Subjective Cognitive Decline and Genetic Propensity for Dementia beyond Apolipoprotein ε4: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Systematic Review Search Strategy
2.2. Screening and Eligibility Strategy
3. Results
3.1. Family Studies
3.2. Other Genes beyond APOE ε4
3.3. Polygenic Risk and SCD
4. Discussion
4.1. Family Studies
4.2. Other Genes beyond APOE ε4
4.3. Polygenic Risk
4.4. Limitations of Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef]
- Reisberg, B.; Prichep, L.; Mosconi, L.; John, E.R.; Glodzik-Sobanska, L.; Boksay, I.; Monteiro, I.; Torossian, C.; Vedvyas, A.; Ashraf, N.; et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer’s Dement. 2008, 4, S98–S108. [Google Scholar] [CrossRef]
- Choe, Y.M.; Byun, M.S.; Lee, J.H.; Sohn, B.K.; Lee, D.Y.; Kim, J.W. Subjective memory complaint as a useful tool for the early detection of Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2018, 14, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.E.; Cavuoto, M.G.; Li, L.; Wright, B.J.; Kinsella, G.J. Subjective Cognitive Decline: Level of Risk for Future Dementia and Mild Cognitive Impairment, a Meta-Analysis of Longitudinal Studies. Neuropsychol. Rev. 2022, 32, 703–735. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Shulman, M.B.; Torossian, C.; Leng, L.; Zhu, W. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimer’s Dement. 2010, 6, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Janssen, O.; Jansen, W.J.; Vos, S.J.B.; Boada, M.; Parnetti, L.; Gabryelewicz, T.; Fladby, T.; Molinuevo, J.L.; Villeneuve, S.; Hort, J.; et al. Characteristics of subjective cognitive decline associated with amyloid positivity. Alzheimer’s Dement. 2022, 18, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- van Harten, A.C.; Visser, P.J.; Pijnenburg, Y.A.; Teunissen, C.E.; Blankenstein, M.A.; Scheltens, P.; van der Flier, W.M. Cerebrospinal fluid Aβ42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimer’s Dement. 2013, 9, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Rogne, S.; Vangberg, T.; Eldevik, P.; Wikran, G.; Mathiesen, E.B.; Schirmer, H. Magnetic Resonance Volumetry: Prediction of Subjective Memory Complaints and Mild Cognitive Impairment, and Associations with Genetic and Cardiovascular Risk Factors. Dement. Geriatr. Cogn. Disord. Extra 2016, 6, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Verfaillie, S.C.; Tijms, B.; Versteeg, A.; Benedictus, M.R.; Bouwman, F.H.; Scheltens, P.; Barkhof, F.; Vrenken, H.; van der Flier, W.M. Thinner temporal and parietal cortex is related to incident clinical progression to dementia in patients with subjective cognitive decline. Alzheimer’s Dement. 2016, 5, 43–52. [Google Scholar] [CrossRef]
- Song, L.; Chen, J.; Lo, C.Z.; Guo, Q.; ZIB Consortium; Feng, J.; Zhao, X.M. Impaired type I interferon signaling activity implicated in the peripheral blood transcriptome of preclinical Alzheimer’s disease. EBioMedicine 2022, 82, 104175. [Google Scholar] [CrossRef] [PubMed]
- Zlatar, Z.Z.; Muniz, M.; Galasko, D.; Salmon, D.P. Subjective Cognitive Decline Correlates with Depression Symptoms and Not with Concurrent Objective Cognition in a Clinic-Based Sample of Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Quon, R.J.; Mazanec, M.T.; Schmidt, S.S.; Andrew, A.S.; Roth, R.M.; MacKenzie, T.A.; Sajatovic, M.; Spruill, T.; Jobst, B.C. Antiepileptic drug effects on subjective and objective cognition. Epilepsy Behav. 2020, 104, 106906. [Google Scholar] [CrossRef]
- Comijs, H.C.; Deeg, D.J.; Dik, M.G.; Twisk, J.W.; Jonker, C. Memory complaints; the association with psycho-affective and health problems and the role of personality characteristics. A 6-year follow-up study. J. Affect. Disord. 2002, 72, 157–165. [Google Scholar] [CrossRef]
- Mewton, L.; Sachdev, P.; Anderson, T.; Sunderland, M.; Andrews, G. Demographic, clinical, and lifestyle correlates of subjective memory complaints in the Australian population. Am. J. Geriatr. Psychiatry 2014, 22, 1222–1232. [Google Scholar] [CrossRef]
- Numbers, K.; Crawford, J.D.; Kochan, N.A.; Draper, B.; Sachdev, P.S.; Brodaty, H. Participant and informant memory-specific cognitive complaints predict future decline and incident dementia: Findings from the Sydney Memory and Ageing Study. PLoS ONE 2020, 15, e0232961. [Google Scholar] [CrossRef]
- Tandetnik, C.; Farrell, M.T.; Cary, M.S.; Cines, S.; Emrani, S.; Karlawish, J.; Cosentino, S. Ascertaining Subjective Cognitive Decline: A Comparison of Approaches and Evidence for Using an Age-Anchored Reference Group. J. Alzheimer’s Dis. 2015, 48, S43–S55. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Beaumont, H.; Ferguson, D.; Yadegarfar, M.; Stubbs, B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014, 130, 439–451. [Google Scholar] [CrossRef]
- Molinuevo, J.L.; Rabin, L.A.; Amariglio, R.; Buckley, R.; Dubois, B.; Ellis, K.A.; Ewers, M.; Hampel, H.; Klöppel, S.; Rami, L.; et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s Dement. 2017, 13, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Slot, R.E.R.; Sikkes, S.A.M.; Berkhof, J.; Brodaty, H.; Buckley, R.; Cavedo, E.; Dardiotis, E.; Guillo-Benarous, F.; Hampel, H.; Kochan, N.A.; et al. Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimer’s Dement. 2019, 15, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Zuroff, L.; Wisse, L.E.; Glenn, T.; Xie, S.X.; Nasrallah, I.M.; Habes, M.; Dubroff, J.; de Flores, R.; Xie, L.; Yushkevich, P.; et al. Self- and Partner-Reported Subjective Memory Complaints: Association with Objective Cognitive Impairment and Risk of Decline. J. Alzheimer’s Dis. Rep. 2022, 6, 411–430. [Google Scholar] [CrossRef]
- Slot, R.E.R.; Verfaillie, S.C.J.; Overbeek, J.M.; Timmers, T.; Wesselman, L.M.P.; Teunissen, C.E.; Dols, A.; Bouwman, F.H.; Prins, N.D.; Barkhof, F.; et al. Subjective Cognitive Impairment Cohort (SCIENCe): Study design and first results. Alzheimer’s Res. Ther. 2018, 10, 76. [Google Scholar] [CrossRef]
- Vlachos, G.S.; Cosentino, S.; Kosmidis, M.H.; Anastasiou, C.A.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Ntanasi, E.; Scarmeas, N. Prevalence and determinants of subjective cognitive decline in a representative Greek elderly population. Int. J. Geriatr. Psychiatry 2019, 34, 846–854. [Google Scholar] [CrossRef]
- Risacher, S.L.; Kim, S.; Nho, K.; Foroud, T.; Shen, L.; Petersen, R.C.; Jack, C.R.; Beckett, L.A.; Aisen, P.S.; Koeppe, R.A.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern. Alzheimer’s Dement. 2015, 11, 1417–1429. [Google Scholar] [CrossRef]
- Stewart, R.; Godin, O.; Crivello, F.; Maillard, P.; Mazoyer, B.; Tzourio, C.; Dufouil, C. Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. Br. J. Psychiatry 2011, 198, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Viviano, R.P.; Van Rooden, S.; Van Der Grond, J.; Rombouts, S.A.R.B.; Damoiseaux, J.S. White matter hyperintensities and apolipoprotein e affect the association between mean arterial pressure and objective and subjective cognitive functioning in older adults. J. Alzheimer’s Dis. 2021, 84, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Ha, J.K.; Park, J.M.; Lee, B.D.; Moon, E.; Chung, Y.I.; Kim, J.H.; Kim, H.J.; Mun, C.W.; Kim, T.H.; et al. Impact of Apolipoprotein E4 Polymorphism on the Gray Matter Volume and the White Matter Integrity in Subjective Memory Impairment without White Matter Hyperintensities: Voxel-Based Morphometry and Tract-Based Spatial Statistics Study under 3-Tesla MRI. J. Neuroimaging 2016, 26, 144–149. [Google Scholar] [CrossRef]
- Deng, S.; Sun, L.; Chen, W.; Liu, X.; Chen, S. Effect of APOEε4 on functional brain network in patients with subjective cognitive decline: A resting state functional MRI study. Int. J. Gen. Med. 2021, 14, 9761–9771. [Google Scholar] [CrossRef]
- Ali, J.I.; Smart, C.M.; Gawryluk, J.R. Subjective Cognitive Decline and APOE ɛ4: A Systematic Review. J. Alzheimer’s Dis. 2018, 65, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.E.; Boyle, R.; Chen, X.; Coughlan, G.; Gonzalez, C.; Jutten, R.J.; Martinez, J.; Orlovsky, I.; Robinson, T.; Weizenbaum, E.; et al. Recent contributions to the field of subjective cognitive decline in aging: A literature review. Alzheimer’s Dement. 2023, 15, e12475. [Google Scholar] [CrossRef]
- Moreno-Grau, S.; Rodríguez-Gómez, O.; Sanabria, Á.; Pérez-Cordón, A.; Sánchez-Ruiz, D.; Abdelnour, C.; Valero, S.; Hernández, I.; Rosende-Roca, M.; Mauleón, A.; et al. Exploring APOE genotype effects on Alzheimer’s disease risk and amyloid β burden in individuals with subjective cognitive decline: The FundacioACE Healthy Brain Initiative (FACEHBI) study baseline results. Alzheimer’s Dement. 2018, 14, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.J. Worries about getting Alzheimer’s: Who’s concerned? Am. J. Alzheimer’s Dis. Other Dement. 2015, 30, 591–598. [Google Scholar] [CrossRef] [PubMed]
- van Duijn, C.M.; Clayton, D.; Chandra, V.; Fratiglioni, L.; Graves, A.B.; Heyman, A.; Jorm, A.F.; Kokmen, E.; Kondo, K.; EURODEM Risk Factors Research Group; et al. Familial aggregation of Alzheimer’s disease and related disorders: A collaborative re-analysis of case-control studies. Int. J. Epidemiol. 1991, 20, S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Norton, D.J.; Amariglio, R.; Protas, H.; Chen, K.; Aguirre-Acevedo, D.C.; Pulsifer, B.; Castrillon, G.; Tirado, V.; Munoz, C.; Tariot, P.; et al. Subjective memory complaints in preclinical autosomal dominant Alzheimer disease. Neurology 2017, 89, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- Laws, S.M.; Clarnette, R.M.; Taddei, K.; Martins, G.; Paton, A.; Almeida, O.P.; Förstl, H.; Martins, R.N. Association between the presenilin-1 mutation Glu318Gly and complaints of memory impairment. Neurobiol. Aging 2002, 23, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Bessi, V.; Giacomucci, G.; Mazzeo, S.; Bagnoli, S.; Padiglioni, S.; Balestrini, J.; Tomaiuolo, G.; Piaceri, I.; Carraro, M.; Bracco, L.; et al. PER2 C111G polymorphism, cognitive reserve and cognition in subjective cognitive decline and mild cognitive impairment: A 10-year follow-up study. Eur. J. Neurol. 2021, 28, 56–65. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Nicholas, C.R.; Dowling, N.M.; Racine, A.M.; Clark, L.R.; Berman, S.E.; Koscik, R.L.; Asthana, S.; Hermann, B.; Sager, M.A.; Johnson, S.C. Longitudinal Assessment of Self- and Informant-Subjective Cognitive Complaints in a Sample of Healthy Late-Middle Aged Adults Enriched with a Family History of Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 2017, 23, 617–626. [Google Scholar] [CrossRef]
- Heun, R.; Kockler, M.; Ptok, U. Subjective memory complaints of family members of patients with Alzheimer’s disease and depression. Dement. Geriatr. Cogn. Disord. 2003, 16, 78–83. [Google Scholar] [CrossRef]
- Heser, K.; Kleineidam, L.; Wagner, M.; Luppa, M.; Löbner, M.; Wiese, B.; Oey, A.; König, H.H.; Brettschneider, C.; van der Leeden, C.; et al. Family History of Dementia in Old-Age Participants with Subjective Memory Complaints Predicts Own Risk for Dementia in a Longitudinal Multi-Center Cohort Study. J. Alzheimer’s Dis. 2023, 96, 579–589. [Google Scholar] [CrossRef]
- Tsai, D.H.; Green, R.C.; Benke, K.S.; Silliman, R.A.; Farrer, L.A. Predictors of subjective memory complaint in cognitively normal relatives of patients with Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci. 2006, 18, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, R.; Ganske, S.; Gruschwitz, A.; Werner, A.; Osterrath, A.; Lange, J.; Buthut, M.; Donix, K.L.; Linn, J.; Donix, M. Family History of Alzheimer’s Disease and Subjective Memory Performance. Am. J. Alzheimer’s Dis. Other Dement. 2018, 33, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Selwood, A.E.; Catts, V.S.; Numbers, K.; Lee, T.; Thalamuthu, A.; Wright, M.J.; Sachdev, P.S. The Heritability of Subjective Cognitive Complaints in Older Australian Twins. J. Alzheimer’s Dis. 2023, 92, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.R.; Beck, A.; Gillespie, N.A.; Reynolds, C.A.; Elman, J.A.; Williams, M.E.; Gustavson, D.E.; Lyons, M.J.; Neale, M.C.; Kremen, W.S.; et al. A Traitlike Dimension of Subjective Memory Concern Over 30 Years Among Adult Male Twins. JAMA Psychiatry 2023, 80, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, B.; Gatz, M.; Xu, W.; Pedersen, N.L.; Fratiglioni, L. Differential distribution of subjective and objective cognitive impairment in the population: A nation-wide twin-study. J. Alzheimer’s Dis. 2012, 29, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, S.; Bessi, V.; Padiglioni, S.; Bagnoli, S.; Bracco, L.; Sorbi, S.; Nacmias, B. KIBRA T allele influences memory performance and progression of cognitive decline: A 7-year follow-up study in subjective cognitive decline and mild cognitive impairment. Neurol. Sci. 2019, 40, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Youn, Y.C.; Lim, Y.K.; Han, S.H.; Giau, V.V.; Lee, M.K.; Park, K.Y.; Kim, S.; Bagyinszky, E.; An, S.S.A.; Kim, H.R. Apolipoprotein ε7 allele in memory complaints: Insights through protein structure prediction. Clin. Interv. Aging 2017, 12, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Watfa, G.; Marteau, J.B.; Rossignol, P.; Kearney-Schwartz, A.; Fay, R.; Bracard, S.; Felblinger, J.; Boivin, J.M.; Lacolley, P.; Visvikis-Siest, S.; et al. Association study of gene polymorphisms involved in vascular alterations in elderly hypertensives with subjective memory complaints. Dement. Geriatr. Cogn. Disord. 2010, 30, 440–448. [Google Scholar] [CrossRef]
- Ebenau, J.L.; van der Lee, S.J.; Hulsman, M.; Tesi, N.; Jansen, I.E.; Verberk, I.M.W.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Prins, N.D.; et al. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. Alzheimer’s Dement. 2021, 13, e12229. [Google Scholar] [CrossRef]
- Sathyan, S.; Wang, T.; Ayers, E.; Verghese, J. Genetic basis of motoric cognitive risk syndrome in the Health and Retirement Study. Neurology 2019, 92, e1427–e1434. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef]
- Sims, R.; van der Lee, S.J.; Naj, A.C.; Bellenguez, C.; Badarinarayan, N.; Jakobsdottir, J.; Kunkle, B.W.; Boland, A.; Raybould, R.; Bis, J.C.; et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 2017, 49, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- de Rojas, I.; Moreno-Grau, S.; Tesi, N.; Grenier-Boley, B.; Andrade, V.; Jansen, I.E.; Pedersen, N.L.; Stringa, N.; Zettergren, A.; Hernández, I.; et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. J. Nat. Commun. 2021, 12, 3417. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Donix, M.; Small, G.W.; Bookheimer, S.Y. Family history and APOE-4 genetic risk in Alzheimer’s disease. Neuropsychol. Rev. 2012, 22, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, R.; Donix, M. Disclosing Pleiotropic Effects During Genetic Risk Assessment for Alzheimer Disease. Ann. Intern. Med. 2016, 165, 673. [Google Scholar] [CrossRef]
- Lau, S.; Bates, K.A.; Sohrabi, H.R.; Rodrigues, M.; Martins, G.; Dhaliwal, S.S.; Taddei, K.; Laws, S.M.; Martins, I.J.; Mastaglia, F.L.; et al. Functional effects of genetic polymorphism in inflammatory genes in subjective memory complainers. Neurobiol. Aging 2012, 33, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A.; Sikkes, S.A.M.; Tommet, D.; Jones, R.N.; Crane, P.K.; Elbulok-Charcape, M.M.; Dubbelman, M.A.; Koscik, R.; Amariglio, R.E.; Buckley, R.F.; et al. Linking self-perceived cognitive functioning questionnaires using item response theory: The subjective cognitive decline initiative. Neuropsychology 2023, 37, 463–499. [Google Scholar] [CrossRef]
- Tyndall, A.V.; Longman, R.S.; Sajobi, T.T.; Parboosingh, J.S.; Drogos, L.L.; Davenport, M.H.; Eskes, G.A.; Hogan, D.B.; Hill, M.D.; Poulin, M.J. Genetic Risk, Vascular Function, and Subjective Cognitive Complaints Predict Objective Cognitive Function in Healthy Older Adults: Results from the Brain in Motion Study. Front. Integr. Neurosci. 2020, 14, 571683. [Google Scholar] [CrossRef]
- Sauer, J.; Ballard, C.; Gibson, A.; Daunt, P.; Pither, R. Clinical experience with polygenic risk score in subjects with early cognitive concerns. Alzheimer’s Dement. 2021, 17, e053509. [Google Scholar] [CrossRef]
- Baker, E.; Escott-Price, V. Polygenic Risk Scores in Alzheimer’s Disease: Current Applications and Future Directions. Front. Digit. Health 2020, 2, 14. [Google Scholar] [CrossRef] [PubMed]
Study | Population | Family History | SMC 1 Estimation | Main Results |
---|---|---|---|---|
Nicholas et al., 2017 [38] Longitudinal | Ν = 1545, United States CN 2 Mean age: 53.6 | 1118 individuals with parental FH 3 of AD 4 | MFQ: Memory Functioning Questionnaire | SMC (baseline or longitudinal) were not associated with FH |
Heun et al., 2003 [39] Case-Control | N = 550, Germany CN, MCI 5 or dementia Mean age: 67.9 ± 10.2 | 238 individuals with parental FH of AD, 59 spouses | In-person interview with two questions | SMC were not associated with FH of AD |
Heser et al., 2023 [40] Longitudinal | N = 1240, Germany Dementia-free Mean age: 79.6 | 422 individuals with parental FH of AD | In-person interview with two questions | SMC were associated with FH of AD (p = 0.008). FH was related to increased dementia risk (HR 6: 1.56, p = 0.002) in SMC participants |
Tsai et al., 2006 [41] Case-Control | Ν = 1499, United States and Germany, CN Mean age: 69.6 ± 10.5 | 1203 individuals with parental FH of AD, 296 spouses | In-person interview with a single question | SMC were greater in participants with FH of AD (OR 7: 1.9, 95% CI 8: 1.3, 3.0) |
Haussmann et al., 2018 [42] Case-control | N = 75, Germany CN (40) or MCI (35) Mean age: 68.1 ± 7.1 | 21 individuals with parental FH of AD | 7-item Likert scale (1 = severe to 7 = none) | SMC were greater in participants with FH of AD in the CN group (p = 0.019) |
Selwood et al., 2017 [43] Longitudinal |
N = 612, Australia Dementia-free Mean age: 71.3 ± 5.7 | Twin individuals 338 monozygotic 274 dizygotic twins | Telephone interview with two questions |
SMC were low to moderately heritable (h2 9 = 0.33, CI: 0.15, 0.49) |
Caracciolo et al., 2012 [45] Longitudinal | N = 11,926, Sweden Dementia-free Aged ≥ 65 | Twin individuals | Telephone interview with specific questions | SMC were not related to genetic background |
Bell et al., 2023 [44] Longitudinal | N = 1555, United States Male adults Mean age: 37.8 ± 2.5 | Twin individuals 872 monozygotic 570 dizygotic twins | In-person interview with a single question | SMC were not related to FH of AD |
Study | Population | Genes | SMC 1 Estimation | Main Results |
---|---|---|---|---|
Norton et al. [34], 2017 Cross-Sectional | N = 52, Colombia CN 2, 26 carriers Mean age: 36.4 ± 7.1 | PSEN-1 280A mutation |
Self-reported and partner-based with Memory Complaint Scale | Only self-reported SMC were higher in carriers (p = 0.019). |
Laws et al. [35], 2002 Case-Control | Ν = 124, Australia 58 SMC individuals Mean age: 62.0 ± 1.8 | PSEN-1 Glu318Gly mutation | Cambridge Cognition Examination (CAMCOG) |
Only 4 SMC subjects (6.8%) had the mutation. No difference in SMC. |
Bessi et al. [36], 2021 Longitudinal |
N = 68, Italy 41 SCD 3, 27 MCI 4 Mean age: 65.2 ± 7.2 |
CLOCK T3111C PER2 C111G | Self-reported with a single question | Only 2 SCD subjects prοgressed to AD (all were PER2 G carriers, p = 0.003). |
Mazzeo et al. [46], 2017 Longitudinal | N = 101, Italy 70 SCD, 31 MCI Mean age: 61.3 ± 7.9 | KIBRA T | Memory Assessment Clinics-Questionnaire (MAC-Q) |
CT or TT carriers had 2.273 higher odds of MCI than CC carriers (p = 0.049) |
Youn et al. [47], 2017 Case-Control |
N = 689 Republic of Korea 344 SMC individuals Mean age: 70.0 | APOE ε7 | Seoul Neuro-Psychological Screening Battery (SNSB) |
Only SMC subjects had APOE ε7 variants (heterozygotes ε3/ε7) |
Watfa et al. [48], 2010 Cross-Sectional | N = 369, France SMC, hypertensive Mean age: 70.0 ± 6.0 |
50 vascular- related genes |
Cognitive Difficulties Scale of McNair |
No association of any of the polymorphisms with cognitive decline |
Study | Population | Polygenic Risk | SMC 1 Estimation | Main Results |
---|---|---|---|---|
Ebenau et al. [49], 2021 Cross-Sectional | N = 829, The Netherlands All SCD 2 individuals Mean age: 59.6 ± 8.8 |
PRS 3 including 39 genetic loci related to AD 4 |
Amsterdam Instrumental Activities of Daily Living questionnaire |
PRS was associated with amyloid positivity (OR: 1.5) |
Sathyan et al. [50], 2019 Case-Control | Ν = 4915, United States 1928 SMC individuals Mean age: 74.8 ± 6.7 |
PRS including 19 genetic loci related to AD | In-person interview: 2 questions |
PRS for AD was not associated with SMC (p = 0.407). |
Bell et al. [44], 2023 Longitudinal | N = 1555, United States Male adults Mean age: 37.8 ± 2.5 | In-person interview: single question | PRS for AD was not associated with SMC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampatakakis, S.N.; Roma, M.; Scarmeas, N. Subjective Cognitive Decline and Genetic Propensity for Dementia beyond Apolipoprotein ε4: A Systematic Review. Curr. Issues Mol. Biol. 2024, 46, 1975-1986. https://doi.org/10.3390/cimb46030129
Sampatakakis SN, Roma M, Scarmeas N. Subjective Cognitive Decline and Genetic Propensity for Dementia beyond Apolipoprotein ε4: A Systematic Review. Current Issues in Molecular Biology. 2024; 46(3):1975-1986. https://doi.org/10.3390/cimb46030129
Chicago/Turabian StyleSampatakakis, Stefanos N., Maria Roma, and Nikolaos Scarmeas. 2024. "Subjective Cognitive Decline and Genetic Propensity for Dementia beyond Apolipoprotein ε4: A Systematic Review" Current Issues in Molecular Biology 46, no. 3: 1975-1986. https://doi.org/10.3390/cimb46030129
APA StyleSampatakakis, S. N., Roma, M., & Scarmeas, N. (2024). Subjective Cognitive Decline and Genetic Propensity for Dementia beyond Apolipoprotein ε4: A Systematic Review. Current Issues in Molecular Biology, 46(3), 1975-1986. https://doi.org/10.3390/cimb46030129