu, H.; Bao, Y.; Xin, X.; Yang, H.; Ni, X.; Wu, N.; Jia, D. Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction. Oxidative Med. Cell. Longev. 2020, 2020, 4629189, Erratum in Oxidative Med. Cell. Longev. 2021, 2021, 9796134. [Google Scholar] [CrossRef]
- Monroy-Ruiz, J.; Sevilla, M.Á.; Carron, R.; Montero, M.J. Astaxanthin-enriched-diet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats. Pharmacol. Res. 2011, 63, 44–50. [Google Scholar] [CrossRef]
- Sánchez-Gloria, J.L.; Arellano-Buendía, A.S.; Juárez-Rojas, J.G.; García-Arroyo, F.E.; Argüello-García, R.; Sánchez-Muñoz, F.; Sánchez-Lozada, L.G.; Osorio-Alonso, H. Cellular mechanisms underlying the cardioprotective role of allicin on cardiovascular dis eases. Int. J. Mol. Sci. 2022, 23, 9082. [Google Scholar] [CrossRef]
- Dar, R.A.; Brahman, P.K.; Khurana, N.; Wagay, J.A.; Lone, Z.A.; Ganaie, M.A.; Pitre, K.S. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays. Arab. J. Chem. 2017, 10, S1119–S1128. [Google Scholar] [CrossRef]
- Yousefsani, B.S.; Mehri, S.; Pourahmad, J.; Hosseinzadeh, H. Crocin prevents sub- cellular organelle damage, proteolysis and apoptosis in rat hepatocytes: A justification for its hepatoprotection. Iran. J. Pharm. Res. 2018, 17, 553–562. [Google Scholar]
- Feidantsis, K.; Mellidis, K.; Galatou, E.; Sinakos, Z.; Lazou, A. Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 952–961. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, G.H. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J. Food Sci. 2010, 75, H212–H217. [Google Scholar] [CrossRef]
- Korani, S.; Korani, M.; Sathyapalan, T.; Sahebkar, A. Therapeutic effects of Crocin in autoimmune diseases: A review. BioFactors 2019, 45, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; He, Y.; Shi, J.; Liu, L.; Ma, H.; He, L.; Guo, Y. Allicin attenuates myocardial ischemia reperfusion injury in rats by inhibition of inflammation and oxidative stress. Transpl. Proc. 2019, 51, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Hashemzaei, M.; Mamoulakis, C.; Tsarouhas, K.; Georgiadis, G.; Lazopoulos, G.; Tsatsakis, A.; Asrami, E.S.; Rezaee, R. Crocin: A fighter against inflammation and pain. Food Chem. Toxicol. 2020, 143, 111521. [Google Scholar] [CrossRef]
- Banerjee, S. The Essence of Indian Indigenous Knowledge in the Perspective of Ayurveda, Nutrition, and Yoga. Res. Rev. Biotechnol. Bioscis. (RRBB) 2020, 7, 20–27. [Google Scholar]
- Muthuraman, A.; Shaikh, S.A.; Ramesh, M.; Sikarwar, M.S. Chapter 6—The structure-activity relationship of marine products for neuroinflammatory disorders. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 70, pp. 151–194. [Google Scholar]
- Yan, J.; Chen, R.; Liu, P.; Gu, Y. Docosahexaenoic acid inhibits development of hypoxic pulmonary hypertension: In vitro and in vivo studies. Int. J. Cardiol. 2013, 168, 4111–4116. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Deckelbaum, R.J.; Torrejon, C. The Omega-3 Fatty Acid Nutritional Landscape: Health Benefits and Sources. J. Nutr. 2012, 142, S587–S591. [Google Scholar] [CrossRef]
- Russell, F.D.; Bürgin-Maunder, C.S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs 2012, 10, 2535–2559. [Google Scholar] [CrossRef]
- Sudheendran, S.; Chang, C.C.; Deckelbaum, R.J. N-3 vs. saturated fatty acids: Effects on the arterial wall. Prostaglandins Leukot. Essent. Fat. Acids 2010, 82, 205–209. [Google Scholar] [CrossRef]
- Ishii, T.; Haraguchi, G.; Hosokawa, S.; Doi, S.; Isobe, M. Abstract 15404: Eicosapentaenoic Acid Ameliorates Pulmonary Hypertension via G Protein-Coupled Receptor 120 Pathway in Rats. Circulation 2013, 128, S22. [Google Scholar]
- Gross, M. Flavonoids and cardiovascular disease. Pharm. Biol. 2004, 42, 21–35. [Google Scholar] [CrossRef]
- Corcoran, M.P.; McKay, D.L.; Blumberg, J.B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr. 2012, 31, 176–189. [Google Scholar] [CrossRef]
- Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull. Natl. Mus. Nat. Sci. 2013, 39, 25–51. [Google Scholar]
- Liu, K.; Luo, M.; Wei, S. The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: Evidences and perspectives. Oxidative Med. Cell. Longev. 2019, 2019, 6713194. [Google Scholar] [CrossRef] [PubMed]
- Hoensch, H.P.; Oertel, R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin. Nutr. Exp. 2015, 3, 8–14. [Google Scholar] [CrossRef]
- Jaxa-Chamiec, T.; Bednarz, B.; Drozdowska, D.; Gessek, J.; Gniot, J.; Janik, K.; Kawka-Urbanek, T.; Maciejewski, P.; Ogórek, M.; Szpajer, M.; et al. Antioxidant Effects of Combined Vitamins C and E in Acute Myocardial Infarction. The Randomized, Double-Blind, Placebo Controlled, Multicenter Pilot Myocardial Infarction and Vitamins (MIVIT) Trial. Kardiol. Pol. 2005, 62, 344–350. [Google Scholar]
- Valls, N.; Gormaz, J.G.; Aguayo, R.; González, J.; Brito, R.; Hasson, D.; Libuy, M.; Ramos, C.; Carrasco, R.; Prieto, J.C.; et al. Amelioration of Persistent Left Ventricular Function Impairment through Increased Plasma Ascorbate Levels Following Myocardial Infarction. Redox Rep. 2016, 21, 75–83. [Google Scholar] [CrossRef]
- Gasparetto, C.; Malinverno, A.; Culacciati, D.; Gritt, D.; Prosperini, P.G.; Specchia, G.; Ricevuti, G. Antioxidant Vitamins Reduce Oxidative Stress and Ventricular Remodeling in Patients with Acute Myocardial Infarction. Int. J. Immunopathol. Pharmacol. 2005, 18, 487–496. [Google Scholar] [CrossRef]
- Myung, S.K.; Kim, Y.; Ju, W.; Choi, H.J.; Bae, W.K. Effects of antioxidant supplements on cancer prevention: Meta-analysis of randomized controlled trials. Ann. Oncol. 2010, 21, 166–179. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, H.; Yuan, X.; Chang, J.; Wang, X. Trime tazidine combined with berberine on endothelial function of patients with coronary heart disease combined with primary hypertension. Exp. Ther. Med. 2018, 16, 1318–1322. [Google Scholar]
- Shaito, A.; Phu, D.T.B.T.H.T.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Eid, A.H.; Pintus, G. Herbal medicine for Cardiovascular Diseases: Efficacy, Mechanisms and safety. Front. Pharmacol. 2020, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Trindade, L.R.; da Silva, D.V.T.; Baião, D.d.S.; Paschoalin, V.M.F. Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021, 26, 4621. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dai, L.; Xu, J.; Duan, L.; Hou, X.; Zhang, L.; Song, L.; Zhao, F.; Jiang, Y. Chinese herbal compound preparation Qing-Xin-Jie-Yu granules for intermediate coronary lesions in patients with stable coronary artery disease: Study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. PLoS ONE 2024, 19, e0307074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-S.; He, Q.-Z.; Qin, C.H.; Little, P.J.; Weng, J.-P.; Xu, S.-W. Therapeutic potential of colchicine in cardiovascular medicine: A pharmacological review. Acta Pharmacol. Sin. 2022, 43, 2173–2190. [Google Scholar] [CrossRef]
- Ghani, M.A.A.; Ugusman, A.; Latip, J.; Zainalabidin, S. Role of Terpenophenolics in Modulating Inflammation and Apoptosis in Cardiovascular Diseases: A Review. Int. J. Mol. Sci. 2023, 24, 5339. [Google Scholar] [CrossRef]
- Ai, X.; Lu, W.; Zeng, K.; Li, C.; Jiang, Y.; Tu, P.-F. Microfluidic coculture device for monitoring of inflammation-induced myocardial injury dynamics Anal. Chem. Anal. Chem. 2018, 90, 4485–4494. [Google Scholar] [CrossRef]
- Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed. 2014, 4 (Suppl. 1), S1–S7. [Google Scholar] [CrossRef]
- Ridker, P.M.; Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 2014, 35, 1782–1791. [Google Scholar] [CrossRef]
- Quek, J.; Lim, G.; Lim, W.H.; Ng, C.H.; So, W.Z.; Toh, J.; Pan, X.H.; Chin, Y.H.; Muthiah, M.D.; Chan, S.P.; et al. The Association of Plant-Based Diet with Cardiovascular Disease and Mortality: A Meta-Analysis and Systematic Review of Prospect Cohort Studies. Front. Cardiovasc. Med. 2021, 8, 756810. [Google Scholar] [CrossRef]
- Suntres, Z.E. Liposomal Antioxidants for Protection against Oxidant-Induced Damage. J. Toxicol. 2011, 2011, 152474. [Google Scholar] [CrossRef] [PubMed]


| Category | Compounds | Activity |
|---|---|---|
| Polyphenols | Resveratrol | Ameliorate OS by increasing Nrf2 expression Also decrease inflammation through TLR4/NF-kB signaling pathway [117] Inhibits ferroptosis via inducing KAT5/GPX4 in MI [76] |
| Quercetin | Scavenging and inhibition of ROS and induction of Nrf2/HO-1 expression [117] Downregulates the expression of adhesion molecules [77] | |
| Curcumin | Decrease myocardial apoptosis by activating JAK2/STAT3 pathway, thus reducing OS-damage [117] | |
| Carotenoids | Lycopene | Inhibit mPTP opening via modulation of Bax and Bcl-2 [118] |
| Crocin | In the heart, there is a regulation of SIRT1/Nrf2 signaling and related endoplasmic reticulum stress. In the brain, a reduction in HIF1α and caspase-3 was seen [67,118] | |
| Beta-carotene | Inhibit NF-kB pathway [119] | |
| Astaxanthin | Activate Nrf2/HO-1 pathway, regulate the miR-138/HIF1α axis. SOD1 and 2 expression will be enhanced [119] | |
| Lutein | Decrease SOD, CAT, and GTX activity [120] | |
| Vitamins | All-trans retinoic acid | Downregulation of MAPK signaling [121] |
| Vitamin C | Decrease SOD activity and PI3k-Akt signaling pathway [122] | |
| Vitamin D | Reduce inflammation by RhoA/ROCK/NF-kB pathway; activate Nrf2/HO-1 pathway [123] | |
| Vitamin E | Downregulation of GPx (1, 5 and 6) and MPO [124] | |
| Folic acid | Inhibition of NMDAR [125] |
| Category | Compound | Activity |
|---|---|---|
| Plant-derived natural products | Epigallocatechin gallate—catechin group of flavanoid | Anti-inflammatory, anti-cancer, anti-obesity, induces autophagy and promotes synaptic plasticity, reduces neuroinflammation [126] |
| Capsaicin—alkaloid | Vasodilator, antibacterial anticancer, ROS disruption of mitochondrial membrane transition potential [35,126] | |
| Ferulic acid—polyphenol | Anti-oxidant; regulates the activities of antioxidant and lipogenic enzymes [127] | |
| Animal-derived natural products | Venom | Anti-inflammatory [127] |
| Cantharidin—terpenoid | Anti-inflammatory [128] | |
| Bufalin—cardiotonic steroid | Anti-inflammatory [129] | |
| Tetrodotoxin—non-proteinaceous neurotoxin | Anesthetic and analgesic [130] | |
| Ursodeoxycholic acid—secondary bile acid | Antitumor [130] | |
| Microbe-derived NPs | Lovastatin—class of polyketide | Lowering blood lipids and cholesterol [130] |
| Ganospirones B—tetracycline terpenoid | Anti-inflammatory and anti-renal fibrosis; promotion of neural stem cell proliferation; inhibition of JAK3 kinase [131] | |
| Applanatumin A—meroterpenoid dimer | Antifibrotic [132] | |
| Sinensilactam A—a hybrid metabolite | Antifibrotic Smad3 phosphorylation inhibitor [133] |
| Category | Compounds | Activity |
|---|---|---|
| Phenolic acids | Gingerol | Antioxidant activity [134] |
| Caffeic acid | Antioxidant activity [134] | |
| Paeonol | Upregulates bcl-2 levels and suppresses apoptosis [135,136] | |
| Flavonoids | Apigenin | Attenuates cardiac impairment by inhibiting TGF-β1-mediated SMAD pathway [137] |
| Glycosides | Ginsenoside Rb1 | Promotes mitophagy via AMPKA phosphorylation [138] |
| Ginsenoside Rb2 | Inhibits p300-mediated SF3A2 acetylation at lysine10 [139] | |
| Geniposide | Suppresses NLRP3 inflammasome, AMPK signalling pathway [140,141] | |
| Catalpol | Attenuates cardiac dysfunction: regulates the apelin/APJ pathway [142] | |
| Hydroxysafflor yellow A | Anti-oxidant, anti-inflammatory, and neuroprotective effect [143] | |
| Terpenoids | Bitulin | Regulates the Siti1/NLRP3/NF-kB singling pathway [144] |
| Artemisinin | Inhibits NLRP3 inflammasome [145] | |
| Oridonin | Inhibits NLRP3 inflammasome [34] | |
| Alkaloids | Berberine | Inhibits macrophage Wnt5a/β-catenin pathway [146] |
| Colchicine | Anti-inflammatory activity [147] | |
| Quinone | Dihydrotanshinone-1 | Protects cardiomyocytes via PKM2 glutathionylation [148] |
| Salvianolic acid | Upregulates the Nrf2 signalling pathway [149] |
| Active Ingredient | Model | Mechanism of Action |
|---|---|---|
| Icarin | High-glucose and adenovirus-induced cardio myopathy in neonatal C57 mice | Increases Apelin/SIRT3 [150] |
| Hesperidin- Flavonoid | Nitric oxide deficiency-induced cardiovascular remodeling | Regulates Nrf2/ARE/HO-1 and TGF-beta/Smad3 signal transduction. Ischemia–reperfusion [138] |
| Rutin | Cobalt chloride-induced hypoxic injury in H9c2cells | Modulation of Akt, p-Akt, p38, and p-p38; of HIF-1, BAX, and caspase [150] |
| Astragalin | Myocardial ischemia/reperfusion(I/R) injury in isolated rat heart | Inducing autophagy; increasing the expression of nrf2/HO-1/NADPH/NQO1 heart failure, reduces ROS; inflammation; myocardial apoptosis; enhances Bcl-2 [151] |
| Hyperoside | High-glucose-induced oxidative stress in cardiac cells | Enhances p-AKT/AKT and p-Nrf2/Nrf2; reduces myocardial apoptosis and levels of ROS [152] |
| Naringenin | H2O2-induced oxidative stress in cardiomyocytes | Increases the activity of antioxidant enzyme; increases Nrf2 signaling pathway [153] |
| Delphinidin | Myocardial ischemia/reperfusion injury in rats | Reduces expression of STAT1 [154] |
| Daidzein | Isoproterenol-induced apoptosis in H9c2 cardiomyoblast | Increases Akt activation [155] |
| Petunidin | Myocardial ischemia/reperfusion injury in rats | Increases Bcl-2 expression; reduces NOX4 and Bax expression [156] |
| Mangiferin | Myocardial ischemia/reperfusion injury in rats | Reduces phosphorylation of p38 and JNK; phosphorylation of ERK1/2 [157] |
| Malvidin | Isoproterenol-induced apoptosis in H9c2 cardio myoblast | Increases Nrf2/HO-1 signaling pathway; reduces NF-kB signaling [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, A.; Kulkarni, C.C.; Pradeep, S.R.; Poyya, J.; Kudva, A.K.; Radhakrishnan, V.; Khandagale, A.S. Role of Anti-Inflammatory and Antioxidant Properties of Natural Products in Curing Cardiovascular Diseases. Curr. Issues Mol. Biol. 2025, 47, 955. https://doi.org/10.3390/cimb47110955
Kulkarni A, Kulkarni CC, Pradeep SR, Poyya J, Kudva AK, Radhakrishnan V, Khandagale AS. Role of Anti-Inflammatory and Antioxidant Properties of Natural Products in Curing Cardiovascular Diseases. Current Issues in Molecular Biology. 2025; 47(11):955. https://doi.org/10.3390/cimb47110955
Chicago/Turabian StyleKulkarni, Amit, Chaitra Chidambar Kulkarni, Seetur Radhakrishna Pradeep, Jagadeesha Poyya, Avinash Kundadka Kudva, Vijay Radhakrishnan, and Ajay Sathyanarayanrao Khandagale. 2025. "Role of Anti-Inflammatory and Antioxidant Properties of Natural Products in Curing Cardiovascular Diseases" Current Issues in Molecular Biology 47, no. 11: 955. https://doi.org/10.3390/cimb47110955
APA StyleKulkarni, A., Kulkarni, C. C., Pradeep, S. R., Poyya, J., Kudva, A. K., Radhakrishnan, V., & Khandagale, A. S. (2025). Role of Anti-Inflammatory and Antioxidant Properties of Natural Products in Curing Cardiovascular Diseases. Current Issues in Molecular Biology, 47(11), 955. https://doi.org/10.3390/cimb47110955

