Molecular and Serological Tests for SARS-CoV-2 Detection in Indeterminate Serology: Can We Skip the Second Sample?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Collection and Processing
2.3. Serological Testing
2.3.1. Screening ELISA
2.3.2. Quantitative IgG ELISA
2.3.3. Rapid Antibody Tests
2.4. Direct Viral Detection Methods
2.4.1. Rapid Antigen Testing
2.4.2. RNA Extraction and RT-Nested PCR
Control of the Obtained RNA and PCR Products
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Study Population Characteristics
3.2. Overall Diagnostic Performance
3.3. Results by Antibody Status
3.3.1. Antibody-Positive Samples (n = 69)
3.3.2. Antibody-Negative Samples (n = 47)
3.3.3. Indeterminate Samples (n = 47)—Primary Study Population
3.4. Concordance Between Viral Detection Methods
3.5. Comparative Analysis Across Antibody Categories
Study Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ELISA | Enzyme-Linked Immunosorbent Assay |
| PCR | Polymerase Chain Reaction |
| RT | Reverse Transcription |
| RNA | Ribonucleic Acid |
| cDNA | complementary Deoxyribonucleic acid |
| RT-nested PCR | Reverse Transcription-nested Polymerase Chain Reaction |
References
- Sarwar, A.; Almadani, A.; Agu, E.O. Early Time Series Classification Using Reinforcement Learning for Pre-Symptomatic COVID-19 Screening From Imbalanced Health Tracker Data. IEEE J. Biomed. Health Inform. 2024, 29, 2246–2256. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Pei, S.; Gao, Q.; Chen, W. Quantifying the presymptomatic transmission of COVID-19 in the USA. Math. Biosci. Eng. 2024, 21, 861–883. [Google Scholar] [CrossRef]
- You, Y.; Yang, X.; Hung, D.; Yang, Q.; Wu, T.; Deng, M. Asymptomatic COVID-19 infection: Diagnosis, transmission, population characteristics. BMJ Support. Palliat. Care 2024, 14, e220–e227. [Google Scholar] [CrossRef]
- Marin, L.; de Miranda, L.S.; Carvalho, V.H.S.; Voigt, M.E.F.; Martire, J.P.L.; Nunes, M.R.T.; Slhessarenko, R.D. Phylogeography of SARS-CoV-2 Omicron sublineages detected in asymptomatic blood donors during third epidemiological wave in Mato Grosso, Midwestern Brazil. Diagn. Microbiol. Infect. Dis. 2025, 111, 116693. [Google Scholar] [CrossRef]
- Kimball, A.; Hatfield, K.M.; Arons, M. James, A.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; Tanwar, S.; Chisty, Z.; et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility—King County, Washington, March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 377–381. [Google Scholar] [CrossRef]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Buitrago-Garcia, D.; Egli-Gany, D.; Counotte, M.J.; Hossmann, S.; Imeri, H.; Ipekci, A.M.; Salanti, G.; Low, N. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020, 17, e1003346. [Google Scholar] [CrossRef]
- World Health Organization. Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immunoassays: Interim Guidance. Available online: https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays (accessed on 15 September 2021).
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020, 368, eabb6936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Flamholz, A.; Phillips, R.; Milo, R. SARS-CoV-2 (COVID-19) by the numbers. Elife 2020, 9, e57309. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469, Correction in Nature 2020, 588, E35. [Google Scholar] [CrossRef]
- Espejo, A.P.; Akgun, Y.; Al Mana, A.F.; Tjendra, Y.; Millan, N.C.; Gomez-Fernandez, C.; Cray, C. Review of current advances in serologic testing for COVID-19. Am. J. Clin. Pathol. 2020, 154, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Suthar, M.S.; Zimmerman, M.G.; Kauffman, R.C.; Mantus, G.; Linderman, S.L.; Hudson, W.H.; Vanderheiden, A.; Nyhoff, L.; Davis, C.W.; Adekunle, O.; et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep. Med. 2020, 1, 100040. [Google Scholar] [CrossRef] [PubMed]
- Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; Warren, F.; et al. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N. Engl. J. Med. 2021, 384, 533–540. [Google Scholar] [CrossRef]
- Ng, K.W.; Faulkner, N.; Cornish, G.H.; Rosa, A.; Harvey, R.; Hussain, S.; Ulferts, R.; Earl, C.; Wrobel, A.G.; Benton, D.J.; et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020, 370, 1339–1343. [Google Scholar] [CrossRef]
- Shrock, E.; Fujimura, E.; Kula, T.; Timms, R.T.; Lee, I.H.; Leng, Y.; Robinson, M.L.; Sie, B.M.; Li, M.Z.; Chen, Y.; et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 2020, 370, eabd4250. [Google Scholar] [CrossRef]
- Kirkcaldy, R.D.; King, B.A.; Brooks, J.T. COVID-19 and postinfection immunity: Limited evidence, many remaining questions. JAMA 2020, 323, 2245–2246. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184, 2372–2383.e9. [Google Scholar] [CrossRef]
- Mina, M.J.; Parker, R.; Larremore, D.B. Rethinking Covid-19 test sensitivity—A strategy for containment. N. Engl. J. Med. 2020, 383, e120. [Google Scholar] [CrossRef]
- Portnoy, D.B.; Grenen, E.G.; Ferrer, R.A.; Dorsey, M.A.; Li, Y.; Han, P.K.J. Health-related uncertainty among adults in the United States during the coronavirus disease 2019 pandemic. Prev. Chronic Dis. 2021, 18, E31. [Google Scholar]
- Sirakov, I.; Stankova, P.; Bakalov, D.; Mirani, Y.; Bardarska, L.; Paraskova, G.; Popov, I.; Alexandrova, A.; Dimitrov, G.; Mizgova, G.; et al. Retrospective Analysis of the Spread of SARS-CoV-2 in the Mediterranean Part of Bulgaria, During the First Wave of the Pandemic. J. Pure Appl. Microbiol. 2024, 18, 438–450. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Patel, M.M.; Thornburg, N.J.; Stubblefield, W.B.; Talbot, H.K.; Coughlin, M.M.; Feldstein, L.R.; Self, W.H. Change in antibodies to SARS-CoV-2 over 60 days among health care personnel in Nashville, Tennessee. JAMA 2020, 324, 1781–1782. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19. N. Engl. J. Med. 2020, 383, 1085–1087, Correction in N. Engl. J. Med. 2020, 383, e74. [Google Scholar] [CrossRef]
- Muecksch, F.; Wise, H.; Batchelor, B.; Squires, M.; Semple, E.; Richardson, C.; McGuire, J.; Clearly, S.; Furrie, J.; Greig, N.; et al. Longitudinal serological analysis and neutralizing antibody levels in coronavirus disease 2019 convalescent patients. J. Infect. Dis. 2021, 223, 389–398. [Google Scholar] [CrossRef]
- Kellam, P.; Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J. Gen. Virol. 2020, 101, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Corman, V.M.; Haage, V.C.; Bleicker, T.; Schmidt, M.L.; Mühlemann, B.; Zuchowski, M.; Lei, W.K.J.; Tscheak, P.; Möncke-Buchner, E.; Müller, M.A.; et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: A single-centre laboratory evaluation study. Lancet Microbe 2021, 2, e311–e319. [Google Scholar] [CrossRef]
- Shan, D.; Johnson, J.M.; Fernandes, S.C.; Suib, H.; Hwang, S.; Wuelfing, D.; Mendes, M.; Holdridge, M.; Burke, E.M.; Beauregard, K.; et al. N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection. Nat. Commun. 2021, 12, 1931. [Google Scholar] [CrossRef]
- Jacobs, J.L.; Haidar, G.; Mellors, J.W. COVID-19: Challenges of viral variants. Annu. Rev. Med. 2023, 74, 31–53. [Google Scholar] [CrossRef]
- Perrin, L.H.; Oldstone, M.B. Persistent virus infections and immune complex disease: Viral antigens, antibodies, and complement in the glomeruli of mice infected with lymphocytic choriomeningitis virus. J. Immunol. 1977, 118, 817–825. [Google Scholar]
- Perrin, L.H.; Oldstone, M.B. The formation and fate of virus antigen-antibody complexes. J. Immunol. 1977, 118, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Gotseva, A.L.; Mizgova, G.I.; Evstatieva, I.L. SARS-CoV-2 Delta and Omicron Variants: Comparative Analysis of Confirmed Cases in Multi-Profile Hospital in Bulgaria. Acta Microbiol. Bulg. 2024, 40, 116–119. [Google Scholar] [CrossRef]
- Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Paltiel, A.D.; Zheng, A.; Walensky, R.P. Assessment of SARS-CoV-2 screening strategies to permit the safe reopening of college campuses in the United States. JAMA Netw. Open 2020, 3, e2016818. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2021, 7, eabd5393. [Google Scholar] [CrossRef]
| Method | Total Tested | Positive n (%) | Negative n (%) | 95% CI for Positivity |
|---|---|---|---|---|
| Screening ELISA IgA/M/G | 163 | 69 (42.3) | 94 (57.7) a | 34.6–50.3 |
| Quantitative IgG ELISA | 106 b | 52 (49.1) | 54 (50.9) | 39.1–59.1 |
| Rapid IgG Test | 163 | 50 (30.7) | 113 (69.3) | 23.7–38.4 |
| Rapid IgM Test | 163 | 80 (49.1) | 83 (50.9) | 41.2–57.0 |
| Rapid Antigen Test | 163 | 38 (23.3) | 125 (76.7) | 17.1–30.5 |
| RT-nested PCR | 161 c | 31 (19.3) | 130 (80.7) | 13.5–26.2 |
| Positive n (%) | Negative n (%) | 95% CI for Positivity | p-Value a | |
|---|---|---|---|---|
| Method | ||||
| Rapid Antigen Test | 13 (27.7) | 34 (72.3) | 15.6–42.6 | <0.001 |
| RT-nested PCR | 6 (12.8) | 41 (87.2) | 4.8–25.7 | <0.001 |
| Rapid IgG Test | 4 (8.5) | 43 (91.5) | 2.4–20.4 | <0.001 |
| Rapid IgM Test | 21 (44.7) | 26 (55.3) | 30.2–59.9 | 0.271 |
| Antibody Status | n | Antigen Positive n (%) | PCR Positive n (%) | Combined Positive a n (%) |
|---|---|---|---|---|
| Positive | 69 | 21 (30.4) | 11 (16.4) b | 21 (30.4) |
| Indeterminate | 47 | 13 (27.7) | 6 (12.8) | 13 (27.7) |
| Negative | 47 | 5 (10.6) | 2 (4.3) | 7 (14.9) |
| p-value for trend c | <0.038 | 0.151 | 0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirakov, I.N.; Shishkova, K.; Shishkov, S.; Alexiev, I. Molecular and Serological Tests for SARS-CoV-2 Detection in Indeterminate Serology: Can We Skip the Second Sample? Curr. Issues Mol. Biol. 2025, 47, 919. https://doi.org/10.3390/cimb47110919
Sirakov IN, Shishkova K, Shishkov S, Alexiev I. Molecular and Serological Tests for SARS-CoV-2 Detection in Indeterminate Serology: Can We Skip the Second Sample? Current Issues in Molecular Biology. 2025; 47(11):919. https://doi.org/10.3390/cimb47110919
Chicago/Turabian StyleSirakov, Ivo N., Kalina Shishkova, Stoyan Shishkov, and Ivailo Alexiev. 2025. "Molecular and Serological Tests for SARS-CoV-2 Detection in Indeterminate Serology: Can We Skip the Second Sample?" Current Issues in Molecular Biology 47, no. 11: 919. https://doi.org/10.3390/cimb47110919
APA StyleSirakov, I. N., Shishkova, K., Shishkov, S., & Alexiev, I. (2025). Molecular and Serological Tests for SARS-CoV-2 Detection in Indeterminate Serology: Can We Skip the Second Sample? Current Issues in Molecular Biology, 47(11), 919. https://doi.org/10.3390/cimb47110919

