Clinical Pharmacology of Furosemide in Neonates: A Review
Abstract
:1. Introduction
2. Bibliographic Search
3. Biological Characteristics of Neonates
3.1. Total Body Water and Extracellular Water in Newborn Infants
3.2. Extracellular Volume in Neonates
3.3. Glomerular Filtration Rate in Neonates
3.4. Tubular Function
3.5. The Loop of Henle
3.6. Renal Clearance in Neonates
3.7. Urine Output in Preterm Infants
3.8. Renal Glomerular and Tubular Functional and Structural Integrity in Neonates
Parameters | Healthy fullterm (n = 10) | Healthy preterm (n = 10) | Diseased preterm (n = 30) | |||
---|---|---|---|---|---|---|
Day 1 | Day 3 | Day 1 | Day 3 | Day 1 | Day 3 | |
Glomerular function | ||||||
Cr Conc. (mg/dL) | 0.79 ± 0.14 | 0.77 ± 0.19 | 0.86 ± 0.21 | 0.84 ± 0.16 | 0.81 ± 0.15 | 0.95 ± 0.18 a |
Microalbuminuria (µg/mg Cr) | 197 ± 245 | 157 ± 120 | 292 ± 263 | 154 ± 147 | 332 ± 263 | 334 ± 363 |
Urinary IgG (g/mg Cr) | 0.02 ± 0.05 | 0.003 ± 0.01 | 0.22 ± 0.26 b | 0.05 ± 0.15 a | ||
Proximal tubular reabsorption function | ||||||
Urinary α1M (g/mg Cr) | 99.5 ± 84.9 | 64.8 ± 55.3 | 278 ± 235 c | 72.3 ± 56.7 a | 195 ± 117 | 215 ± 171 d |
Urinary β2M (µg/mg Cr) | 1.56 ± 2.48 | 4.89 ± 7.11 | 3.29 ± 4.69 | 6.12 ± 10.0 | 6.29 ± 4.61 | 8.10 ± 9.88 |
Urinary RBP (µg/mg Cr) | 1.11 ± 1.69 | 1.22 ± 1.74 | 1.99 ± 2.50 | 1.20 ± 1.02 | 2.71 ± 2.10 | 3.04 ± 2.35 d |
Proximal tubular structure integrity | ||||||
Urinary LAP (U/g Cr) | 0.28 ± 0.72 | 0.08 ± 0.06 | 0.47 ± 0.90 | 0.20 ± 0.43 | 0.54 ± 0.75 | 0.21 ± 0.26 |
Urinary NAG (nmol/min/mg Cr) | 133 ± 192 | 97.7 ± 114 | 407 ± 395 | 108 ± 210 a | 521 ± 582 | 427 ± 474 d |
Distal reabsorption capacity FeNa% | ||||||
FeNa% | 1.13 ± 0.98 | 1.48 ± 1.38 | 2.84 ± 3.10 | 1.27 ± 1.45 | 4.01 ± 5.90c | 5.65 ± 6.81 d |
3.9. Drug Metabolism in Neonates
4. Results
Population | GA (weeks) | PNA (days) | BW (g) | n | Daily dose (mg/kg) | t1/2 (h) | Vd (L/kg) | Cl (mL/h/kg) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Fullterm | 34.0 ± 4.7 | 14.5 ± 11.1 | 2050 ± 794 | 6 | 1 IV | 9.5 ± 4.4 | 0.17 ± 0.03 | 15.4 ± 8.4 | [62] |
Preterm | 29.0 ± 2.0 | 22.0 ± 26.0 | 1326 ± 652 | 8 | 0.91 ± 0.34 * IV | 26.8 ± 12.2 | 0.20 ± 0.07 | 6.9 ± 5.1 | [63] |
Fullterm | 39.0 ± 1.0 | 6.0 ± 6.0 | 2432 ± 786 | 7 | 1.03 ± 0.06 * IV | 13.4 ± 8.6 | 0.52 ± 0.42 | 11.8 ± 9.3 | |
a Preterm | 30.0 ± 0.8 | 8.5 ± 1.9 | 1270 ± 169 | 14 | 1 IV | 19.9 ± 3.0 | 0.24 ± 0.03 | 10.8 ± 7.2 | [64] |
Fullterm | na | 1–4 months | na | 12 | 1 IV | 7.7 ± 3.0 | 0.83 ± 0.01 | 81.6 ± 15.0 | |
a Fullterm | 35.0 ± 1.8 | 11.5 ± 5.9 | 2391 ± 290a | 8 | 1 to 1.5 IV | 7.7 ± 1.0 | 0.81 ± 0.12 | 81.6 ± 15.0 | [65] |
Adults | ___ | ___ | ___ | __ | ___ | 1.3 ± 0.8 | 0.13 ± 0.06 | 99.6 ± 34.8 | [5] |
4.1. Dose of Furosemide in Neonates
4.2. Renal Response to Furosemide in Neonates
4.3. Metabolism of Furosemide in Neonates
4.4. Binding of Furosemide to Neonatal Plasma Proteins
4.5. Pharmacokinetics of Furosemide in Neonates
4.6. Continuous versus Intermittent Intravenous Infusion of Furosemide in Neonates and Infants Undergoing Cardiac surgery
4.7. Furosemide in Neonates and Infants Treated with Extracorporeal Membrane Oxygenation
4.8. Inhaled Furosemide in Preterm Infants
4.9. Furosemide in Preterm Infants with a Patent Ductus Arteriosus
4.10. Ototoxicity Following Furosemide Administration to Adults and Neonates
4.11. Furosemide and the Risk for Nephrocalcinosis in Preterm Infants
4.12. Furosemide may Yield Hypercalcemia in Neonates
4.13. Furosemide, Acetazolamide and Hydrocephalus
4.14. Side-Effects of Furosemide in Neonates
5. Discussion
6. Conclusions
Acknowledgements
Conflicts of Interest
References
- Aranda, J.V.; Collinge, J.M.; Clarkson, S. Epidemiologic aspects of drug utilization in a newborn intensive care unit. Semin. Perinatol. 1982, 6, 148–154. [Google Scholar]
- Aranda, J.V.; Clarkson, S.; Collinge, J.M. Changing pattern of drug utilization in a neonatal intensive care unit. Am. J. Perinatol. 1983, 1, 28–30. [Google Scholar]
- Reilly, R.F.; Jackson, E.K. Regulation of renal function and vascular volume. In Goodman and Gilman’s. The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollman, B., Eds.; Mc Graw Hill: New York, NY, USA, 2011; pp. 682–686. [Google Scholar]
- Onrot, J.; Ragno, R.E. Treatment of cardiovascular disorders, hypertension. In Clinical Pharmacology. Basic Principles in Therapeutics, 3rd ed.; Melmon, K.L., Morelli, H.F., Hoffman, B.B., Nierenberg, D.W., Eds.; Mc Graw Hill: New York, NY, USA, 1992; p. 57. [Google Scholar]
- Thummel, K.E.; Shen, D.D.; Isoherranen, N. Design and optimization of dosage regimens, pharmacokinetic data. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollman, B., Eds.; Mc Graw Hill: New York, NY, USA, 2011; p. 1935. [Google Scholar]
- Mirochnick, M.H.; Miceli, J.J.; Kramer, P.A.; Chapron, D.J.; Raye, J.R. Furosemide pharmacokinetics in very low birth weight infants. J. Pediatr. 1988, 112, 653–657. [Google Scholar] [CrossRef]
- Young, T.E.; Mangum, B. Neofax: A Manual of Drugs used in neonatal care. Cardiovascular, 23rd ed.; Thomson Reuters: Montvale, NJ, USA, 2010; pp. 248–249. [Google Scholar]
- Schaible, T.; Hermle, D.; Loersch, F.; Demirakca, S.; Reinshagen, K.; Varnholt, V. A 20-year experience on neonatal extracorporeal membrane oxygenation in a referral center. Intensive Care Med. 2010, 36, 1229–1234. [Google Scholar] [CrossRef]
- Van der Vorst, M.M.; Wildschut, E.; Houmes, R.J.; Gischler, S.J.; Kist-van Holthe, J.E.; Burggraaf, J.; van der Heijden, A.J.; Tibboel, D. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit. Care. 2006, 10, R168. [Google Scholar] [CrossRef]
- Neonatal Formulary, 6th ed.; John Wiley & Sons: West Sussex, UK, 2011; p. 116.
- Stewart, A.; Brion, L.P.; Soll, R. Diuretics for respiratory distress syndrome in preterm infants. Cochrane Database Syst. Rev. 2011, 12, CD001454. [Google Scholar]
- Sulyok, E.; Varga, F.; Németh, M.; Tényi, I.; Csaba, I.F.; Ertl, T.; Györy, E. Furosemide-induced alterations in the electrolyte status, the function of renin-angiotensin-aldosterone system, and the urinary excretion of prostaglandins in newborn infants. Pediatr. Res. 1980, 14, 765–768. [Google Scholar] [CrossRef]
- Brion, L.P.; Soll, R.F. Diuretics for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2008, 1, CD001454. [Google Scholar]
- Heidland, A.; Wigand, M.E. The effect of Furosemide at high doses on auditorium sensitivity in patients with uremia. Klin. Wschr. 1970, 48, 1052–1056. [Google Scholar] [CrossRef]
- Rybak, L.P. Furosemide ototoxicity, clinical and experimental aspects. Laryngoscope 1985, 95, 1–14. [Google Scholar] [CrossRef]
- Adams, N.D.; Rowe, J.C. Nephrocalcinosis. Clin. Perinatol. 1992, 19, 179–195. [Google Scholar]
- Friis-Hansen, B. Body water compartments in children, changes during growth and related changes in body composition. Pediatrics 1961, 28, 169–181. [Google Scholar]
- Heimler, R.; Doumas, B.T.; Jendrzejczak, B.M.; Nemeth, P.B.; Hoffman, R.G.; Nelin, L.D. Relationship between nutrition, weight change, and fluid compartments in preterm infants during the first week of life. J Pediatr. 1993, 122, 110–114. [Google Scholar] [CrossRef]
- Allegaert, K.; Verbesselt, R.; Naulaers, G.; van den Anker, J.N.; Rayyan, M.; Debeer, A.; de Hoon, J. Developmental pharmacology, neonates are not just small adults. Acta Clin. Belg. 2008, 63, 16–24. [Google Scholar]
- Alcorn, J.; McNamara, P.J. Ontogeny of hepatic and renal systemic clearance pathways in infants, part II. Clin. Pharmacokinet. 2002, 41, 1077–1094. [Google Scholar] [CrossRef]
- Van den Anker, J.N. Pharmacokinetics and renal function in preterm infants. Acta Paediatr. 1996, 85, 1393–1399. [Google Scholar] [CrossRef]
- Kapur, G.; Mattoo, T.; Aranda, J.V. Pharmacogenomics and renal drug disposition in the newborn. Semin. Perinatol. 2004, 28, 132–140. [Google Scholar] [CrossRef]
- Allegaert, K.; Anderson, B.J.; van den Anker, J.N.; Vanhaesebrouck, S.; de Zegher, F. Renal drug clearance in preterm neonates, relation to prenatal growth. Ther. Drug Monit. 2007, 29, 284–291. [Google Scholar] [CrossRef]
- Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E. Developmental pharmacology—Drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 2003, 349, 1157–1167. [Google Scholar] [CrossRef]
- Rakhmanina, N.Y.; van den Anker, J.N. Pharmacological research in pediatrics, From neonates to adolescents. Adv. Drug Deliv. Rev. 2006, 58, 4–14. [Google Scholar] [CrossRef]
- Peters, A.M.; Allison, H.; Ussov, W.Y. Measurement of the ratio of glomerular filtration rate to plasma volume from the technetium-99m diethylene triamine pentaacetic acid renogram, comparison with glomerular filtration rate in relation to extracellular fluid volume. Eur. J. Nucl. Med. 1994, 21, 322–327. [Google Scholar] [CrossRef]
- Vanpeè, M.; Herin, P.; Zetterstrom, R. Postnatal development of renal function in very low birth weight infants. Acta Pediatr. Scand. 1998, 77, 191–197. [Google Scholar]
- Gallini, F.; Maggio, L.; Romagnoli, C.; Marrocco, G.; Tortorolo, G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr. Nephrol. 2000, 15, 119–124. [Google Scholar] [CrossRef]
- Awad, H.; el-Safty, I.; el-Barbary, M.; Imam, S. Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am. J. Med. Sci. 2002, 324, 261–266. [Google Scholar] [CrossRef]
- Wells, T.G. The pharmacology and therapeutics of diuretics in the pediatric patient. Pediatr. Clin. North Am. 1990, 37, 463–504. [Google Scholar]
- Arant, B.S., Jr. Developmental patterns of renal functional maturation compared in the human neonate. J. Pediatr. 1978, 92, 705–712. [Google Scholar] [CrossRef]
- Sonntag, J.; Prankel, B.; Waltz, S. Serum creatinine concentration, urinary creatinine excretion and creatinine clearance during the first 9 weeks in preterm infants with a birth weight below 1,500 g. Eur. J. Pediatr. 1996, 155, 815–819. [Google Scholar] [CrossRef]
- Van der Heijden, A.J.; Grose, W.F.; Ambagtsheer, J.J.; Provoost, A.P.; Wolff, E.D.; Sauer, P.J. Glomerular filtration rate in the preterm infant, the relation to gestational and postnatal age. Eur. J. Pediatr. 1988, 148, 24–28. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; de Groot, R.; Broerse, H.M.; Sauer, P.J.; van der Heijden, B.J.; Hop, W.C.; Lindemans, J. Assessment of glomerular filtration rate in preterm infants by serum creatinine, comparison with inulin clearance. Pediatrics 1995, 96, 1156–1158. [Google Scholar]
- Pachì, A.; Lubrano, R.; Maggi, E.; Giancotti, A.; Giampà, G.; Elli, M.; Mannarino, O.; Castello, M.A. Renal tubular damage in fetuses with intrauterine growth retardation. Fetal Diagn. Ther. 1993, 8, 109–113. [Google Scholar] [CrossRef]
- Hinchliffe, S.A.; Lynch, M.R.; Sargent, P.H.; Howard, C.V.; van Velzen, D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 1992, 99, 296–301. [Google Scholar] [CrossRef]
- Robinson, D.; Weiner, C.P.; Nakamura, K.T.; Robillard, J.E. Effect of intrauterine growth retardation on renal function on day one of life. Am. J. Perinatol. 1990, 7, 343–346. [Google Scholar] [CrossRef]
- Narang, A.; Bhakoo, O.N.; Majumdar, S.; Kumar, C.H. Renal function in SFD and AFD preterm babies. Indian Pediatr. 1993, 30, 201–205. [Google Scholar]
- Silver, L.E.; Decamps, P.J.; Korst, L.M.; Platt, L.D.; Castro, L. Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am. J. Obstet. Gynecol. 2003, 188, 1320–1325. [Google Scholar] [CrossRef]
- Kushnir, A.; Pinheiro, J.M. Comparison of renal effects of ibuprofen versus indomethacin during treatment of patent ductus arteriosus in contiguous historical cohorts. BMC Clin. Pharmacol. 2011, 11, 8. [Google Scholar] [CrossRef]
- Robillard, J.E.; Smith, F.G.; Segar, J.L.; Guillery, E.N.; Jose, P.A. Mechanisms regulating renal sodium excretion during development. Pediatr. Nephrol. 1992, 6, 205–213. [Google Scholar] [CrossRef]
- Guignard, J.P. Effect of drugs on the immature kidney. Adv. Nephrol. Necker Hosp. 1993, 22, 193–211. [Google Scholar]
- Roberts, D.S.; Haycock, G.B.; Dalton, R.N.; Turner, C.; Tomlinson, P.; Stimmler, L.; Scopes, J.W. Prediction of acute renal failure after birth asphyxia. Arch. Dis. Child. 1990, 65, 1021–1028. [Google Scholar] [CrossRef]
- Vanpée, M.; Blennow, M.; Linné, T.; Herin, P.; Aperia, A. Renal function in very low birth weight infants, normal maturity reached during early childhood. J. Pediatr. 1992, 121, 784–788. [Google Scholar] [CrossRef]
- Nash, M.A.; Edelmann, C.M., Jr. The developing kidney. Immature function or inappropriate standard. Nephron 1973, 11, 71–90. [Google Scholar] [CrossRef]
- Bernard, A.M.; Vyskocil, A.A.; Mahieu, P.; Lauwerys, R.R. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin. Chem. 1987, 33, 775–779. [Google Scholar]
- Mutti, A. Detection of renal diseases in humans: developing markers and methods. Toxicol. Lett. 1989, 46, 177–191. [Google Scholar] [CrossRef]
- Bedir, A.; Ozener, I.C.; Emerk, K. Urinary leucine aminopeptidase is a more sensitive indicator of early renal damage in non-insulin-dependent diabetics than microalbuminuria. Nephron 1996, 74, 110–113. [Google Scholar] [CrossRef]
- Carr, M.C.; Peters, C.A.; Retik, A.B.; Mandell, J. Urinary levels of the renal tubular enzyme N-acetyl-beta-D-glucosaminidase in unilateral obstructive uropathy. J. Urol. 1994, 151, 442–445. [Google Scholar]
- Kilaru, P.; Bakris, G.L. Microalbuminuria and progressive renal disease. J. Hum. Hypertens. 1994, 8, 809–817. [Google Scholar]
- Allegaert, K.; van den Anker, J.N.; Naulaers, G.; de Hoon, J. Determinants of drug metabolism in early neonatal life. Curr. Clin. Pharmacol. 2007, 2, 23–29. [Google Scholar] [CrossRef]
- Hines, R.N.; McCarver, D.G. The ontogeny of human drug-metabolising enzymes: Phase I oxidative enzymes. J. Pharmacol. Exp. Ther. 2002, 300, 355–360. [Google Scholar] [CrossRef]
- Pacifici, G.M.; Franchi, M.; Colizzi, C.; Giuliani, L.; Rane, A. Sulfotransferase in humans: Development and tissue distribution. Pharmacology 1988, 36, 411–419. [Google Scholar] [CrossRef]
- Pacifici, G.M.; Franchi, M.; Rane, A. Development of the glucuronyltransferase and sulphotransferase towards 2-naphthol in human fetus. Dev. Pharmacol. Ther. 1990, 14, 108–114. [Google Scholar]
- Cappiello, M.; Giuliani, L.; Rane, A.; Pacifici, G.M. Differential development of phenol and catechol sulphotransferases in human fetus. Dev. Pharmacol. Ther. 1991, 16, 83–88. [Google Scholar]
- Pacifici, G.M.; Sawe, J.; Kager, L.; Rane, A. Morphine glucuronidation in human fetal and adult liver. Eur. J. Clin. Pharmacol. 1982, 22, 553–558. [Google Scholar] [CrossRef]
- Pacifici, G.M.; Rane, A. Renal glucuronidation of morphine in human foetus. Acta Pharmacol. Toxicol. 1982, 50, 155–160. [Google Scholar] [CrossRef]
- Pacifici, G.M.; Santerini, S.; Giuliani, L.; Rane, A. Thiomethyltransferase in humans: development and tissue distribution. Dev. Pharmacol. Ther. 1991, 17, 8–15. [Google Scholar]
- Pacifici, G.M.; Romiti, P.; Giuliani, L.; Rane, A. Thiopurinemethyltransferase in humans development and tissue distribution. Dev. Pharmacol. Ther. 1991, 17, 16–23. [Google Scholar]
- Pacifici, G.M.; Bencini, C.; Rane, A. Acetyltransferase in humans: Development and tissue distribution. Pharmacology 1986, 32, 283–291. [Google Scholar] [CrossRef]
- Aranda, J.V.; Lambert, C.; Perez, J.; Turmen, T.; Sitar, D.S. Metabolism and renal elimination of furosemide in the newborn infant. J. Pediatr. 1982, 101, 777–781. [Google Scholar] [CrossRef]
- Tuck, S.; Morselli, P.; Broquaire, M.; Vert, P. Plasma and urinary kinetics of furosemide in newborn infants. J. Pediatr. 1983, 103, 481–485. [Google Scholar] [CrossRef]
- Vert, P.; Broquaire, M.; Legagneur, M.; Morselli, P.L. Pharmacokinetics of furosemide in neonates. Eur. J. Clin. Pharmacol. 1982, 22, 39–45. [Google Scholar] [CrossRef]
- Peterson, R.G.; Simmons, M.A.; Rumack, B.H.; Levine, R.L.; Brooks, J.G. Pharmacology of furosemide in the premature newborn infant. J. Pediatr. 1980, 97, 139–143. [Google Scholar] [CrossRef]
- Aranda, J.V.; Perez, J.; Sitar, D.S.; Collinage, J.; Portuguez-Malavasi, A.; Duffy, B.; Dupont, C. Pharmacokinetic disposition and protein binding of furosemide in newborn infants. J. Pediatr. 1978, 93, 507–511. [Google Scholar] [CrossRef]
- Brater, D.C. Determinants of the overall response to furosemide: Pharmacokinetics and pharmacodynamics. Fed. Proc. 1983, 42, 1711–1713. [Google Scholar]
- Mirochnick, M.H.; Miceli, J.J.; Kramer, P.A.; Chapron, D.J.; Raye, J.R. Renal response to furosemide in very low birth weight infants during chronic administration. Dev. Pharmacol. Ther. 1990, 15, 1–7. [Google Scholar]
- Pacifici, G.M.; Viani, A.; Taddeucci-Brunelli, G.; Rizzo, G.; Carrai, M.; Schulz, H.U. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and alpha 1-acid glycoprotein: Implications for binding of drugs. Ther. Drug Monit. 1986, 8, 259–263. [Google Scholar] [CrossRef]
- Shankaran, S.; Poland, R.L. The displacement of bilirubin from albumin by furosemide. J. Pediatr. 1977, 90, 642–646. [Google Scholar] [CrossRef]
- Schwartz, P.A.; Rhodes, C.T.; Greene, D.S. Effect of free fatty acid concentration on furosemide binding to human serum albumin. Pharmacology 1981, 22, 364–370. [Google Scholar] [CrossRef]
- Viani, A.; Rizzo, G.; Carrai, M.; Pacifici, G.M. Interindividual variability in the concentrations of albumin and alpha-1-acid glycoprotein in patients with renal or liver disease, newborns and healthy subjects: implications for binding of drugs. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 128–133. [Google Scholar]
- Pacifici, G.M.; Viani, A.; Taddeucci-Brunelli, G. Serum protein binding of furosemide in newborn infants and children. Dev. Pharmacol. Ther. 1987, 10, 413–421. [Google Scholar]
- Viani, A.; Pacifici, G.M. Bilirubin displaces furosemide from serum protein: the effect is greater in newborn infants than adult subjects. Dev. Pharmacol. Ther. 1989, 14, 90–95. [Google Scholar]
- Turmen, T.; Thom, P.; Louridas, A.T.; LeMorvan, P.; Aranda, J.V. Protein binding and bilirubin displacing properties of bumetanide and furosemide. J. Clin. Pharmacol. 1982, 22, 551–556. [Google Scholar] [CrossRef]
- Viani, A.; Pacifici, G.M. Quantitative contribution of endogenous compounds and hypoalbuminemia in reducing the binding of furosemide in the plasma of newborn infants. Dev. Pharmacol. Ther. 1992, 18, 39–43. [Google Scholar]
- Ross, B.S.; Pollak, A.; Oh, W. The pharmacologic effects of furosemide therapy in the low-birth-weight infant. J. Pediatr. 1978, 92, 149–152. [Google Scholar] [CrossRef]
- Woo, W.C.; Dupont, C.; Collinge, J.; Aranda, J.V. Effects of furosemide in the newborn. Clin. Pharmacol. Ther. 1978, 23, 266–271. [Google Scholar]
- Prandota, J.; Houin, G. Kinetics of urinary furosemide elimination in infants. Dev. Pharmacol. Ther. 1984, 7, 273–284. [Google Scholar]
- Gulbis, B.E.; Spencer, A.P. Efficacy and safety of a furosemide continuous infusion following cardiac surgery. Ann. Pharmacother. 2006, 40, 1797–1803. [Google Scholar] [CrossRef]
- Bellomo, R.; Raman, J.; Ronco, C. Intensive care unit management of the critically ill patient with fluid overload after open heart surgery. Cardiology 2001, 96, 169–176. [Google Scholar] [CrossRef]
- Toraman, F.; Evrenkaya, S.; Yuce, M.; Turek, O.; Aksoy, N.; Karabulut, H.; Demirhisar, O.; Alhan, C. Highly positive intraoperative fluid balance during cardiac surgery is associated with adverse outcome. Perfusion 2004, 19, 85–91. [Google Scholar] [CrossRef]
- Singh, N.C.; Kissoon, N.; al Mofada, S.; Bennett, M.; Bohn, D.J. Comparison of continuous versus intermittent furosemide administration in postoperative pediatric cardiac patients. Crit. Care Med. 1992, 20, 17–21. [Google Scholar] [CrossRef]
- Wilson, N.J.; Adderley, R.J.; McEniery, J.A. Supraventricular tachycardia associated with continuous furosemide infusion. Can. J. Anaesth. 1991, 38, 502–505. [Google Scholar] [CrossRef]
- Luciani, G.B.; Nichani, S.; Chang, A.C.; Wells, W.J.; Newth, C.J.; Starnes, V.A. Continuous versus intermittent furosemide infusion in critically ill infants after open heart operations. Ann. Thorac. Surg. 1997, 64, 1133–1139. [Google Scholar] [CrossRef]
- Martin, S.J.; Danziger, L.H. Continuous infusion of loop diuretics in the critically ill, a review of the literature. Crit. Care Med. 1994, 22, 1323–1309. [Google Scholar] [CrossRef]
- Francis, G.S.; Siegel, R.M.; Goldsmith, S.R.; Olivari, M.T.; Levine, T.B.; Cohn, J.N. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann. Intern. Med. 1985, 103, 1–6. [Google Scholar] [CrossRef]
- Copeland, J.G.; Campbell, D.W.; Plachetka, J.R.; Salomon, N.W.; Larson, D.F. Diuresis with continuous infusion of furosemide after cardiac surgery. Am. J. Surg. 1983, 146, 796–799. [Google Scholar] [CrossRef]
- Klinge, J.M.; Scharf, J.; Hofbeck, M.; Gerling, S.; Bonakdar, S.; Singer, H. Intermittent administration of furosemide versus continuous infusion in the postoperative management of children following open heart surgery. Intensive Care Med. 1997, 23, 693–697. [Google Scholar] [CrossRef]
- Van Meyel, J.J.; Smits, P.; Dormans, T.; Gerlag, P.G.; Russel, F.G.; Gribnau, F.W. Continuous infusion of furosemide in the treatment of patients with congestive heart failure and diuretic resistance. J. Intern. Med. 1994, 235, 329–334. [Google Scholar] [CrossRef]
- Lahav, M.; Regev, A.; Ra’anani, P.; Theodor, E. Intermittent administration of furosemide vs continuous infusion preceded by a loading dose for congestive heart failure. Chest 1992, 102, 725–731. [Google Scholar] [CrossRef]
- Vanpeè, M.; Blennow, M.; Linné, T.; Herin, P.; Aperia, A. Renal function in very low birth weight infants: normal maturity reached during early childhood. J. Pediatr. 1992, 121, 784–788. [Google Scholar] [CrossRef]
- Van der Vorst, M.M.; Ruys-Dudok van Heel, I.; Kist-van Holthe, J.E.; den Hartigh, J.; Schoemaker, R.C.; Cohen, A.F.; Burggraaf, J. Continuous intravenous furosemide in haemodynamically unstable children after cardiac surgery. Intensive Care Med. 2001, 27, 711–715. [Google Scholar] [CrossRef]
- Van der Vorst, M.M.; Kist-van Holthe, J.E.; den Hartigh, J.; van der Heijden, A.J.; Cohen, A.F.; Burggraaf, J. Absence of tolerance and toxicity to high-dose continuous intravenous furosemide in haemodynamically unstable infants after cardiac surgery. Br. J. Clin. Pharmacol. 2007, 64, 796–803. [Google Scholar]
- Van der Vorst, M.M.; Wildschut, E.; Houmes, R.J.; Gischler, S.J.; Kist-van Holthe, J.E.; Burggraaf, J.; van der Heijden, A.J.; Tibboel, D. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit. Care 2006, 10, R168. [Google Scholar] [CrossRef] [Green Version]
- Kron, B.G.; Sjöström, P.A.; Karlberg, B.E.; Odlind, B.G. Acute tolerance to furosemide. Pretreatment with captopril or prazosin does not influence diuresis and natriuresis. Scand. J. Urol. Nephrol. 1994, 28, 337–344. [Google Scholar] [CrossRef]
- Hammarlund, M.M.; Odlind, B.; Paalzow, L.K. Acute tolerance to furosemide diuresis in humans. Pharmacokinetic-pharmacodynamic modeling. J. Pharmacol. Exp. Ther. 1985, 233, 447–453. [Google Scholar]
- Bahrami, K.R.; van Meurs, K.P. ECMO for neonatal respiratory failure. Semin. Perinatol. 2005, 29, 15–23. [Google Scholar] [CrossRef]
- McNally, H.; Bennett, C.C.; Elbourne, D.; Field, D.J. UK Collaborative ECMO Trial Group UK collaborative randomised trial of neonates extracorporeal membrane oxygenation. Lancet 1996, 684, 75–82. [Google Scholar]
- Elbourne, D.; Field, D.; Mugford, M. Extracorporeal membrane oxygenation for severe respiratory failure in newborn ifants. Cochchrane Database Syst. Rev. 2002, 1, CD001340. [Google Scholar]
- Van der Vorst, M.M.; den Hartigh, J.; Wildschut, E.; Tibboel, D.; Burggraaf, J. An exploratory study with an adaptive continuous intravenous furosemide regimen in neonates treated with extracorporeal membrane oxygenation. Crit. Care 2007, 11, R111. [Google Scholar] [CrossRef]
- Buck, M.L. Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates. Clin. Pharmacokinet. 2003, 42, 403–417. [Google Scholar] [CrossRef]
- Kugelman, A.; Durand, M.; Garg, M. Pulmonary effect of inhaled furosemide in ventilated infants with severe bronchopulmonary dysplasia. Pediatrics 1997, 99, 71–75. [Google Scholar] [CrossRef]
- Bar, A.; Srugo, I.; Amirav, I.; Tzverling, C.; Naftali, G.; Kugelman, A. Inhaled furosemide in hospitalized infants with viral bronchiolitis: a randomized, double-blind, placebo-controlled pilot study. Pediatr. Pulmonol. 2008, 43, 261–267. [Google Scholar] [CrossRef]
- Prabhu, V.G.; Keszler, M.; Dhanireddy, R. Pulmonary function changes after nebulised and intravenous frusemide in ventilated premature infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F32–F35. [Google Scholar] [CrossRef]
- Ohki, Y.; Nako, Y.; Koizumi, T.; Morikawa, A. The effect of aerosolized furosemide in infants with chronic lung disease. Acta Paediatr. 1997, 86, 656–660. [Google Scholar] [CrossRef]
- Rastogi, A.; Luayon, M.; Ajayi, O.A.; Pildes, R.S. Nebulized furosemide in infants with bronchopulmonary dysplasia. J. Pediatr. 1994, 125, 976–979. [Google Scholar] [CrossRef]
- Belik, J.; Spitzer, A.R.; Clark, B.J.; Gewitz, M.H.; Fox, W.W. Effect of early furosemide administration in neonates with respiratory distress syndrome. Pediatr. Pulmonol. 1987, 3, 219–225. [Google Scholar] [CrossRef]
- Lee, B.S.; Byun, S.Y.; Chung, M.L.; Chang, J.Y.; Kim, H.Y.; Kim, E.A.; Kim, K.S.; Pi, S.Y. Effect of furosemide on ductal closure and renal function in indomethacin-treated preterm infants during the early neonatal period. Neonatology 2010, 98, 191–199. [Google Scholar] [CrossRef]
- Brion, L.P.; Campbell, D.E. Furosemide for symptomatic patent ductus arteriosus in indomethacin-treated infants. Cochrane Database Syst. Rev. 2001, 3, CD001148. [Google Scholar]
- Green, T.P.; Thompson, T.R.; Johnson, D.E.; Lock, J.E. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N. Engl. J. Med. 1983, 308, 743–748. [Google Scholar] [CrossRef]
- Friedman, Z.; Demers, L.M.; Marks, K.H.; Uhrmann, S.; Maisels, M.J. Urinary excretion of prostaglandin E following the administration of furosemide and indomethacin to sick low-birth-weight infants. J. Pediatr. 1978, 93, 512–515. [Google Scholar] [CrossRef]
- Yeh, T.F.; Wilks, A.; Singh, J.; Betkerur, M.; Lilien, L.; Pildes, R.S. Furosemide prevents the renal side-effects of indomethacin therapy in premature infants with patent ductus arteriosus. J. Pediatr. 1982, 101, 433–437. [Google Scholar] [CrossRef]
- Schwartz, G.H.; David, D.S.; Riggio, R.R.; Stenzel, K.H.; Rubin, A.L. Ototoxicity induced by furosemide. N. Engl. J. Med. 1970, 282, 1413–1414. [Google Scholar] [CrossRef]
- Morelli, O.H.; Moledo, L.I.; Alanis, E.; Gaston, O.L.; Terzaghi, O. Acute effects of high doses of frusemide in patients with chronic renal failure. Postgrad. Med. J. 1971, 47, 29–35. [Google Scholar]
- Fries, D.; Pozet, N.; Dubois, N.; Traeger, J. The use of large doses of frusemide in acute renal failure. Postgrad. Med. J. 1971, 47, 18–20. [Google Scholar]
- Rastogi, S.P.; Volans, G.; Elliott, R.W.; Eccleston, D.W.; Ashcroft, R.; Webster, D.; Kerr, D.N. High dose frusemide in the treatment of hypertension in chronic renal insufficiency and of terminal renal failure. Postgrad. Med. J. 1971, 47, 45–53. [Google Scholar]
- Rifkin, S.I.; de Quesada, A.M.; Pickering, M.J.; Shires, D.L., Jr. Deafness associated with oral furosemide. South Med. J. 1978, 71, 86–88. [Google Scholar] [CrossRef]
- Keefe, P.E. Ototoxicity from oral furosemide. Drug Intell. Clin. Pharm. 1978, 12, 428. [Google Scholar]
- Gallagher, K.L.; Jones, J.K. Furosemide-induced ototoxicity. Ann. Intern. Med. 1979, 91, 744–745. [Google Scholar] [CrossRef]
- Wigand, M.E.; Heidland, A. Ototoxic side-effects of high doses of frusemide in patients with uremia. Posgrad. Med. J. 1971, 47, 54–56. [Google Scholar]
- Lloyd-Mostyn, R.H.; Lord, I.J. Ototoxicity of intravenous frusemide. Lancet 1971, 2, 1156. [Google Scholar] [CrossRef]
- Quick, C.A.; Hoppe, W. Permanent deafness associated with furosemide administration. Ann. Otol. Rhinol. Laryngol. 1975, 84, 94–101. [Google Scholar]
- Kshirsagar, N.A.; Dahanukar, S.A.; Shah, B.P.; Vora, K.K.; Karandikar, S.M.; Acharya, V.N.; Sheth, U.K. Furosemide pharmacokinetics and its relevance to ototoxicity. J. Postgrad. Med. 1978, 24, 20–23. [Google Scholar]
- Borradori, C.; Fawer, C.L.; Buclin, T.; Calame, A. Risk factors of sensorineural hearing loss in preterm infants. Biol. Neonate 1997, 71, 1–10. [Google Scholar]
- Rybak, L.P. Pathophysiology of furosemide ototoxicicy. J. Otolaryngol. 1982, 11, 127–133. [Google Scholar]
- Rybak, L.P.; Whitworth, C.; Scott, V.; Weberg, A. Ototoxicity of furosemide during development. Laryngoscope 1991, 101, 1164–1174. [Google Scholar]
- Giapros, V.; Tsoni, C.; Challa, A.; Cholevas, V.; Argyropoulou, M.; Papadopoulou, F.; Siomou, E.; Drougia, A.; Andronikou, S. Renal function and kidney length in preterm infants with nephrocalcinosis, a longitudinal study. Pediatr. Nephrol. 2011, 26, 1873–1880. [Google Scholar] [CrossRef]
- Nasseri, F.; Azhir, A.; Rahmanian, S.; Iranpour, R.; Adibi, A. Nephrocalcinosis in very low birth weight infants. Saudi J. Kidney Dis. Transpl. 2010, 21, 284–289. [Google Scholar]
- Gimpel, C.; Krause, A.; Franck, P.; Krueger, M.; von Schnakenburg, C. Exposure to furosemide as the strongest risk factor for nephrocalcinosis in preterm infants. Pediatr. Int. 2010, 52, 51–56. [Google Scholar] [CrossRef]
- Ketkeaw, K.; Thaithumyanon, P.; Punnahitananda, S. Nephrocalcinosis in very low birth weight infants: a single center experience. J. Med. Assoc. Thai. 2004, 87, S72–S77. [Google Scholar]
- Pope, J.C., 4th.; Trusler, L.A.; Klein, A.M.; Walsh, W.F.; Yared, A.; Brock, J.W., 3rd. The natural history of nephrocalcinosis in premature infants treated with loop diuretics. J. Urol. 1996, 156, 709–712. [Google Scholar] [CrossRef]
- Alon, U.S.; Scagliotti, D.; Garola, R.E. Nephrocalcinosis and nephrolithiasis in infants with congestive heart failure treated with furosemide. J. Pediatr. 1994, 125, 149–151. [Google Scholar] [CrossRef]
- Downing, G.J.; Egelhoff, J.C.; Daily, D.K.; Thomas, M.K.; Alon, U. Kidney function in very low birth weight infants with furosemide-related renal calcifications at ages 1 to 2 years. J. Pediatr. 1992, 120, 599–604. [Google Scholar] [CrossRef]
- Downing, G.J.; Egelhoff, J.C.; Daily, D.K.; Alon, U. Furosemide-related renal calcifications in the premature infant. A longitudinal ultrasonographic study. Pediatr. Radiol. 1991, 21, 563–565. [Google Scholar] [CrossRef]
- Jequier, S.; Kaplan, B.S. Echogenic renal pyramids in children. J. Clin. Ultrasound 1991, 19, 85–92. [Google Scholar] [CrossRef]
- Kenney, I.J.; Aiken, C.G.; Lenney, W. Frusemide-induced nephrocalcinosis in very low birth weight infants. Pediatr. Radiol. 1988, 18, 323–325. [Google Scholar] [CrossRef]
- Hufnagle, K.G.; Khan, S.N.; Penn, D.; Cacciarelli, A.; Williams, P. Renal calcifications: A complication of long-term furosemide therapy in preterm infants. Pediatrics 1982, 70, 360–363. [Google Scholar]
- Chang, H.Y.; Hsu, C.H.; Tsai, J.D.; Li, S.T.; Hung, H.Y.; Kao, H.A.; Chang, J.H.; Chung, H.Y.; Wang, H.K. Renal calcification in very low birth weight infants. Pediatr. Neonatol. 2011, 52, 145–149. [Google Scholar] [CrossRef]
- Srivastava, T.; Kats, A.; Martin, T.J.; Pompolo, S.; Alon, U.S. Parathyroid-hormone-related protein-mediated hypercalcemia in benign congenital mesoblastic nephroma. Pediatr. Nephrol. 2011, 26, 799–803. [Google Scholar] [CrossRef]
- Nair, S.; Nair, S.G.; Borade, A.; Ramakrishnan, K. Hypercalcemia and metastatic calcification in a neonate with subcutaneous fat necrosis. Indian J. Pediatr. 2009, 76, 1155–1157. [Google Scholar] [CrossRef]
- Pradhan, M.; Leonard, M.B. Calcium-free hemodialysis for hypercalcemia of malignancy in a newborn. Pediatr. Nephrol. 2003, 18, 474–476. [Google Scholar]
- Horinek, D.; Cihar, M.; Tichy, M. Current methods in the treatment of posthemorrhagic hydrocephalus in infants. Bratisl. Lek. Listy 2003, 104, 347–351. [Google Scholar]
- Whitelaw, A.; Kennedy, C.R.; Brion, L.P. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst. Rev. 2001, 2, CD002270. [Google Scholar]
- Libenson, M.H.; Kaye, E.M.; Rosman, N.P.; Gilmore, H.E. Acetazolamide and furosemide for posthemorragic hydrocephalus of the newborn. Pediatr. Neurol. 1999, 20, 185–191. [Google Scholar] [CrossRef]
- Stafstrom, C.E.; Gilmore, H.E.; Kurtin, P.S. Nephrocalcinosis complicating medical treatment of posthemorragic hydrocephalus. Pediatr. Neurol. 1992, 8, 179–182. [Google Scholar] [CrossRef]
- Shinnar, S.; Gammon, K.; Bergman, E.W., Jr.; Epstein, M.; Freeman, J.M. Management of hydrocephalus in infancy: use of acetazolamide and furosemide to avoid cerebrospinal fluid shunts. J. Pediatr. 1985, 107, 31–37. [Google Scholar] [CrossRef]
- Eades, S.K.; Christensen, M.L. The clinical pharmacology of loop diuretics in the pediatric patient. Pediatr. Nephrol. 1998, 12, 603–616. [Google Scholar] [CrossRef]
- Van der Vorst, M.M.; Kist, J.E.; van der Heijden, A.J.; Burggraaf, J. Diuretics in pediatrics: current knowledge and future prospects. Paediatr. Drugs 2006, 8, 245–264. [Google Scholar] [CrossRef]
- Atkinson, S.A.; Shah, J.K.; McGee, C.; Steele, B.T. Mineral excretion in premature infants receiving various diuretic therapies. J. Pediatr. 1988, 113, 540–545. [Google Scholar] [CrossRef]
- Cappiello, M.; Giuliani, L.; Rane, A.; Pacifici, G.M. 5′-Diphosphoglucuronic acid (UDPGA) in the human fetal liver, kidney and placenta. Eur. J. Drug Metab. Pharmacokin. 2000, 25, 161–164. [Google Scholar] [CrossRef]
- Beermann, B.; Dalén, E.; Lindström, B.; Rosén, A. On the fate of furosemide in man. Eur. J. Clin. Pharmacol. 1975, 9, 51–61. [Google Scholar]
- Beermann, B.; Dalén, E.; Lindström, B. Elimination of furosemide in healthy subjects and in those with renal failure. Clin. Pharmacol. Ther. 1977, 22, 70–78. [Google Scholar]
- Calesnick, B.; Christensen, J.A.; Richter, M. Absorption and excretion of furosemide-S35 in human subjects. Proc. Soc. Exp. Biol. Med. 1966, 123, 17–22. [Google Scholar] [CrossRef]
- Hook, J.B.; Williamson, H.E. Influence of probenecid and alterations in acid-base balance of the saluretic activity of furosemide. J. Pharmacol. Exp. Ther. 1965, 149, 404–408. [Google Scholar]
- Segar, J.L.; Robillard, J.E.; Johnson, K.J.; Bell, E.F.; Chemtob, S. Addition of metolazone to overcome tolerance to furosemide in infants with bronchopulmonary dysplasia. J. Pediatr. 1992, 120, 966–973. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pacifici, G.M. Clinical Pharmacology of Furosemide in Neonates: A Review. Pharmaceuticals 2013, 6, 1094-1129. https://doi.org/10.3390/ph6091094
Pacifici GM. Clinical Pharmacology of Furosemide in Neonates: A Review. Pharmaceuticals. 2013; 6(9):1094-1129. https://doi.org/10.3390/ph6091094
Chicago/Turabian StylePacifici, Gian Maria. 2013. "Clinical Pharmacology of Furosemide in Neonates: A Review" Pharmaceuticals 6, no. 9: 1094-1129. https://doi.org/10.3390/ph6091094
APA StylePacifici, G. M. (2013). Clinical Pharmacology of Furosemide in Neonates: A Review. Pharmaceuticals, 6(9), 1094-1129. https://doi.org/10.3390/ph6091094