Molecular Basis of Plant Stress Tolerance: Current Status and Future Perspectives
1. Introduction
Conflicts of Interest
References
- Mircea, D.-M.; Boscaiu, M.; Sestras, R.E.; Sestras, A.F.; Vicente, O. Abiotic stress tolerance and invasive potential of ornamental plants in the Mediterranean area: Implications for sustainable landscaping. Agronomy 2024, 15, 52. [Google Scholar] [CrossRef]
- Du, B.; Haensch, R.; Alfarraj, S.; Rennenberg, H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. 2024, 99, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Novoplansky, A.; Souza, G.M.; Brenner, E.D.; Bhatla, S.C.; Van Volkenburgh, E. Exploring the complex information processes underlying plant behavior. Plant Signal. Behav. 2024, 19, 2411913. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Ma, L.; Terzaghi, W.; Guo, Y.; Li, J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. Plant J. 2024, 117, 1893–1913. [Google Scholar] [CrossRef] [PubMed]
- Nykiel, M.; Gietler, M.; Fidler, J.; Prabucka, B.; Rybarczyk-Płońska, A.; Graska, J.; Boguszewska-Mańkowska, D.; Muszyńska, E.; Morkunas, I.; Labudda, M. Signal transduction in cereal plants struggling with environmental stresses: From perception to response. Plants J. 2022, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J. 2021, 105, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, Ł.P.; Signorelli, S.; Considine, M.J.; Montrichard, F. Integration of reactive oxygen species and nutrient signalling to shape root system architecture. Plant Cell Environ. 2023, 46, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Dumschott, K.; Dörpholz, H.; Laporte, M.-A.; Brilhaus, D.; Schrader, A.; Usadel, B.; Neumann, S.; Arnaud, E.; Kranz, A. Ontologies for increasing the FAIRness of plant research data. Front. Plant Sci. 2023, 14, 1279694. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Smalle, J. The Evolution of Plant Hormones: From Metabolic Byproducts to Regulatory Hubs. Int. J. Mol. Sci. 2025, 26, 7190. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xia, P. Heat Shock Transcription Factors as Integrative Hubs for Plant Stress Adaptation: Decoding Regulatory Networks Toward Climate-Resilient Crop Design. Plant Cell Environ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Thakur, G.; Singh, P.; Sharma, V.; Sharma, A.; Singh, J.; Kumar, S. Phytohormonal Crosstalk with Flowering Genes Regulating Drought Stress Response in Citrus: A Systematic Review. J. Plant Growth Regul. 2025, 1–20. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, M.; Wang, L.; Liu, Y.; Tian, Z.; Xie, L.; Wang, Y. Epigenetics in Plant Response to Climate Change. J. Biol. 2025, 14, 631. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mohapatra, T. Epigenetic modifications in genome help remembering the stress tolerance strategy adopted by the plant. Front. Biosci. (Landmark Ed.) 2024, 29, 126. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Du, C.; Yu, B.; Wang, G.; Deng, Y.; Wang, Y.; Chen, M.; Chang, J.; Yang, G.; He, G. Current advances in the molecular regulation of abiotic stress tolerance in sorghum via transcriptomic, proteomic, and metabolomic approaches. Front. Plant Sci. 2023, 14, 1147328. [Google Scholar] [CrossRef] [PubMed]
- Varadharajan, V.; Rajendran, R.; Muthuramalingam, P.; Runthala, A.; Madhesh, V.; Swaminathan, G.; Murugan, P.; Srinivasan, H.; Park, Y.; Shin, H. Multi-Omics Approaches Against Abiotic and Biotic Stress—A Review. Plants 2025, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Noreen, S.; Ishaq, I.; Saleem, A.; Khan, K.A.; Ercisli, S.; Anas, M.; Khalid, A.; Ahmed, T.; Hassan, A. Omics technologies: Unraveling abiotic stress tolerance mechanisms for sustainable crop improvement. J. Plant Growth Regul. 2025, 1–23. [Google Scholar] [CrossRef]
- Chen, F.; Chen, L.; Yan, Z.; Xu, J.; Feng, L.; He, N.; Guo, M.; Zhao, J.; Chen, Z.; Chen, H. Recent advances of CRISPR-based genome editing for enhancing staple crops. Front. Plant Sci. 2024, 15, 1478398. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.S.; Nascimento, F.d.S.; Schittino, L.M.P.; Galinari, L.B.; Lino, L.S.M.; Ramos, A.P.d.S.; Diniz, L.E.C.; Mendes, T.A.d.O.; Ferreira, C.F.; Santos-Serejo, J.A.d. Construction and Validation of CRISPR/Cas Vectors for Editing the PDS Gene in Banana (Musa spp.). Curr. Issues Mol. Biol. 2024, 46, 14422–14437. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S. Molecular Basis of Plant Stress Tolerance: Current Status and Future Perspectives. Curr. Issues Mol. Biol. 2025, 47, 918. https://doi.org/10.3390/cimb47110918
Ali S. Molecular Basis of Plant Stress Tolerance: Current Status and Future Perspectives. Current Issues in Molecular Biology. 2025; 47(11):918. https://doi.org/10.3390/cimb47110918
Chicago/Turabian StyleAli, Sajid. 2025. "Molecular Basis of Plant Stress Tolerance: Current Status and Future Perspectives" Current Issues in Molecular Biology 47, no. 11: 918. https://doi.org/10.3390/cimb47110918
APA StyleAli, S. (2025). Molecular Basis of Plant Stress Tolerance: Current Status and Future Perspectives. Current Issues in Molecular Biology, 47(11), 918. https://doi.org/10.3390/cimb47110918
