Neurobiological Correlates of Coping Strategies in PTSD: The Role of IGF-1, CASP-9, nNOS, and IL-10 Based on Brief-COPE Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Participants
2.2. Brief-COPE Questionnaire
2.3. Methodology of Biological Material Collection, Serum Preparation, and Biomarker Analysis
2.4. Statistical Analysis
2.5. Statistical Tool
3. Results
3.1. Characteristics and Clinical Profiles of Male Mine Rescue Workers and Former Miners by PTSD Status
3.2. Correlations Between Biomarkers and Coping Strategies in Male Mine Rescue Workers and Former Miners by PTSD Status
3.2.1. Association Between IGF-1 Levels and Coping Scores
3.2.2. Association Between CASP-9 Levels and Coping Scores
3.2.3. Association Between nNOS Levels and Coping Scores
3.2.4. Association Between IL-10 Levels and Coping Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PTSD | Post-Traumatic Stress Disorder |
IGF-1 | Insulin-like Growth Factor 1 |
CASP-9 | Caspase-9 |
nNOS | Neuronal Nitric Oxide Synthase |
IL-10 | Interleukin-10 |
Brief-COPE | Brief Coping Orientation to Problems Experienced (questionnaire) |
Rho | Spearman’s Rank Correlation Coefficient |
HPA | Hypothalamic–Pituitary–Adrenal axis |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
TNF-α | Tumor Necrosis Factor Alpha |
IQR | Interquartile Range |
CAPS-5 | Clinician-Administered PTSD Scale for DSM-5 |
ELISA | Enzyme-Linked Immunosorbent Assay |
CE/IVD | Conformité Européenne/In Vitro Diagnostic |
HRP | Horseradish Peroxidase |
TMB | Tetramethylbenzidine |
4-PL | Four-Parameter Logistic model |
α (alpha) | Significance level, typically 0.05 |
Chi-square test (χ2) | Chi-square statistical test |
R | R Statistical Language |
ERA-Net | European Research Area Network |
References
- Ogłodek, E.A.; Just, M.J.; Szromek, A.R.; Araszkiewicz, A. Assessing the serum concentration levels of NT-4/5, GPX-1, TNF-α, and L-arginine as biomediators of depression severity in first depressive episode patients with and without posttraumatic stress disorder. Pharmacol. Rep. 2017, 69, 1049–1058. [Google Scholar] [CrossRef]
- Van Doren, N.; Chang, F.H.; Nguyen, A.; McKenna, K.R.; Satre, D.D.; Wiltsey-Stirman, S. A pilot study of twice-weekly group-based written exposure therapy for veterans in residential substance use treatment: Effects on PTSD and depressive symptoms. Addict. Sci. Clin. Pract. 2025, 20, 11. [Google Scholar] [CrossRef]
- Bellot Valenzuela, A.; Montorio, C.I.; Muñoz Rivas, M. Psychosocial factors associated with post-traumatic stress disorder symptom clusters in a sample of women survivors of intimate partner violence. Clin. Psychol. Psychother. 2025, 32, e70044. [Google Scholar] [CrossRef] [PubMed]
- Brewin, C.R.; Atwoli, L.; Bisson, J.I.; Galea, S.; Koenen, K.; Lewis-Fernández, R. Post-traumatic stress disorder: Evolving conceptualization and evidence, and future research directions. World Psychiatry 2025, 24, 52–80. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ferraro, S.; Zhao, Y.; Wu, B.; Lin, J.; Chen, T.; Gao, J.; Li, L. Common and divergent neuroimaging features in major depression, posttraumatic stress disorder, and their comorbidity. Psychoradiology 2024, 4, kkae022. [Google Scholar] [CrossRef]
- Li, L.; Jiang, J.; Zhong, S.; Lin, J.; Yao, Y.; Kemp, G.J.; Chen, Y.; Gong, Q. Transdiagnostic depression severity and its relationship to global and prefrontal-amygdala structural properties in people with major depression and post-traumatic stress disorder. Cereb. Cortex 2024, 34, bhae381. [Google Scholar] [CrossRef]
- Roeckner, A.R.; Lin, E.R.; Hinrichs, R.; Harnett, N.G.; Lebois, L.A.M.; van Rooij, S.J.H.; Ely, T.D.; Jovanovic, T.; Murty, V.P.; Bruce, S.E.; et al. Sequential decreases in basolateral amygdala response to threat predict failure to recover from PTSD. Neuropsychopharmacology 2025, 50, 1573–1582. [Google Scholar] [CrossRef]
- Suo, X.; Pan, N.; Chen, L.; Li, L.; Kemp, G.J.; Wang, S.; Gong, Q. Resolving heterogeneity in post-traumatic stress disorder using individualized structural covariance network analysis. Depress. Anxiety 2024, 2024, 4399757. [Google Scholar] [CrossRef]
- Ogłodek, E.A. Evaluation of ADMA, carbonyl groups, CAT and NKA in depressed patients with and without posttraumatic stress disorder. Pharmacol. Rep. 2017, 69, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Ogłodek, E.A.; Szota, A.M.; Just, M.J.; Szromek, A.R.; Araszkiewicz, A. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their comorbidity. Pharmacol. Rep. 2016, 68, 756–763. [Google Scholar] [CrossRef]
- Grey, D.K.; Purcell, J.B.; Buford, K.N.; Schuster, M.A.; Elliott, M.N.; Emery, S.T.; Mrug, S.; Knight, D.C. Discrimination exposure, neural reactivity to stress, and psychological distress. Am. J. Psychiatry 2024, 181, 1112–1126. [Google Scholar] [CrossRef]
- Su, Y.J. Predicting DSM-5 PTSD symptomatology 6 months to 2 years after burn: The role of early psychological risk factors. Burns 2024, 50, 1898–1907. [Google Scholar] [CrossRef]
- Cortese, A.; Ohata, R.; Alemany-González, M.; Kitagawa, N.; Imamizu, H.; Koizumi, A. Time-dependent neural arbitration between cue associative and episodic fear memories. Nat. Commun. 2024, 15, 8706. [Google Scholar] [CrossRef]
- Korem, N.; Duek, O.; Ben-Zion, Z.; Spiller, T.R.; Gordon, C.; Amen, S.; Levy, I.; Harpaz-Rotem, I. Post-treatment alterations in white matter integrity in PTSD: Effects on symptoms and functional connectivity—A secondary analysis of an RCT. Psychiatry Res. Neuroimaging 2024, 343, 111864. [Google Scholar] [CrossRef]
- Ogłodek, E.A. Changes in the serum concentration levels of serotonin, tryptophan and cortisol among stress-resilient and stress-susceptible individuals after experiencing traumatic stress. Int. J. Environ. Res. Public Health 2022, 19, 16517. [Google Scholar] [CrossRef]
- Nasereddin, L.; Alnajjar, O.; Bashar, H.; Abuarab, S.F.; Al-Adwan, R.; Chellappan, D.K.; Barakat, M. Corticosteroid-induced psychiatric disorders: Mechanisms, outcomes, and clinical implications. Diseases 2024, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Aspelund, S.G.; Lorange, H.L.; Halldorsdottir, T.; Baldursdottir, B.; Valdimarsdottir, H.; Valdimarsdottir, U.; Hjördísar Jónsdóttir, H.L. Assessing neurocognitive outcomes in PTSD: A multilevel meta-analytical approach. Eur. J. Psychotraumatol. 2025, 16, 2469978. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.C.; Jendro, A.M.; Fischer, E.P.; Drummond, K.L.; Haltom, T.M.; Hundt, N.E.; Cucciare, M.A.; Pyne, J.M. Veterans’ experiences of and preferences for patient-centered, measurement-based PTSD care. Med. Care 2024, 62, S84–S90. [Google Scholar] [CrossRef]
- Shahzad, M.N.; Ali, H. Deep learning-based diagnosis of PTSD using 3D-CNN and resting-state fMRI data. Psychiatry Res. Neuroimaging 2024, 343, 111845. [Google Scholar] [CrossRef] [PubMed]
- Grzesińska, A.D. The involvement of the endocannabinoid, glutamatergic, and GABAergic systems in PTSD. Int. J. Mol. Sci. 2025, 26, 5929. [Google Scholar] [CrossRef]
- Zegarra-Valdivia, J.A. Insulin-like growth factor type 1 and its relation with neuropsychiatric disorders. Medwave 2017, 17, e7031. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, L.; Zhao, T.; Liu, X.; Zhang, P.; Liu, Y.; Zheng, X.; Li, Q. Caspase-9: Structure, mechanisms and clinical application. Oncotarget 2017, 8, 23996–24008. [Google Scholar] [CrossRef]
- Gu, Y.; Zhu, D. nNOS-mediated protein-protein interactions: Promising targets for treating neurological and neuropsychiatric disorders. J. Biomed. Res. 2020, 35, 1–10. [Google Scholar] [CrossRef]
- Ogłodek, E. Changes in the serum levels of cytokines: IL-1β, IL-4, IL-8 and IL-10 in depression with and without posttraumatic stress disorder. Brain Sci. 2022, 12, 387. [Google Scholar] [CrossRef]
- Fernández de Sevilla, M.E.; Pignatelli, J.; Zegarra-Valdivia, J.A.; Mendez, P.; Nuñez, A.; Torres Alemán, I. Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol. Psychiatry 2022, 27, 2182–2196. [Google Scholar] [CrossRef]
- Rusch, H.L.; Gill, J.M. Effect of acute sleep disturbance and recovery on insulin-like growth factor-1 (IGF-1): Possible connections and clinical implications. J. Clin. Sleep Med. 2015, 11, 1245–1246. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, J.; Ma, J.; Li, D.; Gu, Q.; Chen, S.; Wang, Z.; Sun, W.; Li, M. Correlation between serum IGF-1 and EGF levels and neuropsychiatric and cognitive in Parkinson’s disease patients. Neurol. Sci. 2023, 44, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Bot, M.; Milaneschi, Y.; Penninx, B.W.; Drent, M.L. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology 2016, 68, 148–155. [Google Scholar] [CrossRef]
- Nicholls, P.J.; Pack, T.F.; Urs, N.M.; Kumar, S.; Zhou, Y.; Ichim, G.; Ginzel, J.D.; Turu, G.; Calabrese, E.; Roberts, W.L.; et al. Measuring nonapoptotic caspase activity with a transgenic reporter in mice. eNeuro 2022, 9, ENEURO.0147-21.2022. [Google Scholar] [CrossRef]
- Liu, S.; Han, S.; Dai, Q.; Li, S.; Li, J. BICAO-induced ischaemia caused depressive-like behaviours and caspase-8/-9-dependent brain regional neural cell apoptosis in mice. Stroke Vasc. Neurol. 2017, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Apo, E.; Silva-Pereyra, J.; Soto-Abraham, V.; Mondragón-Maya, A.; Sanchez-Lopez, J. Immunohistochemical analysis of caspase expression in the brains of individuals with obesity or overweight. Obes. Sci. Pract. 2022, 9, 137–144. [Google Scholar] [CrossRef]
- Peristeri, E.; Pitsikas, N. Effects of low doses of different nitric oxide (NO) donors in rat models of obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). Nitric Oxide 2022, 129, 1–7. [Google Scholar] [CrossRef]
- Molnár, T.; Pallagi, P.; Tél, B.; Király, R.; Csoma, E.; Jenei, V.; Varga, Z.; Gogolák, P.; Hueber, A.O.; Máté, Z.; et al. Caspase-9 acts as a regulator of necroptotic cell death. FEBS J. 2021, 288, 6476–6491. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, M.; Philip, B.; Traynor-White, C.; Davis, C.G.; Onuoha, S.; Cordoba, S.; Thomas, S.; Pule, M. A rapamycin-activated caspase 9-based suicide gene. Mol. Ther. 2018, 26, 1266–1276. [Google Scholar] [CrossRef]
- Araya, L.E.; Soni, I.V.; Hardy, J.A.; Julien, O. Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem. Biol. 2021, 16, 2280–2296. [Google Scholar] [CrossRef]
- An, H.K.; Chung, K.M.; Park, H.; Hong, J.; Gim, J.E.; Choi, H.; Lee, Y.W.; Choi, J.; Mun, J.Y.; Yu, S.W. CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis. Autophagy 2020, 16, 1598–1617. [Google Scholar] [CrossRef] [PubMed]
- Atrooz, F.; Alkadhi, K.A.; Salim, S. Understanding stress: Insights from rodent models. Curr. Res. Neurobiol. 2021, 2, 100013. [Google Scholar] [CrossRef] [PubMed]
- Merz, T.; McCook, O.; Denoix, N.; Radermacher, P.; Waller, C.; Kapapa, T. Biological connection of psychological stress and polytrauma under intensive care: The role of oxytocin and hydrogen sulfide. Int. J. Mol. Sci. 2021, 22, 9192. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Shi, H.J.; Chang, L.; Zhang, C.C.; Si, M.; Li, N.; Zhu, D.Y. nNOS-CAPON blockers produce anxiolytic effects by promoting synaptogenesis in chronic stress-induced animal models of anxiety. Br. J. Pharmacol. 2020, 177, 3674–3690. [Google Scholar] [CrossRef]
- Wan, C.; Xia, Y.; Yan, J.; Lin, W.; Yao, L.; Zhang, M.; Gaisler-Salomon, I.; Mei, L.; Yin, D.M.; Chen, Y. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus. Cell Death Dis. 2024, 15, 167. [Google Scholar] [CrossRef]
- Kourosh-Arami, M.; Hosseini, N.; Mohsenzadegan, M.; Komaki, A.; Joghataei, M.T. Neurophysiologic implications of neuronal nitric oxide synthase. Rev. Neurosci. 2020, 3, 617–636. [Google Scholar] [CrossRef]
- Cao, S.; Yang, J.; Chen, L.; Li, Z.; Jia, L.; Huang, Y.; Xu, Z.; Lu, P.; Liu, J.; Liu, Q.; et al. IL-4-JAK1-STAT6 Pathway Mediates Electroacupuncture’s Effect on Microglial M2 Polarization to Treat Inflammatory Bowel Disease With Comorbid Depression. CNS Neurosci. Ther. 2025, 8, e70572. [Google Scholar] [CrossRef]
- Yin, M.; Zhou, H.; Li, J.; Wang, L.; Zhu, M.; Wang, N.; Yang, P.; Yang, Z. The change of inflammatory cytokines after antidepressant treatment and correlation with depressive symptoms. J. Psychiatr. Res. 2025, 184, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jiang, N.; Zhang, Y.; Zhao, Y.; Chen, F.; Li, X.; Qiang, M.; Zeng, G.; He, Q.; Liu, X.; et al. Chronic unpredictable mild stress induces anxiety-like behavior in female C57BL/6N mice, accompanied by alterations in inflammation and the kynurenine pathway of tryptophan metabolism. Front. Neurosci. 2025, 19, 1556744. [Google Scholar] [CrossRef]
- Renner, V.; Joraschky, P.; Kirschbaum, C.; Schellong, J.; Petrowski, K. Pro- and anti-inflammatory cytokines Interleukin-6 and Interleukin-10 predict therapy outcome of female patients with posttraumatic stress disorder. Transl. Psychiatry 2022, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Grzesińska, A.; Ogłodek, E.A. Involvement of matrix metalloproteinases (MMP-2 and MMP-9), inflammasome NLRP3, and gamma-aminobutyric acid (GABA) pathway in cellular mechanisms of neuroinflammation in PTSD. Int. J. Mol. Sci. 2025, 26, 5662. [Google Scholar] [CrossRef]
- Vedantam, A.; Brennan, J.; Levin, H.S.; McCarthy, J.J.; Dash, P.K.; Redell, J.B.; Yamal, J.M.; Robertson, C.S. Early versus Late Profiles of Inflammatory Cytokines after Mild Traumatic Brain Injury and Their Association with Neuropsychological Outcomes. J. Neurotrauma 2021, 38, 53–62. [Google Scholar] [CrossRef]
- Ogłodek, E.A.; Szota, A.M.; Just, M.J.; Araszkiewicz, A.; Szromek, A.R. Sense of alexithymia in patients with anxiety disorders comorbid with recurrent urticaria. Neuropsychiatr. Dis. Treat. 2016, 12, 995–1004. [Google Scholar] [CrossRef]
- Shao, Y.; Zhou, X.; Liu, H.; Li, T.; Wang, Y.; Chen, Y.; Huang, X.; Sun, W. Impact of Emergency Warning Nursing on CRP, PCT, TNF-α and Clinical Indicators in Patients with Acute Stress Disorder under Hierarchical Analysis. Actas Españolas de Psiquiatría 2025, 53, 38–48. [Google Scholar] [CrossRef]
- Carver, C.S. You want to measure coping but your protocol's too long: Consider the brief COPE. Int. J. Behav. Med. 1997, 4, 92–100. [Google Scholar] [CrossRef]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- R Core Team: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 18 April 2025).
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package, Version 0.6.0. 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 18 April 2025).
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Makowski, D.; Lüdecke, D.; Patil, I.; Thériault, R.; Ben-Shachar, M.; Wiernik, B. “Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption.” CRAN 2023. Available online: https://easystats.github.io/report/ (accessed on 18 April 2025).
- Sjoberg, D.; Whiting, K.; Curry, M.; Lavery, J.; Larmarange, J. Reproducible Summary Tables with the gtsummary Package. R J. 2024, 13, 570–580. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 18 April 2025).
- Wickham, H.; Bryan, J. readxl: Read Excel Files. R Package Version 1.4.3. 2023. Available online: https://CRAN.R-project.org/package=readxl (accessed on 18 April 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 18 April 2025).
- Zheng, X.; Dingpeng, L.; Yan, X.; Yao, X.; Wang, Y. The role and mechanism of 5-HTDRN-BNST neural circuit in anxiety and fear lesions. Front. Neurosci. 2024, 18, 1362899. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, D.J.; McGonigal, A.; Becker, C.; Benoliel, J.J.; Nandam, L.S.; Soncin, L.; Kotwas, I.; Bernard, C.; Bartolomei, F. Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management. eNeuro. 2023, 10, ENEURO.0200-23.2023. [Google Scholar] [CrossRef] [PubMed]
- Kearney, B.E.; Lanius, R.A. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front. Neurosci. 2022, 16, 1015749. [Google Scholar] [CrossRef]
- Pant, U.; Frishkopf, M.; Park, T.; Norris, C.M.; Papathanassoglou, E. A Neurobiological Framework for the Therapeutic Potential of Music and Sound Interventions for Post-Traumatic Stress Symptoms in Critical Illness Survivors. Int. J. Environ. Res. Public Health 2022, 19, 3113. [Google Scholar] [CrossRef]
- Venkatasamy, L.; Iannucci, J.; Pereverzev, A.; Hoar, J.; Huber, E.; Ifegbo, A.; Dominy, R.; El-Hakim, Y.; Mani, K.K.; Dabney, A.; et al. Systemic IGF-1 administration prevents traumatic brain injury induced gut permeability, dysmorphia, dysbiosis, and the increased number of immature dentate granule cells. Acta Neuropathol. Commun. 2025, 13, 90. [Google Scholar] [CrossRef]
- Weppner, J.; Rosenthal, K.; Bath, J.; Locklear, T.; Martinez, M. IGF-1 as a Biomarker for Symptom Severity in Adult Traumatic Brain Injury: Evidence from an Observational Study. Neurotrauma Rep. 2025, 6, 345–354. [Google Scholar] [CrossRef]
- Sharma, D.R.; Cheng, B.; Jaiswal, M.K.; Zhang, X.; Kumar, A.; Parikh, N.; Singh, D.; Sheth, H.; Varghese, M.; Dobrenis, K.; et al. Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns. Cereb. Cortex 2023, 33, 6449–6464. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.K.; Watson, H.J.; Del Re, A.C.; Finch, J.E.; Hardin, S.L.; Dumain, A.S.; Brownley, K.A.; Baker, J.H. Peripheral Biomarkers of Anorexia Nervosa: A Meta-Analysis. Nutrients 2024, 16, 2095. [Google Scholar] [CrossRef]
- Nöthling, J.; Womersley, J.S.; Mhlongo, S.; Lombard, C.; Abrahams, N.; Seedat, S.; Hemmings, S.M.J. The relationship between childhood trauma, rs1360780 genotypes, FKBP5 intron 7 methylation and posttraumatic stress disorder in women who have experienced rape. Eur. J. Psychotraumatol. 2025, 16, 2485707. [Google Scholar] [CrossRef]
- Andero, R. Stress-induced changes in the molecular processes underlying fear memories: Implications for PTSD and relevant animal models. Mol. Psychiatry 2025, 30, 2219–2227. [Google Scholar] [CrossRef]
- Damari-Tabachnik, O.; Heymann, A.; Perry, A.; Tiberg, K.; Shlomi, I.; Golland, Y. Empathy deficits in women with complex trauma following childhood sexual abuse. J. Affect. Disord. 2025, 389, 119629. [Google Scholar] [CrossRef]
- Kaplan, G.B.; Dadhi, N.A.; Whitaker, C.S. Mitochondrial dysfunction in animal models of PTSD: Relationships between behavioral models, neural regions, and cellular maladaptation. Front. Physiol. 2023, 14, 1105839. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Li, X.Y.; Shao, R.J.; Lu, J.; Tu, Y. Effect of acupuncture on endoplasmic reticulum stress-related factors in hippocampus of post-traumatic stress disorder rats. Zhen Ci Yan Jiu 2022, 47, 224–230. [Google Scholar] [CrossRef]
- Ozbeyli, D.; Aykac, A.; Alaca, N.; Hazar-Yavuz, A.N.; Ozkan, N.; Sener, G. Protective effects of vortioxetine in predator scent stress model of post-traumatic stress disorder in rats: Role on neuroplasticity and apoptosis. J. Physiol. Pharmacol. 2019, 70, 557–570. [Google Scholar] [CrossRef]
- Murayama, R.; Cai, Y.; Nakamura, H.; Hashimoto, K. Demyelination in psychiatric and neurological disorders: Mechanisms, clinical impact, and novel therapeutic strategies. Neurosci. Biobehav. Rev. 2025, 174, 106209. [Google Scholar] [CrossRef]
- López-López, B.; Crespo, I. Neuroplasticity in Post-Traumatic Stress Disorder. Rev. Neurol. 2025, 80, 33478. [Google Scholar] [CrossRef]
- Fronza, M.G.; Ferreira, B.F.; Pavan-Silva, I.; Guimarães, F.S.; Lisboa, S.F. “NO” Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023, 29, 89. [Google Scholar] [CrossRef]
- Fajkić, A.; Musić, M.; Kulenović, A.D.; Začiragić, A.; Avdagić, N.; Babić, N.; Lepara, O.; Pepić, E.; Dervišević, A.; Huskić, J. Elevated Serum C-Reactive Protein Level Is not Associated with Serum Nitric Oxide in Patients with Posttraumatic Stress Disorder. Psychiatr. Danub. 2017, 29, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Li, L.P.; Dustrude, E.T.; Haulcomb, M.M.; Abreu, A.R.; Fitz, S.D.; Johnson, P.L.; Thakur, G.A.; Molosh, A.I.; Lai, Y.; Shekhar, A. PSD95 and nNOS interaction as a novel molecular target to modulate conditioned fear: Relevance to PTSD. Transl. Psychiatry 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Mok, A.; Douflias, C.; Oestreich, L.K.L. A biobank for complex post-traumatic stress disorder (C-PTSD) and PTSD: Study protocol for a cross-sectional study. Eur. J. Psychotraumatol. 2025, 16, 2538906. [Google Scholar] [CrossRef] [PubMed]
- Flores-Torres, R.P.; Salas-Venegas, V.; Santín-Márquez, R.; De la Vega-Tinajar, M.; Ramírez-Carreto, R.J.; Librado-Osorio, R.; Luna-López, A.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Morán-Ramos, S.; et al. Senotherapy as a multitarget intervention in chronic obesity: Modulation of senescence, neuroinflammation, dysbiosis, and synaptic integrity in middle-aged female Wistar rats. Exp. Neurol. 2025, 392, 115331. [Google Scholar] [CrossRef]
- Friday, C.M.; Stephens, I.O.; Smith, C.T.; Lee, S.; Satish, D.; Devanney, N.A.; Cohen, S.; Morganti, J.M.; Gordon, S.M.; Johnson, L.A. APOE4 reshapes the lipid droplet proteome and modulates microglial inflammatory responses. Neurobiol. Dis. 2025, 212, 106983. [Google Scholar] [CrossRef]
- Fan, H.; Liu, L.; Zhao, X.; Hao, M.; Tian, Y.; Yang, C.; Wang, J.; Mo, D.; Geng, F.; Xia, L.; et al. Associations of non-suicidal self-injury with childhood maltreatment and inflammatory cytokines in adolescents with major depressive disorder. BMC Psychiatry 2025, 25, 672. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Khudhair, H.N.; Ranaei-Siadat, S.O.; Fatemi, F.; Mirzajani, F.; Niu, M.; Maes, M. Affective and chronic fatigue symptoms are associated with serum neuronal damage markers in Parkinson’s disease. Sci. Rep. 2025, 15, 20647. [Google Scholar] [CrossRef]
- Pan, Y. Admiration and motivation: Key factors in managing PTSD among firefighters. BMC Public Health 2024, 24, 1871. [Google Scholar] [CrossRef] [PubMed]
- Woźny-Rasała, I.; Ogłodek, E.A. Biomarker correlations in PTSD: IL-18, IRE1, pERK, and ATF6 via Courtauld Emotional Control Scale (CECS). Int. J. Mol. Sci. 2025, 26, 7506. [Google Scholar] [CrossRef]
- Porten, S.; Friedmann, F.; Schoofs, N.; Barth, C.; Meyer, K.; Santangelo, P.; Ebner-Priemer, U.; Müller-Engelmann, M.; Steil, R.; Kleindienst, N.; et al. Subjective and objective sleep disturbances following trauma-focused treatment. Eur. J. Psychotraumatol. 2025, 16, 2542044. [Google Scholar] [CrossRef]
- Loisel-Fleuriot, L.; Fovet, T.; Bugnet, A.; Creupelandt, C.; Wathelet, M.; Szaffarczyk, S.; Duhem, S.; Vaiva, G.; Horn, M.; D’Hondt, F. An exploratory study of emotional forecasting and experience disparities in PTSD: Insights from a virtual reality paradigm. Eur. J. Psychotraumatol. 2025, 16, 2524289. [Google Scholar] [CrossRef]
- Steil, R.; Preiss, H.; Rueger, M.S.; Ehring, T.; Morina, N.; Kuck, S.; Mewes, R.; Giesebrecht, J.; Johow, J.; Weise, K.; et al. Complex posttraumatic stress disorder in treatment-seeking refugees: The role of trauma history, post-migration stressors and comorbid symptoms. Eur. J. Psychotraumatol. 2025, 16, 2538264. [Google Scholar] [CrossRef] [PubMed]
- van der Does, F.H.S.; Kitano, M.; Nagamine, M.; Saito, T.; van der Wee, N.J.A.; Chiba, T.; Edo, N.; Vermetten, E.; Giltay, E.J. Dynamic time warping network analysis of posttraumatic stress symptoms in Japanese first responders. Eur. J. Psychotraumatol. 2025, 16, 2528313. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.; Ehlers, A. A qualitative analysis of young adults’ beliefs about bullying: Exploring associations with social anxiety and post-traumatic stress. Eur. J. Psychotraumatol. 2025, 16, 2523638. [Google Scholar] [CrossRef]
- Jongedijk, R.A.; Knipscheer, J.W.; van der Aa, N.; de Haan, A.M.; Kleber, R.J.; Boelen, P.A. Are specific PTSD criteria associated with treatment outcome in traumatized veterans and police officers? Eur. J. Psychotraumatol. 2025, 16, 2542702. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall (N = 92) | Past PTSD (≤5 y) (N = 33) | Past PTSD (>5 y) (N = 31) | No PTSD (Control) (N = 28) | p-Value |
---|---|---|---|---|---|
Demographics | |||||
Age, median (IQR) | 34.0 (28.8, 41.0) | 34.0 (31.0, 41.0) | 36.0 (29.5, 41.0) | 33.5 (24.2, 41.5) | 0.524 |
Marital status, n (%): | <0.001 | ||||
divorced or separated | 47 (51.1%) | 22 (66.7%) A | 19 (61.3%) A | 6 (21.4%) B | 0.001 |
married | 36 (39.1%) | 9 (27.3%) B | 6 (19.4%) B | 21 (75.0%) A | <0.001 |
never married | 9 (9.8%) | 2 (6.1%) | 6 (19.4%) | 1 (3.6%) | |
Education, n (%): | 0.339 | ||||
vocational | 48 (52.2%) | 14 (42.4%) | 17 (54.8%) | 17 (60.7%) | |
higher | 44 (47.8%) | 19 (57.6%) | 14 (45.2%) | 11 (39.3%) | |
Lifestyle | |||||
Sports performance and training, n (%): | 0.006 | ||||
daily | 56 (60.9%) | 22 (66.7%) A | 23 (74.2%) A | 11 (39.3%) B | 0.016 |
1 time in a week | 5 (5.4%) | 0 (0.0%) B | 0 (0.0%) B | 5 (17.9%) A | 0.002 |
2–3 times in a week | 31 (33.7%) | 11 (33.3%) | 8 (25.8%) | 12 (42.9%) | 0.383 |
Biomarkers, median (IQR) | |||||
IGF-1 (nmol/mL) | 10.8 (5.2, 32.3) | 4.9 (4.0, 5.8) C | 13.6 (7.6, 19.6) B | 37.1 (32.5, 44.6) A | <0.001 |
CASP-9 (ng/mL) | 10.2 (3.0, 22.9) | 23.8 (20.8, 26.5) A | 6.8 (3.7, 16.6) B | 2.7 (1.8, 3.3) C | <0.001 |
nNOS (ng/mL) | 25.7 (7.0, 57.9) | 62.3 (46.6, 82.1) A | 19.1 (9.5, 35.7) B | 5.7 (4.8, 7.1) C | <0.001 |
IL-10 (ng/L) | 806.9 (319.2, 2411.8) | 279.0 (231.0, 345.3) C | 833.7 (523.0, 1448.5) B | 3159.0 (2814.0, 3516.2) A | <0.001 |
Coping strategies (Brief-COPE), median (IQR) score | |||||
Problem-focused coping [0–32 score] | 14.0 (13.0, 28.0) | 13.0 (12.0, 14.0) B | 14.0 (12.5, 16.0) B | 30.0 (29.0, 30.0) A | <0.001 |
Avoidant coping [0–32 score] | 24.0 (13.8, 25.0) | 26.0 (25.0, 26.0) A | 24.0 (23.0, 25.0) B | 12.0 (11.0, 13.0) C | <0.001 |
Emotion-focused coping [0–48 score] | 27.5 (22.0, 42.0) | 27.0 (24.0, 30.0) B | 21.0 (19.0, 22.5) C | 43.0 (42.0, 44.0) A | <0.001 |
Overall score [0–112 score] | 65.5 (60.8, 82.0) | 66.0 (62.0, 68.0) B | 59.0 (56.0, 62.0) C | 84.5 (83.0, 86.0) A | <0.001 |
Characteristic | Past PTSD (≤5 y) vs. (>5 y) | Past PTSD (≤5 y) vs. Control | Past PTSD (>5 y) vs. Control |
---|---|---|---|
Demographics and lifestyle | |||
Marital status | 0.285 | <0.001 | <0.001 |
Sports performance and training | 0.590 | 0.018 | 0.016 |
Biomarkers | |||
IGF-1 | <0.001 | <0.001 | <0.001 |
CASP-9 | <0.001 | <0.001 | <0.001 |
nNOS | <0.001 | <0.001 | <0.001 |
IL-10 | <0.001 | <0.001 | <0.001 |
Coping Strategies (Brief-COPE) | |||
Problem-focused coping | 0.180 | <0.001 | <0.001 |
Avoidant coping | 0.004 | <0.001 | <0.001 |
Emotion-focused coping | <0.001 | <0.001 | <0.001 |
Overall score | 0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraniak-Gieszczyk, B.; Ogłodek, E.A. Neurobiological Correlates of Coping Strategies in PTSD: The Role of IGF-1, CASP-9, nNOS, and IL-10 Based on Brief-COPE Assessment. Curr. Issues Mol. Biol. 2025, 47, 868. https://doi.org/10.3390/cimb47100868
Paraniak-Gieszczyk B, Ogłodek EA. Neurobiological Correlates of Coping Strategies in PTSD: The Role of IGF-1, CASP-9, nNOS, and IL-10 Based on Brief-COPE Assessment. Current Issues in Molecular Biology. 2025; 47(10):868. https://doi.org/10.3390/cimb47100868
Chicago/Turabian StyleParaniak-Gieszczyk, Barbara, and Ewa Alicja Ogłodek. 2025. "Neurobiological Correlates of Coping Strategies in PTSD: The Role of IGF-1, CASP-9, nNOS, and IL-10 Based on Brief-COPE Assessment" Current Issues in Molecular Biology 47, no. 10: 868. https://doi.org/10.3390/cimb47100868
APA StyleParaniak-Gieszczyk, B., & Ogłodek, E. A. (2025). Neurobiological Correlates of Coping Strategies in PTSD: The Role of IGF-1, CASP-9, nNOS, and IL-10 Based on Brief-COPE Assessment. Current Issues in Molecular Biology, 47(10), 868. https://doi.org/10.3390/cimb47100868