Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Yield Component, Yield, and Biochemical Compounds
2.3. Data Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. GCA Analysis
3.3. SCA Analysis
3.4. Heterotic and Heterobeltiotic Effects in Chili
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duranova, H.; Valkova, V.; Gabriny, L. Chili peppers (Capsicum spp.): The spice not only for cuisine purposes: An update on current knowledge. Phytochem. Rev. 2022, 21, 1379–1413. [Google Scholar] [CrossRef]
- Jo, Y.; Choi, H.; Lee, J.H.; Moh, S.H.; Cho, W.K. Viromes of 15 pepper (Capsicum annuum L.) cultivars. Int. J. Mol. Sci. 2022, 23, 10507. [Google Scholar] [CrossRef] [PubMed]
- Oney-Montalvo, J.E.; Morozova, K.; Ferrentino, G.; Ramirez Sucre, M.O.; Rodríguez Buenfil, I.M.; Scampicchio, M. Effects of local environmental factors on the spiciness of habanero chili peppers (Capsicum chinense Jacq.) by coulometric electronic tongue. Eur. Food Res. Technol. 2021, 247, 101–110. [Google Scholar] [CrossRef]
- Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.T. Capsaicin—The major bioactive ingredient of chili peppers: Bio-efficacy and delivery system. Food Funct. 2020, 11, 2848. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Guo, W.; Tang, X.; Cui, S.; Zhang, F.; Liu, X.; Zhao, J.; Zhang, H.; Mao, B.; Chen, W. Capsaicin—The spicy ingredient of chili peppers: A review of the gastrointestinal effects and mechanisms. Trends Food Sci. Technol. 2021, 116, 755–765. [Google Scholar] [CrossRef]
- Ni, Y.; Qian, Y.; Jianshe, C.; Ian, F. Impact of capsaicin on aroma release and perception from flavoured solutions. LWT–Food Sci. Technol. 2021, 138, 110613. [Google Scholar] [CrossRef]
- Krishnatreyya, H.; Hazarika, H.; Saha, A.; Chattopadhyay, P. Capsaicin, the primary constituent of pepper sprays and its pharmacological effects on mammalian ocular tissues. Eur. J. Pharmacol. 2021, 819, 114–121. [Google Scholar] [CrossRef]
- Lalić, M.; Soldić, A.; Lalić, A.; Lalić, Z.; Sertić, M. Development and validation of an HPLC method for simultaneous determination of capsaicinoids and camphor in over-the-counter medication for topical use. Molecules 2022, 27, 1261. [Google Scholar] [CrossRef]
- Bayil Oğuzkan, S. Extraction of capsinoid and its analogs from pepper waste of different genotypes. Nat. Prod. Commun. 2019, 14, 1934578X19865673. [Google Scholar] [CrossRef]
- Łukasz, A.; Dagmara, G.; Łukasz, M.; Paweł, Ł.; Jacek, M.; Stanisław, W. Properties of capsaicin and its utility in veterinary and human medicine. Res. Vet. Sci. 2019, 123, 14–19. [Google Scholar] [CrossRef]
- Issa, A.Y.; ALSalamat, H.A.; Awad, W.B.; Haddaden, R.M.; Aleidi, S.M. The impact of pharmaceutical care on the efficacy and safety of transdermal glucosamine sulfate and capsaicin for joint pain. Int. J. Clin. Pharm. 2021, 43, 101–106. [Google Scholar] [CrossRef] [PubMed]
- László, S.; Bátai, I.Z.; Berkó, S.; Csányi, E.; Dombi, Á.; Pozsgai, G.; Bölcskei, K.; Botz, L.; Wagner, Ö.; Pintér, E. Development of capsaicin-containing analgesic silicone-based transdermal patches. Pharmaceuticals 2022, 15, 1279. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shree, B.; Kumar, S.; Kumar, V.; Sharma, S. Stress induced production of plant secondary metabolites in vegetables: Functional approach for designing next generation super foods. Plant Physiol. Biochem. 2022, 192, 252–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Sun, X.; Battino, M.; Wei, X.; Shi, J.; Zhao, L.; Liu, S.; Xiao, J.; Shi, B.; Zou, X. A comparative overview on chili pepper (Capsicum genus) and sichuan pepper (Zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci. Technol. 2021, 117, 148–162. [Google Scholar] [CrossRef]
- Hernández, F.C.; González, P.A.; Martínez, O.; Ortiz, J.J.O. Placenta, pericarp, and seeds of tabasco chili pepper fruits show a contrasting diversity of bioactive metabolites. Metabolites 2019, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Fabio, E.; Rosario, R.; Fredy, Q.; Guillaume, C.; Guillaume, M. Metabolomic characterization of 5 native Peruvian chili peppers (Capsicum spp.) as a tool for species discrimination. Food Chem. 2022, 386, 132704. [Google Scholar] [CrossRef]
- Francesco, D.G.; Spyridon, A. Petropoulos, phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Azlan, A.; Sultana, S.; Huei, C.S.; Razman, M.R. Antioxidant, anti-obesity, nutritional and other beneficial effects of different chili pepper: A Review. Molecules 2022, 27, 898. [Google Scholar] [CrossRef]
- Xu, J.; Lin, J.; Peng, S.; Zhao, H.; Wang, Y.; Rao, L.; Liao, X.; Zhao, L. Development of an HPLC-PDA method for the determination of capsanthin, zeaxanthin, lutein, β-cryptoxanthin and β-carotene simultaneously in chili peppers and products. Molecules 2023, 28, 2362. [Google Scholar] [CrossRef]
- Villa-Rivera, M.G.; Ochoa-Alejo, N. Chili pepper carotenoids: Nutraceutical properties and mechanisms of action. Molecules 2020, 25, 5573. [Google Scholar] [CrossRef]
- Bhatti, S.; Baig, J.A.; Kazi, T.G. Macro and micro mineral composition of Pakistani common spices: A case study. Food Measure 2019, 13, 2529–2541. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Alonso-Villegas, R.; González-Amaro, R.M.; Figueroa-Hernández, C.Y.; Rodríguez-Buenfil, I.M. The genus Capsicum: A review of bioactive properties of its polyphenolic and capsaicinoid composition. Molecules 2023, 28, 4239. [Google Scholar] [CrossRef] [PubMed]
- Adwas, A.A.; Elsayed, A.S.I.; Azab, A.E.; Quwaydir, F.A. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotech. Bioeng. 2019, 6, 43–47. [Google Scholar] [CrossRef]
- Cheng, A.Y.Y.; Gomes, M.B.; Kalra, S.; Kengne, A.P.; Mathieu, C.; Shaw, J.E. Applying the WHO global targets for diabetes mellitus. Nat. Rev. Endocrinol. 2023, 19, 194–200. [Google Scholar] [CrossRef]
- Stout, A.; Friedly, J.; Standaert, C.J. Systemic absorption and side effects of locally injected glucocorticoids. PM&R J. Inj. Funct. Rehabil. 2019, 11, 409–419. [Google Scholar] [CrossRef]
- Syukur, M.; Maharijaya, A.; Nurcholis, W.; Ritonga, A.W.; Istiqlal, M.R.A.; Hakim, A.; Sulassih, S.; Perdani, A.Y.; Pangestu, A.Y.; Hatta, A.N.N.L.; et al. Biochemical and Yield Component of Hybrid Chili (Capsicum annuum L.) Resulting from Full Diallel Crosses. Horticulturae 2023, 9, 620. [Google Scholar] [CrossRef]
- Delgado-Velandia, M.; Gonzalez-Marrachelli, V.; Domingo-Relloso, A.; Galvez-Fernandez, M.; Grau-Perez, M.; Olmedo, P.; Galan, I.; Rodriguez-Artalejo, F.; Amigo, N.; Briongos-Figuero, L.; et al. Healthy lifestyle, metabolomics and incident type 2 diabetes in a population-based cohort from Spain. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 8. [Google Scholar] [CrossRef]
- Mi, S.; Zhu, W.; Zhang, X.; Wang, Y.; Li, T.; Wang, X. Enhanced hypoglycemic bioactivity via RAS/Raf-1/MEK/ERK signaling pathway by combining capsaicin and quercetin from chili peppers. Mol. Nutr. Food Res. 2023, 67, 2200577. [Google Scholar] [CrossRef]
- Li, M.; Bao, X.; Zhang, X.; Ren, H.; Cai, S.; Hu, X.; Yi, J. Exploring the phytochemicals and inhibitory effects against α-glucosidase and dipeptidyl peptidase-IV in Chinese pickled chili pepper: Insights into mechanisms by molecular docking analysis. LWT 2022, 162, 113467. [Google Scholar] [CrossRef]
- Khaitov, B.; Yun, H.J.; Lee, Y.; Ruziev, F.; Le, T.H.; Umurzokov, M.; Bo, B.A.; Cho, K.M.; Park, K.W. Impact of organic manure on growth, nutrient content and yield of chilli pepper under various temperature environments. Int. J. Environ. Res. Public Health 2019, 16, 3031. [Google Scholar] [CrossRef]
- Sahid, Z.D.; Syukur, M.; Maharijaya, A.; Nurcholis, W. Total phenolic and flavonoid contents, antioxidant, and α-glucosidase inhibitory activities of several big chili (Capsicum annuum L.) genotypes. Ciência Rural. 2022, 53, e20210913. [Google Scholar] [CrossRef]
- Sahid, Z.D.; Syukur, M.; Maharijaya, A.; Nurcholis, W. Total phenolics, flavonoids, antioxidant activity, and α-glucosidase inhibitory activity of ornamental pepper and several other lines. Ornam. Hortic. 2022, 28, 230–238. [Google Scholar] [CrossRef]
- Sahid, Z.D.; Syukur, M.; Maharijaya, A.; Nurcholis, W. Polyphenol content and pharmacological activities of Capsicum frutescens and C. chinense genotypes. Biodiversitas J. Biol. Divers. 2021, 22, 3838–3843. [Google Scholar] [CrossRef]
- Gramaje, L.V.; Caguiat, J.D.; Enriquez, J.O.S.; dela Cruz, Q.D.; Millas, R.A.; Carampatana, J.E.; Tabanao, D.A.A. Heterotic and combining ability analysis in CMS hybrid rice. Euphytica 2020, 216, 14. [Google Scholar] [CrossRef]
- Amorim, A.F.S.; Gilio, T.A.S.; de Jesus, J.B.; de Souza, L.H.A.; dos Anjos, I.V.; Araujo, K.L.; Neves, L.G. Genetic improvement of Capsicum frutescens: Hybrid vigor for anthracnosis resistance and production traits. Euphytica 2021, 217, 72. [Google Scholar] [CrossRef]
- Sran, T.S.; Jindal, S.K. Assessment of heterotic and combining ability effects along with genotype×environment factors influencing the variation of yield and quality components in pepper. Sci. Hortic. 2022, 299, 111040. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mirlohi, A.; Majidi, M.M.; Soleimani, K.E. Emmer wheat as a source for trait improvement in durum wheat: A study of general and specific combining ability. Euphytica 2021, 217, 64. [Google Scholar] [CrossRef]
- Walkowiak, M.; Spasibionek, S.; Krótka, K. Variation and genetic analysis of fatty acid composition in flax (Linum usitatissimum L.). Euphytica 2022, 218, 2. [Google Scholar] [CrossRef]
- Hernández-Mendoza, F.; Torres, T.C.; Rincón, V.H.A.; Gaytán, V.G.; Merino, F.C.G. Genetic components of characters related to yield in pepper guajillo: Method II of Griffing. Emir. J. Food Agric. 2021, 33, 120–129. [Google Scholar] [CrossRef]
- Zongo, A.; Konate, A.K.; Koïta, K.; Sawadogo, M.; Sankara, P.; Ntare, B.R.; Desmae, H. Diallel analysis of early leaf spot (Cercospora arachidicola Hori) disease resistance in groundnut. Agronomy 2019, 9, 15. [Google Scholar] [CrossRef]
- Pessoa, A.; Rego, E.R.; Santos, C.A.D.; Carvalho, M.G.; Mesquita, J.C.D.; Rego, M.M. Potential of pepper plant accessions for ornamental purposes using diallel analysis. Anais da Academia Brasileira de Ciências 2019, 91, e20180379. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, R.A.G.; Albuquerque, A.S. Diallel analysis of quantitative characteristics in ornamental peppers. Genet. Mol. Res. 2019, 14090, 190. [Google Scholar]
- Javed, A.; Nawab, N.N.; Gohar, S.; Akram, A.; Javed, K.; Sarwar, M.; Mallhi, A.R. Genetic analysis and heterotic studies in tomato (Solanum lycopersicum L.) hybrids for fruit yield and its related traits. SABRAO J. Breed. Genet. 2022, 54, 492–501. [Google Scholar] [CrossRef]
- Abed, H.W.; Hassan, H.B. Study the GCA and SCA effects of five inbred lines of maize according to half diallel mating system. Al-Qadisiyah J. Agric. Sci. 2020, 10, 343–348. [Google Scholar]
- Azad, A.K.; Sarker, U.; Ercisli, S.; Assouguem, A.; Ullah, R.; Almeer, R.; Peluso, I. Evaluation of combining ability and Heterotic of popular restorer and male sterile lines for the development of superior rice hybrids. Agronomy 2022, 12, 965. [Google Scholar] [CrossRef]
- Oliveira, G.H.F.; Revolti, L.T.M.; Buzinaro, R.; Charnai, K.; Giorgenon, C.H.B.; Môro, G.V. Combining ability and analysis of genetic components of synthetic maize populations using a mixed model approach. Revista Brasileira de Ciências Agrárias 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Sahid, Z.D.; Syukur, M.; Maharijaya, A. Combining ability and heterotic effects of chili pepper (Capsicum annuum L.) genotypes for yield components and capsaicin content. SABRAO J. Breed. Genet. 2020, 52, 390–401. [Google Scholar]
- Jawarkar, A.K.; Kale, V.S.; Nagre, P.K.; Sonkamble, A.M.; Jadhav, P.V.; Dikey, H.H. Combining ability analysis in chilli hybrids. Pharma Innov. J. 2023, 12, 2311–2314. [Google Scholar]
- Al-Mamun, M.; Rafii, M.Y.; Misran, A.B.; Berahim, Z.; Ahmad, Z.; Khan, M.M.H.; Oladosu, Y. Combining ability and gene action for yield improvement in kenaf (Hibiscus cannabinus L.) under tropical conditions through diallel mating design. Sci. Rep. 2022, 12, 9646. [Google Scholar] [CrossRef]
- Viana, J.M.S. The impact of epistasis in the heterosis and combining ability analyses. Front. Plant Sci. 2023, 14, 1168419. [Google Scholar] [CrossRef] [PubMed]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterotic and hybrid crop breeding: A multidisciplinary review. Front. Genet. 2021, 12, 643761. [Google Scholar] [CrossRef] [PubMed]
- Schwarzwälder, L.; Thorwarth, P.; Zhao, Y.; Reif, J.C.; Longin, C.F.H. Hybrid wheat: Quantitative genetic parameters and heterotic for quality and rheological traits as well as baking volume. Theor. Appl. Genet. 2022, 135, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Wolko, J.; Dobrzycka, A.; Bocianowski, J.; Bartkowiak-Broda, I. Estimation of heterotic for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.). Euphytica 2019, 215, 156. [Google Scholar] [CrossRef]
- Khamphasan, P.; Lomthaisong, K.; Harakotr, B.; Scott, M.P.; Lertrat, K.; Suriharn, B. Combining ability and heterotic for agronomic traits, husk and cob pigment concentration of maize. Agriculture 2020, 10, 510. [Google Scholar] [CrossRef]
- Viana, J.M.S.; Risso, L.A.; Oliveira deLima, R.; Fonseca e Silva, F. Factors affecting heterotic grouping with cross-pollinating crops. Agron. J. 2021, 113, 210–223. [Google Scholar] [CrossRef]
- Karim, K.M.; Rafii, M.Y.; Misran, A.B.; Ismail, M.F.B.; Harun, A.R.; Khan, M.M.H.; Nazneen, F. Current and prospective strategies in the varietal improvement of chilli (Capsicum annuum L.) specially heterotic breeding. Agronomy 2021, 11, 2217. [Google Scholar] [CrossRef]
Sources | df | Mean Square | |||
---|---|---|---|---|---|
DH | LL | LW | SD | ||
GCA | 4 | 219.98 ** | 10.25 ** | 1.71 ** | 6.85 ** |
SCA | 10 | 15.91 ** | 0.95 ** | 0.25 ** | 3.05 ** |
Reciprocal | 10 | 8.91 ** | 1.01 ** | 0.22 ** | 8.35 ** |
Error | 48 | 0.68 | 0.03 | 0.01 | 0.01 |
Coefficient of Variance (%) | 5.03 | 3.20 | 4.86 | 1.61 |
Sources | df | Mean Square | |||||
---|---|---|---|---|---|---|---|
FL | FD | FT | FW | NFP | Yield | ||
GCA | 4 | 55.76 ** | 85.93 ** | 0.48 ** | 88.41 ** | 39.04 ** | 445617.7 ** |
SCA | 10 | 0.94 ** | 8.05 ** | 0.14 ** | 9.63 ** | 796.63 ** | 35735.5 ** |
Reciprocal | 10 | 0.67 ** | 0.93 ** | 0.06 ** | 0.29 ** | 3.79 ns | 1008.59 ** |
Error | 48 | 0.03 | 0.03 | 0.002 | 0.05 | 3.61 | 307.77 |
Coefficient of Variance (%) | 4.03 | 2.64 | 5.03 | 6.17 | 4.71 | 6.81 |
Sources | df | Mean Square | ||||
---|---|---|---|---|---|---|
TPC | TFC | DPPH | FRAP | AGI | ||
GCA | 4 | 100.18 ** | 0.66 ** | 0.07 ** | 86.75 ** | 500.27 ** |
SCA | 10 | 129.29 ** | 1.31 ** | 0.04 ** | 150.56 ** | 40.73 ** |
Reciprocal | 10 | 1.71 ** | 0.01 ** | 0.002 ** | 3.39 ** | 0.81 ** |
Error | 48 | 0.26 | 0.002 | 0.001 | 0.42 | 0.38 |
Coefficient of Variance (%) | 3.16 | 3.20 | 1.19 | 3.26 | 1.60 |
Genotypes | DH | LL | LW | SD |
---|---|---|---|---|
IPB005 | −1.27 d | 0.56 b | 0.47 a | 0.15 b |
IPB374 | 3.13 b | 0.77 a | 0.32 b | 1.25 a |
IPB367 | −6.94 e | −1.75 e | −0.57 e | 0.06 b |
IPB435 | −0.24 c | 0.37 c | −0.21 d | −0.51 c |
IPB074 | 5.33 a | 0.06 d | −0.01 c | −0.95 d |
Critical difference | 0.79 | 0.16 | 0.10 | 0.10 |
Genotypes | FL | FD | FT | FW | NFP | Yield |
---|---|---|---|---|---|---|
IPB005 | 0.88 c | 4.47 a | 0.28 a | 3.17 a | 2.14 a | 239.24 a |
IPB374 | 2.57 a | −0.39 c | 0.16 b | 1.10 c | 0.87 a | 69.99 c |
IPB367 | −2.86 e | −1.87 d | −0.09 c | −2.93 d | −2.49 b | −203.75 d |
IPB435 | −2.11 d | −3.14 e | −0.27 d | −3.38 e | 1.14 a | −238.53 e |
IPB074 | 1.53 b | 0.93 b | −0.08 c | 2.04 b | −1.66 b | 133.05 b |
Critical difference | 0.16 | 0.16 | 0.04 | 0.21 | 1.81 | 16.71 |
Genotype | TPC | TFC | DPPH | FRAP | AGI |
---|---|---|---|---|---|
IPB005 | −3.08 d | −0.14 c | 0.04 b | 0.56 b | −3.88 d |
IPB374 | −2.59 d | −0.26 d | −0.09 c | −0.22 c | −1.65 c |
IPB367 | 2.18 b | 0.18 b | 0.08 a | −3.07 e | 9.86 a |
IPB435 | −0.80 c | 0.35 a | −0.09 c | 4.62 a | 3.99 b |
IPB074 | 4.30 a | −0.13 c | 0.05 ab | −1.89 d | −8.32 e |
Critical difference | 0.49 | 0.04 | 0.03 | 0.62 | 0.59 |
Chili Hybrid | DH | LL | LW | SD | ||
---|---|---|---|---|---|---|
IPB005 | × | IPB374 | −0.33 | 0.33 | 0.68 | −1.24 |
IPB005 | × | IPB367 | 1.5 | 0.4 | 0.001 | −3.62 |
IPB005 | × | IPB435 | 3.67 | 0.67 | −0.12 | 0.47 |
IPB005 | × | IPB074 | −1.00 | 0.37 | 0.4 | −1.41 |
IPB374 | × | IPB005 | 1.37 | 0.68 | 0.43 | −0.78 |
IPB374 | × | IPB367 | −1.83 | −0.08 | 0.001 | −3.89 |
IPB374 | × | IPB435 | 4.33 | −1.42 | −0.42 | 2.51 |
IPB374 | × | IPB074 | −0.67 | −1.18 | −0.48 | 1.64 |
IPB367 | × | IPB005 | 1.61 | 0.69 | 0.13 | 1.67 |
IPB367 | × | IPB374 | −0.46 | 0.004 | 0.28 | −0.34 |
IPB367 | × | IPB435 | −0.17 | 0.55 | 0.2 | 0.62 |
IPB367 | × | IPB074 | −1.33 | 0.13 | −0.08 | 0.59 |
IPB435 | × | IPB005 | −2.26 | 0.61 | 0.181 | −0.69 |
IPB435 | × | IPB374 | 0.67 | −0.61 | −0.47 | 1.37 |
IPB435 | × | IPB367 | 0.24 | −0.73 | −0.37 | −2.03 |
IPB435 | × | IPB074 | −1.83 | 0.68 | 0.02 | −0.25 |
IPB074 | × | IPB005 | −2.16 | −0.05 | −0.202 | 0.62 |
IPB074 | × | IPB374 | 3.44 | −0.24 | −0.27 | 2.66 |
IPB074 | × | IPB367 | 1.17 | 0.42 | 0.15 | −0.06 |
IPB074 | × | IPB435 | 3.64 | −0.04 | −0.02 | 2.46 |
Chili Hybrids | FL | FD | FT | FW | NFP | Yield | ||
---|---|---|---|---|---|---|---|---|
IPB005 | × | IPB374 | 1.12 | 0.61 | −0.26 | 0.75 | 0.5 | −22.82 |
IPB005 | × | IPB367 | 0.65 | 0.15 | 0.05 | 0.81 | 0.83 | 16.51 |
IPB005 | × | IPB435 | −1.12 | −0.72 | −0.34 | −0.04 | −0.17 | −7.38 |
IPB005 | × | IPB074 | −0.28 | −0.38 | −0.01 | −0.19 | −3.00 | −54.32 |
IPB374 | × | IPB005 | 0.4 | 0.66 | −0.08 | 1.78 | −5.27 | 100.69 |
IPB374 | × | IPB367 | 0.23 | −0.67 | 0.32 | −0.37 | 0.001 | −0.31 |
IPB374 | × | IPB435 | 0.12 | 0.12 | 0.003 | −0.11 | 0.5 | −1.67 |
IPB374 | × | IPB074 | 0.03 | −1.18 | 0.11 | −0.19 | −1.5 | −34.32 |
IPB367 | × | IPB005 | −0.81 | 2.49 | −0.04 | −2.34 | 8.76 | −115.88 |
IPB367 | × | IPB374 | −0.38 | −0.24 | −0.19 | −0.76 | −18.47 | −61.09 |
IPB367 | × | IPB435 | 0.1 | 0.28 | 0.013 | 0.05 | −1.33 | 2.06 |
IPB367 | × | IPB074 | 0.001 | 0.09 | −0.04 | 0.1 | −0.17 | 7.695 |
IPB435 | × | IPB005 | −0.56 | −2.81 | −0.03 | −3.07 | 11.46 | −102.67 |
IPB435 | × | IPB374 | 0.02 | 1.39 | −0.27 | −0.79 | 27.39 | 17.53 |
IPB435 | × | IPB367 | 0.46 | 1.74 | 0.08 | 2.77 | −28.07 | 104.03 |
IPB435 | × | IPB074 | −0.52 | 1.28 | 0.09 | −0.09 | 2.17 | −0.61 |
IPB074 | × | IPB005 | 0.01 | 2.51 | −0.43 | 2.09 | 0.76 | 135.85 |
IPB074 | × | IPB374 | −0.99 | −0.75 | 0.26 | −1.84 | 5.19 | −90.17 |
IPB074 | × | IPB367 | −0.31 | −2.13 | −0.19 | −1.53 | 16.56 | −71.09 |
IPB074 | × | IPB435 | 0.19 | −0.82 | 0.12 | −1.16 | −30.74 | −206.33 |
Chili Hybrids | TPC | TFC | DPPH | FRAP | AGI | ||
---|---|---|---|---|---|---|---|
IPB005 | × | IPB374 | 0.17 | −0.01 | 0.001 | −0.61 | −0.22 |
IPB005 | × | IPB367 | −0.28 | 0.05 | −0.03 | −0.67 | −0.5 |
IPB005 | × | IPB435 | −0.42 | 0.06 | 0.04 | −0.46 | 0.24 |
IPB005 | × | IPB074 | −0.69 | −0.03 | 0.04 | 0.49 | −0.88 |
IPB374 | × | IPB005 | −3.26 | 0.08 | −0.1 | −3.53 | −3.09 |
IPB374 | × | IPB367 | −1.01 | −0.01 | −0.01 | 0.52 | −0.15 |
IPB374 | × | IPB435 | 0.15 | 0.14 | 0.04 | 3.24 | −1.03 |
IPB374 | × | IPB074 | −1.12 | 0.07 | 0.04 | −1.12 | −0.2 |
IPB367 | × | IPB005 | −6.06 | −0.73 | 0.11 | −0.92 | 0.68 |
IPB367 | × | IPB374 | −9.57 | −0.89 | 0.16 | −12.36 | 4.4 |
IPB367 | × | IPB435 | −0.35 | 0.02 | 0.03 | 0.88 | −0.61 |
IPB367 | × | IPB074 | 0.52 | 0.02 | 0.02 | 1.39 | 0.76 |
IPB435 | × | IPB005 | −7.39 | −0.48 | 0.07 | −6.58 | 2.99 |
IPB435 | × | IPB374 | −7.44 | −0.47 | −0.014 | −1.93 | −2.8 |
IPB435 | × | IPB367 | 7.72 | 1.11 | −0.28 | 8.23 | −0.52 |
IPB435 | × | IPB074 | −2.26 | −0.03 | 0.03 | −0.97 | 0.91 |
IPB074 | × | IPB005 | 2.99 | 0.76 | −0.02 | 5.96 | −6.68 |
IPB074 | × | IPB374 | 4.06 | 0.26 | 0.01 | −0.27 | 7.83 |
IPB074 | × | IPB367 | 1.65 | −0.85 | −0.03 | −10.17 | 0.23 |
IPB074 | × | IPB435 | 0.58 | −0.64 | 0.2 | −2.89 | −0.004 |
Chili Hybrids | TD | PD | LD | DBT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HMP | HHP | HMP | HHP | HMP | HHP | HMP | HHP | |||
………………………………………… (%) ………………………………………………. | ||||||||||
IPB005 | × | IPB374 | 12.28 | 7.87 | 13.55 | −0.32 | 0 | −3.05 | 32.79 | 31.77 |
IPB005 | × | IPB367 | 3.39 | −25.61 | 23.28 | −0.85 | 15.46 | −8.94 | 68.68 | 54.86 |
IPB005 | × | IPB435 | −20.75 | −23.17 | 5.93 | −6.23 | 5.79 | 4.07 | −3.2 | −14.22 |
IPB005 | × | IPB074 | 3.87 | −5.05 | 7.26 | 1.92 | −12.3 | −13.01 | 30.44 | 24.99 |
IPB374 | × | IPB005 | 9.94 | 5.62 | 20.88 | 6.11 | 32.28 | 28.24 | −2.13 | −2.88 |
IPB374 | × | IPB367 | 24.8 | −12.36 | 2.64 | −25.08 | 10.89 | −14.5 | 59.42 | 47.39 |
IPB374 | × | IPB435 | 0.00 | −6.74 | 3.25 | 2.25 | −9.6 | −13.74 | 13.71 | 0.09 |
IPB374 | × | IPB074 | 30.85 | 24.24 | 9.44 | 0.64 | 0.79 | −3.05 | 30.66 | 24.28 |
IPB367 | × | IPB005 | 18.64 | −14.63 | 35.98 | 9.36 | 15.46 | −8.94 | −24.63 | −30.81 |
IPB367 | × | IPB374 | 7.2 | −24.72 | 0.44 | −26.69 | 10.89 | −14.5 | −40.37 | −44.87 |
IPB367 | × | IPB435 | 15.04 | −15.58 | −19.64 | −40.98 | −25.26 | −40.34 | −35.54 | −46.96 |
IPB367 | × | IPB074 | 30.37 | −11.11 | 7.92 | −16.48 | 5.21 | −16.53 | −18.87 | −28.36 |
IPB435 | × | IPB005 | 6.92 | 3.66 | 20.74 | 6.89 | 0 | −1.63 | 11.67 | −1.04 |
IPB435 | × | IPB374 | 31.33 | 22.47 | −24.35 | −25.08 | −29.6 | −32.82 | 93.29 | 70.14 |
IPB435 | × | IPB367 | 13.27 | −16.88 | −4.91 | −30.16 | −12.63 | −30.25 | −17.69 | −32.27 |
IPB435 | × | IPB074 | 32.95 | 18.18 | −11.31 | −17.7 | −13.33 | −14.05 | 48.25 | 36.6 |
IPB074 | × | IPB005 | −2.76 | −11.11 | 16.13 | 10.34 | 7.38 | 6.5 | −11.36 | −15.07 |
IPB074 | × | IPB374 | 26.6 | 20.2 | −15.38 | −22.19 | −22.22 | −25.19 | 78.63 | 69.91 |
IPB074 | × | IPB367 | 18.52 | −19.19 | 11.88 | −13.41 | 0 | −20.66 | −3.18 | −14.49 |
IPB074 | × | IPB435 | 20.45 | 7.07 | 3.18 | −4.26 | −12.5 | −13.22 | 39.97 | 28.97 |
Chili Hybrids | FL | FD | FT | FW | NFP | Yield | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMP | HHP | HMP | HHP | HMP | HHP | HMP | HHP | HMP | HHP | HMP | HHP | |||
…….………………………………………… (%) ………………………………………………… | ||||||||||||||
IPB005 | × | IPB374 | −13.59 | −23.93 | −2.94 | −30.42 | −10.14 | −19.01 | −4.54 | −18.4 | 10.74 | 6.91 | 15.2 | −3.06 |
IPB005 | × | IPB367 | −35.24 | −57.63 | −31.14 | −48.79 | −23.78 | −37.53 | −60 | −76.95 | 7.16 | −10.08 | −35.86 | −61.46 |
IPB005 | × | IPB435 | 1.86 | −31.78 | −23.67 | −51.88 | −1.53 | −29.78 | −63.11 | −79.4 | 12.64 | −7.97 | −33.85 | −61.21 |
IPB005 | × | IPB074 | −6.57 | −12.09 | 6.46 | −12.29 | −37.37 | −49.27 | 2.27 | −2.71 | 11.28 | −0.89 | 9 | 6.85 |
IPB374 | × | IPB005 | 4.47 | −8.03 | 4.48 | −25.1 | −31.09 | −37.89 | 8.02 | −7.67 | 12.4 | 8.51 | 9.22 | −8.09 |
IPB374 | × | IPB367 | −18.62 | −49.76 | −5.74 | −10.94 | −41.06 | −47.06 | −35.25 | −60.67 | −33.18 | −42.25 | −37.22 | −59.34 |
IPB374 | × | IPB435 | −5.84 | −40.76 | 19.78 | −4.11 | −27.49 | −44.49 | −45.34 | −68.19 | 27.59 | 7.25 | −23.46 | −52.04 |
IPB374 | × | IPB074 | −15.78 | −21.56 | 2.93 | −14.08 | −6.04 | −16.74 | −32.51 | −39.73 | 10.19 | 1.34 | −24.08 | −37.13 |
IPB367 | × | IPB005 | −16.67 | −45.48 | −29.39 | −47.49 | −19.65 | −34.14 | −39.96 | −65.4 | 9.47 | −8.14 | −29.8 | −57.82 |
IPB367 | × | IPB374 | −13.24 | −46.45 | −18.5 | −22.99 | −8.48 | −17.8 | −47.4 | −68.05 | −33.18 | −42.25 | −37.37 | −59.44 |
IPB367 | × | IPB435 | −2.88 | −7.34 | −4.18 | −26.47 | −10.23 | −25.19 | 35.16 | 19.22 | −53.18 | −54.71 | −37.55 | −42.01 |
IPB367 | × | IPB074 | −17.93 | −47.8 | −33.84 | −42.03 | −25.38 | −26.52 | −51.21 | −71.49 | 2.49 | −4.26 | −47.32 | −68.56 |
IPB435 | × | IPB005 | −29.3 | −52.65 | −33.73 | −58.23 | −36.16 | −54.48 | −64.04 | −79.93 | 12.2 | −8.33 | −36.62 | −62.83 |
IPB435 | × | IPB374 | −3.2 | −39.1 | 22.69 | −1.79 | −27.09 | −44.19 | −49.03 | −70.34 | 28.88 | 8.33 | −24.32 | −52.58 |
IPB435 | × | IPB367 | 2.88 | −1.83 | 2.3 | −21.49 | −8.41 | −23.67 | 40.48 | 23.91 | −56.18 | −57.61 | −35.12 | −39.76 |
IPB435 | × | IPB074 | 2.75 | −33.24 | −28.45 | −49.83 | −10.42 | −24.41 | −47.85 | −70.56 | −56.4 | −60.51 | −75.44 | −85.68 |
IPB074 | × | IPB005 | −11.53 | −16.76 | 2.47 | −15.58 | −37.97 | −49.76 | −0.61 | −5.45 | 2.26 | −8.93 | −2.74 | −4.66 |
IPB074 | × | IPB374 | −15.27 | −21.09 | −16.15 | −30 | 5.19 | −6.79 | −35.96 | −42.81 | 5.83 | −2.68 | −32.86 | −44.4 |
IPB074 | × | IPB367 | −17.93 | −47.8 | −32.48 | −40.83 | −30.38 | −31.44 | −48.41 | −69.85 | 2.07 | −4.65 | −44.59 | −66.93 |
IPB074 | × | IPB435 | −10.36 | −41.76 | −3.72 | −32.48 | 2.55 | −13.48 | −50.47 | −72.04 | −51.2 | −55.8 | −75.67 | −85.81 |
Chili Hybrids | TPC | TFC | DPPH | FRAP | AGI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HMP | HHP | HMP | HHP | HMP | HHP | HMP | HHP | HMP | HHP | |||
…….………………………………………… (%) ……………………………………………… | ||||||||||||
IPB005 | × | IPB374 | −49.24 | −51.48 | −22.9 | −28.41 | −2.04 | −9.11 | −31.27 | −38.81 | −4.52 | −10.41 |
IPB005 | × | IPB367 | −42.47 | −44.75 | −50.94 | −60.81 | 8.38 | 2.98 | −24.68 | −27.14 | 0.71 | −9.57 |
IPB005 | × | IPB435 | −49.85 | −51.7 | −31.8 | −42.38 | 3.32 | −1.36 | −23.39 | −28.44 | −0.64 | −7.29 |
IPB005 | × | IPB074 | 4.63 | −7.49 | 14.91 | 12.03 | 3.1 | 1.36 | −1.92 | −5.06 | −14.45 | −25.27 |
IPB374 | × | IPB005 | −48.32 | −50.6 | −23.68 | −29.13 | −2.1 | −9.17 | −33.88 | −41.14 | −5.24 | −11.09 |
IPB374 | × | IPB367 | −50.95 | −51.19 | −60.21 | −66.24 | 10.02 | −2.61 | −61.68 | −64.85 | 14.69 | −2.65 |
IPB374 | × | IPB435 | −52.62 | −56.31 | −42.45 | −48.06 | −2.25 | −5.14 | −31.88 | −35.33 | 1.91 | −10.35 |
IPB374 | × | IPB074 | 5.16 | −10.58 | −20.55 | −24.43 | 4.71 | −1.29 | −26.33 | −36.26 | 22.68 | 13.62 |
IPB367 | × | IPB005 | −43.96 | −46.18 | −47.62 | −58.16 | 4.85 | −0.37 | −27.84 | −30.2 | −0.64 | −10.79 |
IPB367 | × | IPB374 | −56.09 | −56.31 | −60.51 | −66.49 | 8.94 | −3.57 | −59.53 | −62.87 | 14.24 | −3.04 |
IPB367 | × | IPB435 | 4.65 | −3.05 | 4.73 | −2.27 | −18.86 | −26.21 | −3.95 | −7.37 | 3 | −1.19 |
IPB367 | × | IPB074 | 7.96 | −7.83 | −54.06 | −62.58 | 0.34 | −6.18 | −55.98 | −58.73 | 3.96 | −17.12 |
IPB435 | × | IPB005 | −52.3 | −54.06 | −28.18 | −39.32 | 7.84 | 2.96 | −25.47 | −30.38 | 0.04 | −6.65 |
IPB435 | × | IPB374 | −51.78 | −55.53 | −33.41 | −39.91 | 2.11 | −0.91 | −18.79 | −22.89 | −1.23 | −13.12 |
IPB435 | × | IPB367 | 2.68 | −4.87 | 5.41 | −1.64 | −15.93 | −23.54 | −0.07 | −3.62 | 1.42 | −2.7 |
IPB435 | × | IPB074 | 13.91 | 4.21 | −35.44 | −44.28 | 13.94 | 10.59 | −16.9 | −24.69 | −0.62 | −18.16 |
IPB074 | × | IPB005 | 0.27 | −11.34 | 12.86 | 10.03 | 7.97 | 6.15 | 0.54 | −2.68 | −17.57 | −27.99 |
IPB074 | × | IPB374 | −1.61 | −16.33 | −15.03 | −19.18 | 8.99 | 2.76 | −31.3 | −40.56 | 21.92 | 12.91 |
IPB074 | × | IPB367 | 11.13 | −5.12 | −52.66 | −61.44 | 2.34 | −4.31 | −49.15 | −52.33 | 6.29 | −15.26 |
IPB074 | × | IPB435 | −1.04 | −9.47 | −37.46 | −46.02 | 17.73 | 14.27 | −21.47 | −28.83 | 2.34 | −15.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syukur, M.; Maharijaya, A.; Nurcholis, W.; Ritonga, A.W.; Pangestu, A.Y.; Hatta, A.N.N.L.; Istiqlal, M.R.A.; Hakim, A.; Sahid, Z.D. Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components. Curr. Issues Mol. Biol. 2024, 46, 11700-11713. https://doi.org/10.3390/cimb46100695
Syukur M, Maharijaya A, Nurcholis W, Ritonga AW, Pangestu AY, Hatta ANNL, Istiqlal MRA, Hakim A, Sahid ZD. Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components. Current Issues in Molecular Biology. 2024; 46(10):11700-11713. https://doi.org/10.3390/cimb46100695
Chicago/Turabian StyleSyukur, Muhamad, Awang Maharijaya, Waras Nurcholis, Arya Widura Ritonga, Arya Yuda Pangestu, Andi Nadia Nurul Lathifa Hatta, Muhammad Ridha Alfarabi Istiqlal, Abdul Hakim, and Zulfikar Damaralam Sahid. 2024. "Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components" Current Issues in Molecular Biology 46, no. 10: 11700-11713. https://doi.org/10.3390/cimb46100695
APA StyleSyukur, M., Maharijaya, A., Nurcholis, W., Ritonga, A. W., Pangestu, A. Y., Hatta, A. N. N. L., Istiqlal, M. R. A., Hakim, A., & Sahid, Z. D. (2024). Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components. Current Issues in Molecular Biology, 46(10), 11700-11713. https://doi.org/10.3390/cimb46100695