Next Article in Journal
pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics
Next Article in Special Issue
Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles
Previous Article in Journal
Lactoferrin from Milk: Nutraceutical and Pharmacological Properties
Previous Article in Special Issue
Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting—Ideal Versus Reality
Open AccessReview

Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota

Aberdeen, Scotland AB15 5LZ, UK
Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania
Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania
Author to whom correspondence should be addressed.
Academic Editor: Jean Jacques Vanden Eynde
Pharmaceuticals 2016, 9(4), 62;
Received: 24 August 2016 / Revised: 23 September 2016 / Accepted: 26 September 2016 / Published: 29 September 2016
(This article belongs to the Special Issue Nanobiotechnology in Medicinal Chemistry)
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules. View Full-Text
Keywords: antimicrobial; nanotechnology; pathogen; infection; gastrointestinal delivery; microbiota antimicrobial; nanotechnology; pathogen; infection; gastrointestinal delivery; microbiota
Show Figures

Figure 1

MDPI and ACS Style

Karavolos, M.; Holban, A. Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota. Pharmaceuticals 2016, 9, 62.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop