A Retrospective Study of the Impact of 21-Gene Recurrence Score Assay on Treatment Choice in Node Positive Micrometastatic Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Population
2.3. Data
2.4. Statistical Analysis
3. Results and Discussion
Recurrence Score <18 n = 106; 58.6% | Recurrence Score 18–30 n = 57; 31.5% | Recurrence Score ≥31 n = 18; 9.9% | Total n = 181 | p value a | |||||
---|---|---|---|---|---|---|---|---|---|
Number | Estimate | Number | Estimate | Number | Estimate | Number | Estimate | ||
Age (years) , mean (SD) [median; range] | 106 | 61.7 (10.2) [61; 34–81] | 57 | 58.3 (10.6) [56; 35–83] | 18 | 62.6 (10.2) [62; 39–81] | 181 | 60.7 (10.4) [60; 34–83] | 0.099 |
Age (years), n (%) | 0.060 | ||||||||
<50 | 12 | (11.3) | 13 | (22.8) | 1 | (5.6) | 26 | (14.4) | |
50-64 | 50 | (47.2) | 30 | (52.6) | 12 | (66.7) | 92 | (50.8) | |
≥65 | 44 | (41.5) | 14 | (24.6) | 5 | (27.8) | 63 | (34.8) | |
ECOG performance status, n (%) | 0.685 | ||||||||
0: fully active | 87 | (82.1) | 48 | (84.2) | 15 | (83.3) | 150 | (82.9) | |
1: restricted activity | 18 | (17.0) | 8 | (14.0) | 2 | (11.1) | 28 | (15.5) | |
2: capable of all self-care | 1 | (0.9) | 1 | (1.8) | 1 | (5.6) | 3 | (1.7) | |
3: capable of only limited self-care | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
4: completely disabled | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Postmenopausal b, n (%) | |||||||||
Yes | 84 | (79.2) | 37 | (64.9) | 15 | (83.3) | 136 | (75.1) | 0.091 |
Comorbidity, n (%) | |||||||||
Hypertension | 30 | (28.3) | 22 | (38.6) | 9 | (50.0) | 61 | (33.7) | 0.127 |
Osteoporosis/osteopenia | 22 | (20.8) | 15 | (26.3) | 4 | (22.2) | 41 | (22.7) | 0.720 |
Osteoarthritis | 20 | (18.9) | 11 | (19.3) | 3 | (16.7) | 34 | (18.8) | 0.999 |
Type 2 diabetes | 6 | (5.7) | 8 | (14.0) | 2 | (11.1) | 16 | (8.8) | 0.190 |
Chronic obstructive pulmonary disease | 6 | (5.7) | 2 | (3.5) | 1 | (5.6) | 9 | (5.0) | 0.886 |
Valvular heart disease | 6 | (5.7) | 2 | (3.5) | 0 | (0.0) | 8 | (4.4) | 0.652 |
Coronary artery disease | 1 | (0.9) | 2 | (3.5) | 3 | (16.7) | 6 | (3.3) | 0.009 |
Prior invasive breast cancer | 2 | (1.9) | 2 | (3.5) | 1 | (5.6) | 5 | (2.8) | 0.670 |
Congestive heart failure | 0 | (0.0) | 1 | (1.8) | 1 | (5.6) | 2 | (1.1) | 0.072 |
Type 1 diabetes | 0 | (0.0) | 1 | (1.8) | 1 | (5.6) | 2 | (1.1) | 0.072 |
Liver disease | 1 | (0.9) | 0 | (0.0) | 1 | (5.6) | 2 | (1.1) | 0.287 |
Elevated creatinine | 1 | (0.9) | 0 | (0.0) | 1 | (5.6) | 2 | (1.1) | 0.287 |
Chronic kidney disease | 1 | (0.9) | 0 | (0.0) | 0 | (0.0) | 1 | (0.6) | 0.999 |
Recurrence Score <18 n = 106; 58.6% | Recurrence Score 18–30 n = 57; 31.5% | Recurrence Score ≥31 n = 18; 9.9% | Total n = 181 | p value a | |||||
---|---|---|---|---|---|---|---|---|---|
Number | Estimate | Number | Estimate | Number | Estimate | Number | Estimate | ||
Surgical treatment, n (%) | |||||||||
Lumpectomy | 57 | (53.8) | 34 | (59.6) | 10 | (55.6) | 101 | (55.8) | 0.771 |
Mastectomy | 52 | (49.1) | 26 | (45.6) | 10 | (55.6) | 88 | (48.6) | 0.755 |
Dissections and biopsies | 0.041 | ||||||||
SLNB without ALND | 72 | (67.9) | 31 | (54.4) | 6 | (33.3) | 109 | (60.2) | |
SLNB with ALND | 33 | (31.1) | 24 | (42.1) | 12 | (66.7) | 69 | (38.1) | |
ALND without SLNB | 1 | (0.9) | 2 | (3.5) | 0 | (0.0) | 3 | (1.7) | |
Tumor size (cm), mean (SD) [median; range] | 106 | 1.6 (1.1) [1; 0–6] | 57 | 2.1 (1.2) [2; 1–7] | 18 | 2.3 (0.6) [2; 1–4] | 181 | 1.8 (1.1) [2; 0–7] | 0.013 |
Tumor size (cm), n (%) | 0.002 | ||||||||
≤0.5 | 9 | (8.5) | 1 | (1.8) | 0 | (0.0) | 10 | (5.5) | |
0.6–1.0 | 18 | (17.0) | 10 | (17.5) | 0 | (0.0) | 28 | (15.5) | |
1.1–2.0 | 56 | (52.8) | 20 | (35.1) | 7 | (38.9) | 83 | (45.9) | |
>2.0 | 23 | (21.7) | 26 | (45.6) | 11 | (61.1) | 60 | (33.1) | |
Tumor focality, n (%) | 0.277 | ||||||||
Number of non-missing | 103 | 57 | 18 | 178 | |||||
Single focus | 75 | (72.8) | 48 | (84.2) | 14 | (77.8) | 137 | (77.0) | |
Multiple foci | 28 | (27.2) | 9 | (15.8) | 4 | (22.2) | 41 | (23.0) | |
Histologic type, n (%) | 0.184 | ||||||||
Ductal | 85 | (80.2) | 50 | (87.7) | 18 | (100.0) | 153 | (84.5) | |
Lobular | 14 | (13.2) | 6 | (10.5) | 0 | (0.0) | 20 | (11.0) | |
Mixed | 7 | (6.6) | 1 | (1.8) | 0 | (0.0) | 8 | (4.4) | |
Metaplastic or tubular/colloid | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Overall histologic grade (Nottingham Histologic Score), n (%) | <0.001 | ||||||||
Grade 1 | 44 | (41.5) | 17 | (29.8) | 1 | (5.6) | 62 | (34.3) | |
Grade 2 | 52 | (49.1) | 29 | (50.9) | 6 | (33.3) | 87 | (48.1) | |
Grade 3 | 10 | (9.4) | 11 | (19.3) | 11 | (61.1) | 32 | (17.7) | |
Evidence of lymphovascular invasion, n (%) | 0.010 | ||||||||
Not identified | 67 | (63.2) | 32 | (56.1) | 5 | (27.8) | 104 | (57.5) | |
Present | 18 | (17.0) | 16 | (28.1) | 11 | (61.1) | 45 | (24.9) | |
Indeterminate | 5 | (4.7) | 2 | (3.5) | 1 | (5.6) | 8 | (4.4) | |
Not reported | 16 | (15.1) | 7 | (12.3) | 1 | (5.6) | 24 | (13.3) | |
HER2 testing by Oncotype DX HER2 score, n (%) | 0.999 | ||||||||
Number of non-missing | 103 | 57 | 18 | 178 | |||||
Negative (<10.7) | 102 | (99.0) | 56 | (98.2) | 18 | (100) | 176 | (98.9) | |
Equivocal (≥10.7 to <11.5) | 1 | (1.0) | 1 | (1.8) | 0 | (0.0) | 2 | (1.1) | |
Positive (≥11.5) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | ||
HER2 testing by IHC assay, n (%) | 0.922 | ||||||||
Number of non-missing | 93 | 52 | 16 | 161 | |||||
Negative (0, 1+) | 73 | (78.5) | 40 | (76.9) | 13 | (81.2) | 126 | (78.3) | |
Equivocal (2+) | 20 | (21.5) | 12 | (23.1) | 3 | (18.8) | 35 | (21.7) | |
Positive (3+) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
HER2 testing by FISH assay, n (%) | 0.786 | ||||||||
Not amplified (gene copy number <4.0 or ratio <1.8) | 71 | (67.0) | 41 | (71.9) | 12 | (66.7) | 124 | (68.5) | |
Equivocal (gene copy number 4.0–6.0 or ratio 1.8–2.2) | 2 | (1.9) | 0 | (0.0) | 0 | (0.0) | 2 | (1.1) | |
Amplified (gene copy number >6.0 or ratio >2.2) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Not performed | 33 | (31.1) | 16 | (28.1) | 6 | (33.3) | 55 | (30.4) | |
ER testing by Oncotype DX ER score, n (%) | 0.072 | ||||||||
Negative (<6.5) | 0 | (0.0) | 1 | (1.8) | 1 | (5.6) | 2 | (1.1) | |
Positive (≥6.5) | 106 | (100.0) | 56 | (98.2) | 17 | (94.4) | 179 | (98.9) | |
Interpretation of ER testing by IHC assay, n (%) | N/A | ||||||||
Negative (<1%) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Positive (≥1%) | 106 | (100.0) | 57 | (100.0) | 18 | (100.0) | 181 | (100.0) | |
ER testing: % quantitation, mean (SD) [median; range] | 98 | 88.8 (17.3) [95; 9–100] | 53 | 86.9 (20.4) [95; 11–100] | 15 | 83.8 (24.2) [92; 3–100] | 166 | 87.7 (18.9) [95; 3–100] | 0.595 |
PR testing by Oncotype DX PR score, n (%) | <0.001 | ||||||||
Negative (<5.5) | 1 | (0.9) | 10 | (17.5) | 13 | (72.2) | 24 | (13.3) | |
Positive (≥5.5) | 105 | (99.1) | 47 | (82.5) | 5 | (27.8) | 157 | (86.7) | |
Interpretation of PR testing by IHC assay, n (%) | <0.001 | ||||||||
Negative (<1%) | 3 | (2.8) | 5 | (8.8) | 7 | (38.9) | 15 | (8.3) | |
Positive (≥1%) | 103 | (97.2) | 52 | (91.2) | 11 | (61.1) | 166 | (91.7) | |
PgR testing: % quantitation, mean (SD) [median; range] | 95 | 78.3 (24.2) [90; 5–100] | 48 | 60.0 (34.9) [73; 1–100] | 9 | 45.1 (35.3) [35; 3–95] | 152 | 70.6 (30.4) [87; 1–100] | <0.001 |
Recurrence Score <18 n = 106; 58.6% | Recurrence Score 18–30 n = 57; 31.5% | Recurrence Score ≥31 n = 18; 9.9% | Total n = 181 | p value a | p value b | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Estimate | Number | Estimate | Number | Estimate | Number | Estimate | |||
Endocrine therapy, n (%) | 101 | (95.3) | 50 | (87.7) | 14 | (77.8) | 165 | (91.2) | 0.029 | 0.025 |
Chemotherapy, n (%) | 21 | (19.8) | 33 | (57.9) | 18 | (100.0) | 72 | (39.8) | <0.001 | <0.001 |
Treatment, n (%) | <0.001 | <0.001 | ||||||||
Endocrine therapy without chemotherapy | 85 | (80.2) | 24 | (42.1) | 0 | (0.0) | 109 | (60.2) | ||
Chemotherapy without endocrine therapy | 5 | (4.7) | 7 | (12.3) | 4 | (22.2) | 16 | (8.8) | ||
Both endocrine therapy and chemotherapy | 16 | (15.1) | 26 | (45.6) | 14 | (77.8) | 56 | (30.9) | ||
Patients with recommendation of chemotherapy, n (%) | 21 | 33 | 18 | 72 | ||||||
Chemotherapy regimen recommended, n (%) | 0.134 | 0.016 | ||||||||
BOTH taxane- AND anthracycline-based | 9 | (42.9) | 9 | (27.3) | 5 | (27.8) | 23 | (31.9) | ||
Taxane-based, NO anthracycline | 5 | (23.8) | 16 | (48.5) | 12 | (66.7) | 33 | (45.8) | ||
Anthracycline-based, NO taxane | 0 | (0.0) | 1 | (3.0) | 0 | (0.0) | 1 | (1.4) | ||
Other | 7 | (33.3) | 6 | (18.2) | 1 | (5.6) | 14 | (19.4) |
Study Data (n = 181) | Genomic Health Data a (n = 9328) | p-value b | |||
---|---|---|---|---|---|
Number | Estimate | Number | Estimate | ||
Age (years), mean (SD) [median; range] | 60.7 (10.4) [60; 34–83] | 59.2 (10.6) [60; 22–93] | 0.055 c | ||
Age, n (%) | 0.130 | ||||
<50 years | 26 | (14.4) | 1900 | (20.4) | |
50–64 years | 92 | (50.8) | 4309 | (46.2) | |
≥65 years | 63 | (34.8) | 3119 | (33.4) | |
Oncotype DXRecurrence Score result, mean (SD) [median; range] | 17.8 (8.8) [16; 0–50] | 17.5 (9.8) [16; 0–100] | 0.650 c | ||
Oncotype DX Recurrence Score result categories, n (%) | 0.536 | ||||
<18 (low risk) | 106 | (58.6) | 5643 | (60.5) | |
18–30 (intermediate risk) | 57 | (31.5) | 2965 | (31.8) | |
≥31 (high risk) | 18 | (9.9) | 720 | (7.7) | |
HER2 testing by Oncotype DX HER2 score, n (%) | 0.567 d | ||||
Negative (<10.7) | 176 | (98.9) | 9147 | (98.1) | |
Equivocal (≥10.7 to <11.5) | 2 | (1.1) | 103 | (1.1) | |
Positive (≥11.5) | 0 | (0.0) | 78 | (0.8) | |
ER testing by Oncotype DX ER score, n (%) | 0.778 d | ||||
Negative (<6.5) | 2 | (1.1) | 135 | (1.4) | |
Positive (≥6.5) | 179 | (98.9) | 9193 | (98.6) | |
PR testing by Oncotype DXPR score, n (%) | 0.848 | ||||
Negative (<5.5) | 24 | (13.3) | 1283 | (13.8) | |
Positive (≥5.5) | 157 | (86.7) | 8045 | (86.2) |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures 2015. Atlanta: American Cancer Society. 2015. Available online: http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdf (accessed on 23 February 2015).
- Maaskant, A.J.; van de Poll-Franse, L.V.; Voogd, A.C.; Coebergh, J.W.; Tutein Nolthenius-Puylaert, M.C.; Nieuwenhuijzen, G.A. Stage migration due to introduction of the sentinel node procedure: A population-based study. Breast Cancer Res. Treat. 2009, 113, 173–179. [Google Scholar]
- Van der Heiden-van der Loo, M.; Bezemer, P.D.; Hennipman, A.; Siesling, S.; van Diest, P.J.; Bongers, V.; Peeters, P.H. Introduction of sentinel node biopsy and stage migration of breast cancer. Eur. J. Surg. Oncol. 2006, 32, 710–714. [Google Scholar]
- Salhab, M.; Patani, N.; Mokbel, K. Sentinel lymph node micrometastasis in human breast cancer: An update. Surg. Oncol. 2011, 20, e195–e206. [Google Scholar]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Breast Cancer. Version 3. 2014. Available online: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed on 16 October 2014).
- Fisher, B.; Jeong, J.H.; Bryant, J.; Anderson, S.; Dignam, J.; Fisher, E.R.; Wolmark, N. National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 2004, 364, 858–868. [Google Scholar]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar]
- Paik, S.; Tang, G.; Shak, S.; Kim, C.; Baker, J.; Kim, W.; Cronin, M.; Baehner, F.L.; Watson, D.; Bryant, J.; et al. Gene expression and benefit of chemotherapy in women with node negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 2006, 24, 3726–3734. [Google Scholar]
- Albain, K.S.; Barlow, W.E.; Shak, S.; Hortobagyi, G.N.; Livingston, R.B.; Yeh, I.T.; Ravdin, P.; Bugarini, R.; Baehner, F.L.; Davidson, N.E.; et al. Breast Cancer Intergroup of North America. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: A retrospective analysis of a randomised trial. Lancet Oncol. 2010, 11, 55–65. [Google Scholar]
- Febbo, P.G.; Ladanyi, M.; Aldape, K.D.; de Marzo, A.M.; Hammond, M.E.; Hayes, D.F.; Iafrate, A.J.; Kelley, R.K.; Marcucci, G.; Ogino, S.; et al. NCCN Task Force report: Evaluating the clinical utility of tumor markers in oncology. J. Natl. Compr. Cancer Netw. 2011, 9, S1–S32. [Google Scholar]
- Berry, D.A.; Cirrincione, C.; Henderson, I.C.; Citron, M.L.; Budman, D.R.; Goldstein, L.J.; Martino, S.; Perez, E.A.; Muss, H.B.; Norton, L.; et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 2006, 295, 1658–1667. [Google Scholar]
- Bovelli, D.; Plataniotis, G.; Roila, F. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann. Oncol. 2010, 21, v277–v282. [Google Scholar]
- Geiger, S.; Lange, V.; Suhl, P.; Heinemann, V.; Stemmler, H.J. Anticancer therapy induced cardiotoxicity: Review of the literature. Anticancer Drugs 2010, 21, 578–590. [Google Scholar]
- Vanderlaan, B.F.; Broder, M.S.; Chang, E.Y.; Oratz, R.; Bentley, T.G. Cost-effectiveness of 21-gene assay in node-positive, early-stage breast cancer. Am. J. Manag. Care 2011, 17, 455–464. [Google Scholar]
- Hornberger, J.; Chien, R.; Krebs, K.; Hochheiser, L. US insurance program’s experience with a multigene assay for early-stage breast cancer. Am. J. Manag. Care 2011, 17, e194–e202. [Google Scholar]
- Yang, M.; Rajan, S.; Issa, A.M. Cost effectiveness of gene expression profiling for early stage breast cancer: A decision-analytic model. Cancer 2012, 118, 5163–5170. [Google Scholar]
- Hall, P.S.; McCabe, C.; Stein, R.C.; Cameron, D. Economic evaluation of genomic test-directed chemotherapy for early-stage lymph node-positive breast cancer. J. Natl. Cancer Inst. 2012, 104, 56–66. [Google Scholar]
- Montagna, E.; Viale, G.; Rotmensz, N.; Maisonneuve, P.; Galimberti, V.; Luini, A.; Intra, M.; Veronesi, P.; Mazzarol, G.; Pruneri, G.; et al. Minimal axillary lymph node involvement in breast cancer has different prognostic implications according to the staging procedure. Breast Cancer Res. Treat. 2009, 118, 385–394. [Google Scholar]
- Hansen, N.M.; Grube, B.; Ye, X.; Turner, R.R.; Brenner, R.J.; Sim, M.S.; Giuliano, A.E. Impact of micrometastases in the sentinel node of patients with invasive breast cancer. J. Clin. Oncol. 2009, 27, 4679–4684. [Google Scholar]
- Langer, I.; Marti, W.R.; Guller, U.; Moch, H.; Harder, F.; Oertli, D.; Zuber, M. Axillary recurrence rate in breast cancer patients with negative sentinel lymph node (SLN) or SLN micrometastases: prospective analysis of 150 patients after SLN biopsy. Ann. Surg. 2005, 241, 152–158. [Google Scholar]
- Reed, J.; Rosman, M.; Verbanac, K.M.; Mannie, A.; Cheng, Z.; Tafra, L. Prognostic implications of isolated tumor cells and micrometastases in sentinel nodes of patients with invasive breast cancer: 10-year analysis of patients enrolled in the prospective East Carolina University/Anne Arundel Medical Center Sentinel Node Multicenter Study. J. Am. Coll. Surg. 2009, 208, 333–340. [Google Scholar]
- Pernas, S.; Gil, M.; Benítez, A.; Bajen, M.T.; Climent, F.; Pla, M.J.; Benito, E.; Guma, A.; Gutierrez, C.; Pisa, A.; et al. Avoiding axillary treatment in sentinel lymph node micrometastases of breast cancer: A prospective analysis of axillary or distant recurrence. Ann. Surg. Oncol. 2010, 17, 772–777. [Google Scholar]
- De Boer, M.; van Deurzen, C.H.; van Dijck, J.A.; Borm, G.F.; van Diest, P.J.; Adang, E.M.; Nortier, J.W.; Rutgers, E.J.; Seynaeve, C.; Menke-Pluymers, M.B.; et al. Micrometastases or isolated tumor cells and the outcome of breast cancer. N. Engl. J. Med. 2009, 361, 653–663. [Google Scholar]
- Dowsett, M.; Cuzick, J.; Wale, C.; Forbes, J.; Mallon, E.A.; Salter, J.; Quinn, E.; Dunbier, A.; Baum, M.; Buzdar, A.; et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: A TransATAC study. J. Clin. Oncol. 2010, 28, 1829–1834. [Google Scholar]
- National Cancer Institute. Tamoxifen Citrate, Letrozole, Anastrozole, or Exemestane With or Without Chemotherapy in Treating Patients with Invasive RxPONDER Breast Cancer. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 Dec 24]. Available online: http://clinicaltrials.gov/show/NCT01272037 (accessed on 16 October 2014).
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frazier, T.G.; Fox, K.R.; Smith, J.S.; Laronga, C.; McSwain, A.; Paul, D.; Schultz, M.; Stilwill, J.; Teal, C.; Weisberg, T.; et al. A Retrospective Study of the Impact of 21-Gene Recurrence Score Assay on Treatment Choice in Node Positive Micrometastatic Breast Cancer. Pharmaceuticals 2015, 8, 107-122. https://doi.org/10.3390/ph8010107
Frazier TG, Fox KR, Smith JS, Laronga C, McSwain A, Paul D, Schultz M, Stilwill J, Teal C, Weisberg T, et al. A Retrospective Study of the Impact of 21-Gene Recurrence Score Assay on Treatment Choice in Node Positive Micrometastatic Breast Cancer. Pharmaceuticals. 2015; 8(1):107-122. https://doi.org/10.3390/ph8010107
Chicago/Turabian StyleFrazier, Thomas G., Kevin R. Fox, J. Stanley Smith, Christine Laronga, Anita McSwain, Devchand Paul, Michael Schultz, Joseph Stilwill, Christine Teal, Tracey Weisberg, and et al. 2015. "A Retrospective Study of the Impact of 21-Gene Recurrence Score Assay on Treatment Choice in Node Positive Micrometastatic Breast Cancer" Pharmaceuticals 8, no. 1: 107-122. https://doi.org/10.3390/ph8010107
APA StyleFrazier, T. G., Fox, K. R., Smith, J. S., Laronga, C., McSwain, A., Paul, D., Schultz, M., Stilwill, J., Teal, C., Weisberg, T., Vacchino, J. F., Sing, A. P., Cherepanov, D., Hsiao, W., Chang, E., & Broder, M. S. (2015). A Retrospective Study of the Impact of 21-Gene Recurrence Score Assay on Treatment Choice in Node Positive Micrometastatic Breast Cancer. Pharmaceuticals, 8(1), 107-122. https://doi.org/10.3390/ph8010107