Comparison of Gut Microbial Structure and Function Changes in Sichuan–Tibetan Black Pigs at Different Growth Stages Based on Metagenomic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Experimental Design
2.2. 16S rDNA Gene Sequencing
2.3. Bioinformatics Analysis of Sequencing Data
3. Results
3.1. Sample Sequencing Information
3.2. Diversity Analysis of Gut Microbiota
3.3. Altered Gut Microbiota at Different Taxonomic Levels
3.4. Screening the Fecal Microbiota Biomarkers
3.5. FAPROTAX Predictions of Gut Microbe Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.H.; Liu, R.; Yang, Y.K. Study on feeding level and pattern of Chuanzang black pig commercial pig combination. Southwest China J. Agric. Sci. 2013, 26, 2588–2591. [Google Scholar]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Xu, J.; Ren, E.; Yong, S.; Zhu, W. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe 2017, 49, 30–40. [Google Scholar]
- Wang, P. Study on diversity and influencing factors of intestinal microorganisms in pigs. China Anim. Health 2024, 26, 71–72. [Google Scholar]
- Jessica, A.T.; Rita, A.O.; Ana, D.; Carles, U.; Karina, B.X. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 2015, 10, 1861–1871. [Google Scholar] [CrossRef]
- Leeming, R.E.; Johnson, J.A.; Spector, D.T.; Roy, C.I.L. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 2019, 11, 2862. [Google Scholar] [CrossRef]
- Wang, Z.Y. Research progress on influencing factors of porcine intestinal microbiota. China Swine Ind. 2023, 18, 64–67. [Google Scholar]
- Wang, N.; Ma, S.; Fu, L. Gut microbiota feature of senile osteoporosis by shallow shotgun sequencing using aged rats model. Genes 2022, 13, 619. [Google Scholar] [CrossRef]
- Zheng, X.; Nie, K.; Xu, Y.; Zhang, H.; Xie, F.; Xu, L.; Zhang, Z.; Ding, Y.; Yin, Z.; Zhang, X. Fecal microbial structure and metabolic profile in post-weaning diarrheic piglets. Genes 2023, 14, 1166. [Google Scholar] [CrossRef] [PubMed]
- Rachel, G.; Maraike, P.; Stav, E.; Alexander, A.; Goor, A.; Igal, H.; Dorrestein, P.C.; Meijler, M.M.; Itzhak, M. Mammalian gut metabolomes mirror microbiome composition and host phylogeny. ISME J. 2021, 16, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Aonghus, L.; Harry, S. Gut microbiota: Beyond metagenomics, metatranscriptomics illuminates microbiome functionality in IBD. Nature reviews. Gastroenterol. Hepatol. 2018, 15, 193–194. [Google Scholar]
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Welch, D.M.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, B.A.; Caporaso, J.G. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 2018, 6, e27295v2. [Google Scholar] [CrossRef]
- Robert, C.E. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S.; et al. Structure, functions, and diversity of the healthy human microbiome. Prog. Mol. Biol. Transl. Sci. 2022, 191, 53–82. [Google Scholar]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Liu, J.; Dong, W.; Zhao, J.; Wu, J.; Xia, J.; Xie, S.; Song, X. Gut microbiota profiling variated during colorectal cancer development in mouse. BMC Genom. 2022, 23 (Suppl. S4), 848. [Google Scholar] [CrossRef]
- Shairah, A.R.; John, M.B.; Terence, L.M.; Kim, T.S. Changes in lake sturgeon gut microbiomes relative to founding origin and in response to chemotherapeutant treatments. Microorganisms 2022, 10, 1005. [Google Scholar] [CrossRef]
- Danilenko, V.N.; Devyatkin, A.; Marsova, M.V.; Shmyrev, V. Common Inflammatory Mechanisms in COVID-19 and Parkinson’s Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J. Inflamm. Res. 2021, 14, 6349–6381. [Google Scholar] [CrossRef]
- Chen, L.M.; Xu, Y.S.; Chen, X.Y.; Fang, C.; Zhao, L.P. The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Front. Microbiol. 2017, 8, 1688. [Google Scholar] [CrossRef]
- Lu, D.; Tiezzi, F.; Schillebeeckx, C.; McNulty, N.P.; Schwab, C.; Shull, C.; Maltecca, C. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome 2018, 6, 4. [Google Scholar] [CrossRef]
- He, H.D. A Comparative Study on Fecal Microbiota Between Chuanxiang Black Pigs and Plain Tibetan Pigs at Different Developmental Stages. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2024. [Google Scholar]
- Yang, L. Comparison of Gut Microbiota and Growth Related Indicators Among Different Species. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2014. [Google Scholar]
- Curley, J.P.; Jordan, E.R.; Swaney, W.T. The meaning of weaning: Influence of the weaning period on behavioral development in mice. Dev. Neurosci. 2009, 31, 318–331. [Google Scholar] [CrossRef]
- Zhu, W.Y.; Yao, W.; Mao, S.Y. Denaturation gradient gel electrophoresis method to explore the changes of fecal bacterial flora of weaned piglets. J. Microbiol. 2003, 43, 503–508. [Google Scholar]
- Wang, X.; Tsai, T.; Deng, F.; Wei, X.; Zhao, J. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome 2019, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, Y.; Fu, H.; Xiong, X.; Huang, L. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat. Commun. 2021, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Tap, J.; Mondot, S.; Levenez, F.; Leclerc, M. Towards the human intestinal microbiota phylogenetic core. Env. Microbiol 2009, 11, 2574–2584. [Google Scholar] [CrossRef] [PubMed]
- Frese, S.A.; Parker, K.; Calvert, C.C. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 2015, 3, 28. [Google Scholar] [CrossRef]
- Elmacı, S.B.; Tokatlı, M.; Dursun, D. Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol. 2014, 60, 241–251. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Dan, K.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Huang, X.C.; Ke, S.L. Characterization of gut microbiota composition in Tibetan pigs based on 16S rRNA gene and metagenomic sequencing. J. Jiangxi Agric. Univ. 2024, 46, 1256–1265. [Google Scholar]
- Kumar, H.; Park, W.; Srikanth, K.; Choi, B.H.; Cho, E.S.; Lee, K.T.; Kim, J.M.; Kim, K.; Park, J.; Lim, D.; et al. Comparison of Bacterial Populations in the Ceca of Swine at Two Different Stages and Their Functional Annotations. Genes 2019, 10, 382. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Qing, Y.; Huang, K.; Huang, H.; Li, C.; Mei, Q.; Wu, Q. Comparison of Gut Microbial Structure and Function Changes in Sichuan–Tibetan Black Pigs at Different Growth Stages Based on Metagenomic Analysis. Curr. Issues Mol. Biol. 2025, 47, 866. https://doi.org/10.3390/cimb47100866
Jiang L, Qing Y, Huang K, Huang H, Li C, Mei Q, Wu Q. Comparison of Gut Microbial Structure and Function Changes in Sichuan–Tibetan Black Pigs at Different Growth Stages Based on Metagenomic Analysis. Current Issues in Molecular Biology. 2025; 47(10):866. https://doi.org/10.3390/cimb47100866
Chicago/Turabian StyleJiang, Lichun, Yi Qing, Kaiyuan Huang, Huiling Huang, Chengmin Li, Qinggang Mei, and Qian Wu. 2025. "Comparison of Gut Microbial Structure and Function Changes in Sichuan–Tibetan Black Pigs at Different Growth Stages Based on Metagenomic Analysis" Current Issues in Molecular Biology 47, no. 10: 866. https://doi.org/10.3390/cimb47100866
APA StyleJiang, L., Qing, Y., Huang, K., Huang, H., Li, C., Mei, Q., & Wu, Q. (2025). Comparison of Gut Microbial Structure and Function Changes in Sichuan–Tibetan Black Pigs at Different Growth Stages Based on Metagenomic Analysis. Current Issues in Molecular Biology, 47(10), 866. https://doi.org/10.3390/cimb47100866