Cannabinoids and Dementia: A Review of Clinical and Preclinical Data
Abstract
:1. Introduction
Name | Mechanism of action | |
---|---|---|
Phytocannabinoids | Δ9-Tetrahydrocannabinol (Δ9-THC/dronabinol)) | CB1 and CB2 agonist |
Δ8-Tetrahydrocannabinol (Δ8-THC) | CB1 and CB2 agonist | |
Cannabidiol (CBD) | no activity at CB1 and CB2, inhibition of AEA uptake and metabolism | |
Endogenous cannabinoids | Anandamide (AEA) | CB1 >> CB2 agonist |
2-Arachidonoyl glycerol (2-AG) | CB1 and CB2 agonist | |
Synthetic cannabinoids | HU-210 | CB1 and CB2 agonist |
Nabilone | CB1 and CB2 agonist | |
WIN55,212-2 | CB1 and CB2 agonist | |
CP55,940 | CB1 and CB2 agonist | |
JWH015 | CB2 selective agonist | |
HU-308 | CB2 selective agonist | |
SR141716A | CB1 selective antagonist | |
AM404 | anandamide transport inhibitor | |
UMC707 | anandamide transport inhibitor | |
Arvanil | CB1 agonist, vanilloid receptor agonist |
2. Methods
3. Results and Discussion
3.1. Preclinical findings
3.1.1. Alzheimer’s disease
3.1.1.1. Effects mediated via cb1 and cb2 Receptors
3.1.1.2. Effects of Cannabidiol
3.1.2. Vascular dementia
3.1.3. Huntington’s disease
3.1.4. Parkinson’s disease
3.2. Clinical findings
3.2.1. Alzheimer’s disease
3.2.2. Vascular dementia
3.2.3. Huntington’s disease
3.2.4. Parkinson’s disease
4. Conclusions
References
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P.R.; Rimmer, E.; Scazufca, M. Global prevalence of dementia: A delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer's disease. Lancet 2006, 368, 387–403. [Google Scholar]
- Aarsland, D.; Andersen, K.; Larsen, J.P.; Lolk, A.; Nielsen, H.; Kragh-Sorensen, P. Risk of dementia in parkinson's disease: A community-based, prospective study. Neurology 2001, 56, 730–736. [Google Scholar]
- Leys, D.; Henon, H.; Mackowiak-Cordoliani, M.A.; Pasquier, F. Poststroke dementia. Lancet Neurol. 2005, 4, 752–759. [Google Scholar]
- Kumar, P.; Kalonia, H.; Kumar, A. Huntington's disease: Pathogenesis to animal models. Pharmacol. Rep. 2010, 62, 1–14. [Google Scholar]
- Citron, M. Alzheimer's disease: Strategies for disease modification. Nat. Rev. Drug Discov. 2010, 9, 387–398. [Google Scholar]
- Lees, A.J.; Hardy, J.; Revesz, T. Parkinson's disease. Lancet 2009, 373, 2055–2066. [Google Scholar]
- Walker, F.O. Huntington's disease. Lancet 2007, 369, 218–228. [Google Scholar]
- Pacher, P.; Batkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar]
- Gaoni, Y.; Mechoulam, R. Isolation, structure, and partial synthesis of active constituent of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar]
- Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cdna. Nature 1990, 346, 561–564. [Google Scholar]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar]
- Breivogel, C.S.; Childers, S.R. The functional neuroanatomy of brain cannabinoid receptors. Neurobiol. Dis. 1998, 5, 417–431. [Google Scholar]
- Campbell, V.A.; Gowran, A. Alzheimer's disease; taking the edge off with cannabinoids? Br. J. Pharmacol. 2007, 152, 655–662. [Google Scholar]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; Mechoulam, R.; Pertwee, R.G. International union of pharmacology. Xxvii. Classification of cannabinoid receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar]
- Howlett, A.C.; Breivogel, C.S.; Childers, S.R.; Deadwyler, S.A.; Hampson, R.E.; Porrino, L.J. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 2004, 47 (Suppl. 1), 345–358. [Google Scholar]
- Pertwee, R.G. The diverse cb1 and cb2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar]
- Wegener, N.; Koch, M. Neurobiology and systems physiology of the endocannabinoid system. Pharmacopsychiatry 2009, 42 (Suppl. 1), S79–S86. [Google Scholar]
- Wilson, R.I.; Nicoll, R.A. Endocannabinoid signaling in the brain. Science 2002, 296, 678–682. [Google Scholar]
- Di Marzo, V.; Fontana, A.; Cadas, H.; Schinelli, S.; Cimino, G.; Schwartz, J.C.; Piomelli, D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994, 372, 686–691. [Google Scholar]
- Glass, M.; Dragunow, M.; Faull, R.L. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 1997, 77, 299–318. [Google Scholar]
- Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 1990, 87, 1932–1936. [Google Scholar]
- Katona, I.; Rancz, E.A.; Acsady, L.; Ledent, C.; Mackie, K.; Hajos, N.; Freund, T.F. Distribution of cb1 cannabinoid receptors in the amygdala and their role in the control of gabaergic transmission. J. Neurosci. 2001, 21, 9506–9518. [Google Scholar]
- Katona, I.; Sperlagh, B.; Sik, A.; Kafalvi, A.; Vizi, E.S.; Mackie, K.; Freund, T.F. Presynaptically located cb1 cannabinoid receptors regulate gaba release from axon terminals of specific hippocampal interneurons. J. Neurosci. 1999, 19, 4544–4558. [Google Scholar]
- Basavarajappa, B.S.; Nixon, R.A.; Arancio, O. Endocannabinoid system: Emerging role from neurodevelopment to neurodegeneration. Mini Rev. Med. Chem. 2009, 9, 448–462. [Google Scholar]
- Benito, C.; Nunez, E.; Pazos, M.R.; Tolon, R.M.; Romero, J. The endocannabinoid system and alzheimer's disease. Mol. Neurobiol. 2007, 36, 75–81. [Google Scholar]
- Campillo, N.E.; Paez, J.A. Cannabinoid system in neurodegeneration: New perspectives in alzheimer's disease. Mini Rev. Med. Chem. 2009, 9, 539–559. [Google Scholar]
- Fernandez-Ruiz, J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol. 2009, 156, 1029–1040. [Google Scholar]
- Hillard, C.J. Role of cannabinoids and endocannabinoids in cerebral ischemia. Curr. Pharm. Des. 2008, 14, 2347–2361. [Google Scholar]
- Lastres-Becker, I.; De Miguel, R.; Fernandez-Ruiz, J.J. The endocannabinoid system and huntington's disease. Curr. Drug Targets CNS Neurol. Disord. 2003, 2, 335–347. [Google Scholar]
- Walsh, D.M.; Selkoe, D.J. Deciphering the molecular basis of memory failure in alzheimer's disease. Neuron 2004, 44, 181–193. [Google Scholar]
- Zhu, X.; Raina, A.K.; Perry, G.; Smith, M.A. Alzheimer's disease: The two-hit hypothesis. Lancet Neurol. 2004, 3, 219–226. [Google Scholar]
- Iuvone, T.; Esposito, G.; De Filippis, D.; Scuderi, C.; Steardo, L. Cannabidiol: A promising drug for neurodegenerative disorders? CNS Neurosci. Ther. 2009, 15, 65–75. [Google Scholar]
- Marchalant, Y.; Cerbai, F.; Brothers, H.M.; Wenk, G.L. Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats. Neurobiol. Aging 2008, 29, 1894–1901. [Google Scholar]
- Marchalant, Y.; Rosi, S.; Wenk, G.L. Anti-inflammatory property of the cannabinoid agonist win-55212-2 in a rodent model of chronic brain inflammation. Neuroscience 2007, 144, 1516–1522. [Google Scholar]
- Katona, I.; Urban, G.M.; Wallace, M.; Ledent, C.; Jung, K.M.; Piomelli, D.; Mackie, K.; Freund, T.F. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 2006, 26, 5628–5637. [Google Scholar]
- Bal-Price, A.; Brown, G.C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 2001, 21, 6480–6491. [Google Scholar]
- Walter, L.; Franklin, A.; Witting, A.; Wade, C.; Xie, Y.; Kunos, G.; Mackie, K.; Stella, N. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 2003, 23, 1398–1405. [Google Scholar]
- Westlake, T.M.; Howlett, A.C.; Bonner, T.I.; Matsuda, L.A.; Herkenham, M. Cannabinoid receptor binding and messenger rna expression in human brain: An in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and alzheimer's brains. Neuroscience 1994, 63, 637–652. [Google Scholar]
- Benito, C.; Nunez, E.; Tolon, R.M.; Carrier, E.J.; Rabano, A.; Hillard, C.J.; Romero, J. Cannabinoid cb2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in alzheimer's disease brains. J. Neurosci. 2003, 23, 11136–11141. [Google Scholar]
- Ramirez, B.G.; Blazquez, C.; del Pulgar, T.G.; Guzman, M.; de Ceballos, M.L. Prevention of alzheimer's disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. J. Neurosci. 2005, 25, 1904–1913. [Google Scholar]
- Shen, M.; Piser, T.M.; Seybold, V.S.; Thayer, S.A. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci. 1996, 16, 4322–4334. [Google Scholar]
- Shen, M.; Thayer, S.A. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol. Pharmacol. 1998, 54, 459–462. [Google Scholar]
- Marsicano, G.; Goodenough, S.; Monory, K.; Hermann, H.; Eder, M.; Cannich, A.; Azad, S.C.; Cascio, M.G.; Gutierrez, S.O.; van der Stelt, M.; Lopez-Rodriguez, M.L.; Casanova, E.; Schutz, G.; Zieglgansberger, W.; Di Marzo, V.; Behl, C.; Lutz, B. Cb1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003, 302, 84–88. [Google Scholar]
- Hansen, H.H.; Schmid, P.C.; Bittigau, P.; Lastres-Becker, I.; Berrendero, F.; Manzanares, J.; Ikonomidou, C.; Schmid, H.H.; Fernandez-Ruiz, J.J.; Hansen, H.S. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J. Neurochem. 2001, 78, 1415–1427. [Google Scholar]
- van der Stelt, M.; Veldhuis, W.B.; Bar, P.R.; Veldink, G.A.; Vliegenthart, J.F.; Nicolay, K. Neuroprotection by delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J. Neurosci. 2001, 21, 6475–6479. [Google Scholar]
- van der Stelt, M.; Veldhuis, W.B.; van Haaften, G.W.; Fezza, F.; Bisogno, T.; Bar, P.R.; Veldink, G.A.; Vliegenthart, J.F.; Di Marzo, V.; Nicolay, K. Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J. Neurosci. 2001, 21, 8765–8771. [Google Scholar]
- Milton, N.G. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci. Lett. 2002, 332, 127–130. [Google Scholar]
- Esposito, G.; De Filippis, D.; Steardo, L.; Scuderi, C.; Savani, C.; Cuomo, V.; Iuvone, T. Cb1 receptor selective activation inhibits beta-amyloid-induced inos protein expression in c6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci. Lett. 2006, 404, 342–346. [Google Scholar]
- Khaspekov, L.G.; Brenz Verca, M.S.; Frumkina, L.E.; Hermann, H.; Marsicano, G.; Lutz, B. Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur. J. Neurosci. 2004, 19, 1691–1698. [Google Scholar]
- Molina-Holgado, F.; Pinteaux, E.; Moore, J.D.; Molina-Holgado, E.; Guaza, C.; Gibson, R.M.; Rothwell, N.J. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J. Neurosci. 2003, 23, 6470–6474. [Google Scholar]
- Grunblatt, E.; Zander, N.; Bartl, J.; Jie, L.; Monoranu, C.M.; Arzberger, T.; Ravid, R.; Roggendorf, W.; Gerlach, M.; Riederer, P. Comparison analysis of gene expression patterns between sporadic alzheimer's and parkinson's disease. J. Alzheimers Dis. 2007, 12, 291–311. [Google Scholar]
- Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F.; Tan, J.; Shytle, R.D. Stimulation of cannabinoid receptor 2 (cb2) suppresses microglial activation. J. Neuroinflammation 2005, 2, 29. [Google Scholar]
- Maresz, K.; Carrier, E.J.; Ponomarev, E.D.; Hillard, C.J.; Dittel, B.N. Modulation of the cannabinoid cb2 receptor in microglial cells in response to inflammatory stimuli. J. Neurochem. 2005, 95, 437–445. [Google Scholar]
- Tolon, R.M.; Nunez, E.; Pazos, M.R.; Benito, C.; Castillo, A.I.; Martinez-Orgado, J.A.; Romero, J. The activation of cannabinoid cb2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res. 2009, 1283, 148–154. [Google Scholar]
- Eubanks, L.M.; Rogers, C.J.; Beuscher, A.E.t.; Koob, G.F.; Olson, A.J.; Dickerson, T.J.; Janda, K.D. A molecular link between the active component of marijuana and alzheimer's disease pathology. Mol. Pharm. 2006, 3, 773–777. [Google Scholar]
- Iuvone, T.; Esposito, G.; Esposito, R.; Santamaria, R.; Di Rosa, M.; Izzo, A.A. Neuroprotective effect of cannabidiol, a non-psychoactive component from cannabis sativa, on beta-amyloid-induced toxicity in pc12 cells. J. Neurochem. 2004, 89, 134–141. [Google Scholar]
- Esposito, G.; De Filippis, D.; Carnuccio, R.; Izzo, A.A.; Iuvone, T. The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through wnt/beta-catenin pathway rescue in pc12 cells. J. Mol. Med. 2006, 84, 253–258. [Google Scholar]
- Esposito, G.; De Filippis, D.; Maiuri, M.C.; De Stefano, D.; Carnuccio, R.; Iuvone, T. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated pc12 neurons through p38 map kinase and nf-kappab involvement. Neurosci. Lett. 2006, 399, 91–95. [Google Scholar]
- Esposito, G.; Scuderi, C.; Savani, C.; Steardo, L., Jr.; De Filippis, D.; Cottone, P.; Iuvone, T.; Cuomo, V.; Steardo, L. Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing il-1beta and inos expression. Br. J. Pharmacol. 2007, 151, 1272–1279. [Google Scholar]
- Hayakawa, K.; Mishima, K.; Abe, K.; Hasebe, N.; Takamatsu, F.; Yasuda, H.; Ikeda, T.; Inui, K.; Egashira, N.; Iwasaki, K.; Fujiwara, M. Cannabidiol prevents infarction via the non-cb1 cannabinoid receptor mechanism. Neuroreport 2004, 15, 2381–2385. [Google Scholar]
- Leker, R.R.; Gai, N.; Mechoulam, R.; Ovadia, H. Drug-induced hypothermia reduces ischemic damage: Effects of the cannabinoid hu-210. Stroke 2003, 34, 2000–2006. [Google Scholar]
- Louw, D.F.; Yang, F.W.; Sutherland, G.R. The effect of delta-9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res. 2000, 857, 183–187. [Google Scholar]
- Mauler, F.; Hinz, V.; Augstein, K.H.; Fassbender, M.; Horvath, E. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist bay 38-7271. Brain Res. 2003, 989, 99–111. [Google Scholar]
- Nagayama, T.; Sinor, A.D.; Simon, R.P.; Chen, J.; Graham, S.H.; Jin, K.; Greenberg, D.A. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J. Neurosci. 1999, 19, 2987–2995. [Google Scholar]
- Parmentier-Batteur, S.; Jin, K.; Mao, X.O.; Xie, L.; Greenberg, D.A. Increased severity of stroke in cb1 cannabinoid receptor knock-out mice. J. Neurosci. 2002, 22, 9771–9775. [Google Scholar]
- Zani, A.; Braida, D.; Capurro, V.; Sala, M. Delta9-tetrahydrocannabinol (thc) and am 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors. Br. J. Pharmacol. 2007, 152, 1301–1311. [Google Scholar]
- Pellegrini-Giampietro, D.E.; Mannaioni, G.; Bagetta, G. Post-ischemic brain damage: The endocannabinoid system in the mechanisms of neuronal death. FEBS J. 2009, 276, 2–12. [Google Scholar]
- Cernak, I.; Vink, R.; Natale, J.; Stoica, B.; Lea, P.M.t.; Movsesyan, V.; Ahmed, F.; Knoblach, S.M.; Fricke, S.T.; Faden, A.I. The "Dark side" Of endocannabinoids: A neurotoxic role for anandamide. J. Cereb. Blood Flow Metab. 2004, 24, 564–578. [Google Scholar]
- Savva, G.M.; Stephan, B.C. Epidemiological studies of the effect of stroke on incident dementia: A systematic review. Stroke 2010, 41, e41–e46. [Google Scholar]
- Glass, M.; Faull, R.L.; Dragunow, M. Loss of cannabinoid receptors in the substantia nigra in huntington's disease. Neuroscience 1993, 56, 523–527. [Google Scholar]
- Glass, M.; Dragunow, M.; Faull, R.L. The pattern of neurodegeneration in huntington's disease: A comparative study of cannabinoid, dopamine, adenosine and gaba(a) receptor alterations in the human basal ganglia in huntington's disease. Neuroscience 2000, 97, 505–519. [Google Scholar]
- Richfield, E.K.; Herkenham, M. Selective vulnerability in huntington's disease: Preferential loss of cannabinoid receptors in lateral globus pallidus. Ann. Neurol. 1994, 36, 577–584. [Google Scholar]
- Allen, K.L.; Waldvogel, H.J.; Glass, M.; Faull, R.L. Cannabinoid (cb(1)), gaba(a) and gaba(b) receptor subunit changes in the globus pallidus in huntington's disease. J. Chem. Neuroanat. 2009, 37, 266–281. [Google Scholar]
- Centonze, D.; Rossi, S.; Prosperetti, C.; Tscherter, A.; Bernardi, G.; Maccarrone, M.; Calabresi, P. Abnormal sensitivity to cannabinoid receptor stimulation might contribute to altered gamma-aminobutyric acid transmission in the striatum of r6/2 huntington's disease mice. Biol. Psychiatry 2005, 57, 1583–1589. [Google Scholar]
- Denovan-Wright, E.M.; Robertson, H.A. Cannabinoid receptor messenger rna levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic huntington's disease mice. Neuroscience 2000, 98, 705–713. [Google Scholar]
- McCaw, E.A.; Hu, H.; Gomez, G.T.; Hebb, A.L.; Kelly, M.E.; Denovan-Wright, E.M. Structure, expression and regulation of the cannabinoid receptor gene (cb1) in huntington's disease transgenic mice. Eur. J. Biochem. 2004, 271, 4909–4920. [Google Scholar]
- Lastres-Becker, I.; Berrendero, F.; Lucas, J.J.; Martin-Aparicio, E.; Yamamoto, A.; Ramos, J.A.; Fernandez-Ruiz, J.J. Loss of mrna levels, binding and activation of gtp-binding proteins for cannabinoid cb1 receptors in the basal ganglia of a transgenic model of huntington's disease. Brain Res. 2002, 929, 236–242. [Google Scholar]
- Glass, M.; van Dellen, A.; Blakemore, C.; Hannan, A.J.; Faull, R.L. Delayed onset of huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid cb1 receptors. Neuroscience 2004, 123, 207–212. [Google Scholar]
- Lastres-Becker, I.; Fezza, F.; Cebeira, M.; Bisogno, T.; Ramos, J.A.; Milone, A.; Fernandez-Ruiz, J.; Di Marzo, V. Changes in endocannabinoid transmission in the basal ganglia in a rat model of huntington's disease. Neuroreport 2001, 12, 2125–2129. [Google Scholar]
- Aiken, C.T.; Tobin, A.J.; Schweitzer, E.S. A cell-based screen for drugs to treat huntington's disease. Neurobiol. Dis. 2004, 16, 546–555. [Google Scholar]
- Lastres-Becker, I.; Bizat, N.; Boyer, F.; Hantraye, P.; Brouillet, E.; Fernandez-Ruiz, J. Effects of cannabinoids in the rat model of huntington's disease generated by an intrastriatal injection of malonate. Neuroreport 2003, 14, 813–816. [Google Scholar]
- De March, Z.; Zuccato, C.; Giampa, C.; Patassini, S.; Bari, M.; Gasperi, V.; De Ceballos, M.L.; Bernardi, G.; Maccarrone, M.; Cattaneo, E.; Fusco, F.R. Cortical expression of brain derived neurotrophic factor and type-1 cannabinoid receptor after striatal excitotoxic lesions. Neuroscience 2008, 152, 734–740. [Google Scholar]
- Palazuelos, J.; Aguado, T.; Pazos, M.R.; Julien, B.; Carrasco, C.; Resel, E.; Sagredo, O.; Benito, C.; Romero, J.; Azcoitia, I.; Fernandez-Ruiz, J.; Guzman, M.; Galve-Roperh, I. Microglial cb2 cannabinoid receptors are neuroprotective in huntington's disease excitotoxicity. Brain 2009, 132, 3152–3164. [Google Scholar]
- Sapp, E.; Kegel, K.B.; Aronin, N.; Hashikawa, T.; Uchiyama, Y.; Tohyama, K.; Bhide, P.G.; Vonsattel, J.P.; DiFiglia, M. Early and progressive accumulation of reactive microglia in the huntington disease brain. J. Neuropathol. Exp. Neurol. 2001, 60, 161–172. [Google Scholar]
- Pavese, N.; Andrews, T.C.; Brooks, D.J.; Ho, A.K.; Rosser, A.E.; Barker, R.A.; Robbins, T.W.; Sahakian, B.J.; Dunnett, S.B.; Piccini, P. Progressive striatal and cortical dopamine receptor dysfunction in huntington's disease: A pet study. Brain 2003, 126, 1127–1135. [Google Scholar]
- Tai, Y.F.; Pavese, N.; Gerhard, A.; Tabrizi, S.J.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation in presymptomatic huntington's disease gene carriers. Brain 2007, 130, 1759–1766. [Google Scholar]
- de Lago, E.; Urbani, P.; Ramos, J.A.; Di Marzo, V.; Fernandez-Ruiz, J. Arvanil, a hybrid endocannabinoid and vanilloid compound, behaves as an antihyperkinetic agent in a rat model of huntington's disease. Brain Res. 2005, 1050, 210–216. [Google Scholar]
- Lastres-Becker, I.; de Miguel, R.; De Petrocellis, L.; Makriyannis, A.; Di Marzo, V.; Fernandez-Ruiz, J. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of huntington's disease. J. Neurochem. 2003, 84, 1097–1109. [Google Scholar]
- Lastres-Becker, I.; Hansen, H.H.; Berrendero, F.; De Miguel, R.; Perez-Rosado, A.; Manzanares, J.; Ramos, J.A.; Fernandez-Ruiz, J. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of huntington's disease. Synapse 2002, 44, 23–35. [Google Scholar]
- Curtis, M.A.; Faull, R.L.; Glass, M. A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and huntington's disease human brain. J. Chem. Neuroanat. 2006, 31, 210–215. [Google Scholar]
- Jimenez-Del-Rio, M.; Daza-Restrepo, A.; Velez-Pardo, C. The cannabinoid cp55,940 prolongs survival and improves locomotor activity in drosophila melanogaster against paraquat: Implications in parkinson's disease. Neurosci. Res. 2008, 61, 404–411. [Google Scholar]
- Lastres-Becker, I.; Molina-Holgado, F.; Ramos, J.A.; Mechoulam, R.; Fernandez-Ruiz, J. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to parkinson's disease. Neurobiol. Dis. 2005, 19, 96–107. [Google Scholar]
- Garcia-Arencibia, M.; Gonzalez, S.; de Lago, E.; Ramos, J.A.; Mechoulam, R.; Fernandez-Ruiz, J. Evaluation of the neuroprotective effect of cannabinoids in a rat model of parkinson's disease: Importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 2007, 1134, 162–170. [Google Scholar]
- Price, D.A.; Martinez, A.A.; Seillier, A.; Koek, W.; Acosta, Y.; Fernandez, E.; Strong, R.; Lutz, B.; Marsicano, G.; Roberts, J.L.; Giuffrida, A. Win55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of parkinson's disease. Eur. J. Neurosci. 2009, 29, 2177–2186. [Google Scholar]
- Maneuf, Y.P.; Crossman, A.R.; Brotchie, J.M. The cannabinoid receptor agonist win 55, 212-2 reduces d2, but not d1, dopamine receptor-mediated alleviation of akinesia in the reserpine-treated rat model of parkinson's disease. Exp. Neurol. 1997, 148, 265–270. [Google Scholar]
- Di Marzo, V.; Hill, M.P.; Bisogno, T.; Crossman, A.R.; Brotchie, J.M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of parkinson's disease. FASEB J. 2000, 14, 1432–1438. [Google Scholar]
- Silverdale, M.A.; McGuire, S.; McInnes, A.; Crossman, A.R.; Brotchie, J.M. Striatal cannabinoid cb1 receptor mrna expression is decreased in the reserpine-treated rat model of parkinson's disease. Exp. Neurol. 2001, 169, 400–406. [Google Scholar]
- Gubellini, P.; Picconi, B.; Bari, M.; Battista, N.; Calabresi, P.; Centonze, D.; Bernardi, G.; Finazzi-Agro, A.; Maccarrone, M. Experimental parkinsonism alters endocannabinoid degradation: Implications for striatal glutamatergic transmission. J. Neurosci. 2002, 22, 6900–6907. [Google Scholar]
- Gerdeman, G.; Lovinger, D.M. Cb1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J. Neurophysiol. 2001, 85, 468–471. [Google Scholar]
- Kelsey, J.E.; Harris, O.; Cassin, J. The cb(1) antagonist rimonabant is adjunctively therapeutic as well as monotherapeutic in an animal model of parkinson's disease. Behav. Brain Res. 2009, 203, 304–307. [Google Scholar]
- Cao, X.; Liang, L.; Hadcock, J.R.; Iredale, P.A.; Griffith, D.A.; Menniti, F.S.; Factor, S.; Greenamyre, J.T.; Papa, S.M. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J. Pharmacol. Exp. Ther. 2007, 323, 318–326. [Google Scholar]
- Fernandez-Espejo, E.; Caraballo, I.; de Fonseca, F.R.; El Banoua, F.; Ferrer, B.; Flores, J.A.; Galan-Rodriguez, B. Cannabinoid cb1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol. Dis. 2005, 18, 591–601. [Google Scholar]
- Meschler, J.P.; Howlett, A.C.; Madras, B.K. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (mptp)-treated non-human primates. Psychopharmacology (Berl.) 2001, 156, 79–85. [Google Scholar] [PubMed]
- van Vliet, S.A.; Vanwersch, R.A.; Jongsma, M.J.; Olivier, B.; Philippens, I.H. Therapeutic effects of delta9-thc and modafinil in a marmoset parkinson model. Eur. Neuropsychopharmacol. 2008, 18, 383–389. [Google Scholar]
- Fox, S.H.; Henry, B.; Hill, M.; Crossman, A.; Brotchie, J. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the mptp-lesioned nonhuman primate model of parkinson's disease. Mov. Disord. 2002, 17, 1180–1187. [Google Scholar]
- Gilgun-Sherki, Y.; Melamed, E.; Mechoulam, R.; Offen, D. The cb1 cannabinoid receptor agonist, hu-210, reduces levodopa-induced rotations in 6-hydroxydopamine-lesioned rats. Pharmacol. Toxicol. 2003, 93, 66–70. [Google Scholar]
- Morgese, M.G.; Cassano, T.; Gaetani, S.; Macheda, T.; Laconca, L.; Dipasquale, P.; Ferraro, L.; Antonelli, T.; Cuomo, V.; Giuffrida, A. Neurochemical changes in the striatum of dyskinetic rats after administration of the cannabinoid agonist win55,212-2. Neurochem. Int. 2009, 54, 56–64. [Google Scholar]
- Kirshner, H.S. Vascular dementia: A review of recent evidence for prevention and treatment. Curr. Neurol. Neurosci. Rep. 2009, 9, 437–442. [Google Scholar]
- Krishnan, S.; Cairns, R.; Howard, R. Cannabinoids for the treatment of dementia. Cochrane Database Syst. Rev. 2009, CD007204. [Google Scholar]
- Volicer, L.; Stelly, M.; Morris, J.; McLaughlin, J.; Volicer, B.J. Effects of dronabinol on anorexia and disturbed behavior in patients with alzheimer's disease. Int. J. Geriatr. Psychiatry 1997, 12, 913–919. [Google Scholar]
- Walther, S.; Mahlberg, R.; Eichmann, U.; Kunz, D. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl.) 2006, 185, 524–528. [Google Scholar]
- Cummings, J.L.; Mega, M.; Gray, K.; Rosenberg-Thompson, S.; Carusi, D.A.; Gornbein, J. The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994, 44, 2308–2314. [Google Scholar]
- Passmore, M.J. The cannabinoid receptor agonist nabilone for the treatment of dementia-related agitation. Int. J. Geriatr. Psychiatry 2008, 23, 116–117. [Google Scholar]
- Aso, E.; Renoir, T.; Mengod, G.; Ledent, C.; Hamon, M.; Maldonado, R.; Lanfumey, L.; Valverde, O. Lack of cb1 receptor activity impairs serotonergic negative feedback. J. Neurochem. 2009, 109, 935–944. [Google Scholar]
- Bambico, F.R.; Katz, N.; Debonnel, G.; Gobbi, G. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci. 2007, 27, 11700–11711. [Google Scholar]
- Bellocchio, L.; Lafenetre, P.; Cannich, A.; Cota, D.; Puente, N.; Grandes, P.; Chaouloff, F.; Piazza, P.V.; Marsicano, G. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 2010, 13, 281–283. [Google Scholar]
- Murillo-Rodriguez, E. The role of the cb1 receptor in the regulation of sleep. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1420–1427. [Google Scholar]
- Murillo-Rodriguez, E.; Blanco-Centurion, C.; Sanchez, C.; Piomelli, D.; Shiromani, P.J. Anandamide enhances extracellular levels of adenosine and induces sleep: An in vivo microdialysis study. Sleep 2003, 26, 943–947. [Google Scholar]
- Staekenborg, S.S.; Su, T.; van Straaten, E.C.; Lane, R.; Scheltens, P.; Barkhof, F.; van der Flier, W.M. Behavioural and psychological symptoms in vascular dementia; differences between small and large vessel disease. J. Neurol. Neurosurg. Psychiatry 2009. [Google Scholar]
- Mangieri, R.A.; Piomelli, D. Enhancement of endocannabinoid signaling and the pharmacotherapy of depression. Pharmacol. Res. 2007, 56, 360–366. [Google Scholar]
- Curtis, A.; Mitchell, I.; Patel, S.; Ives, N.; Rickards, H. A pilot study using nabilone for symptomatic treatment in huntington's disease. Mov. Disord. 2009, 24, 2254–2259. [Google Scholar]
- Consroe, P.; Laguna, J.; Allender, J.; Snider, S.; Stern, L.; Sandyk, R.; Kennedy, K.; Schram, K. Controlled clinical trial of cannabidiol in huntington's disease. Pharmacol. Biochem. Behav. 1991, 40, 701–708. [Google Scholar]
- Curtis, A.; Rickards, H. Nabilone could treat chorea and irritability in huntington's disease. J. Neuropsychiatry. Clin. Neurosci. 2006, 18, 553–554. [Google Scholar]
- Muller-Vahl, K.R.; Schneider, U.; Emrich, H.M. Nabilone increases choreatic movements in huntington's disease. Mov. Disord. 1999, 14, 1038–1040. [Google Scholar]
- Venderova, K.; Ruzicka, E.; Vorisek, V.; Visnovsky, P. Survey on cannabis use in parkinson's disease: Subjective improvement of motor symptoms. Mov. Disord. 2004, 19, 1102–1106. [Google Scholar]
- Consroe, P.; Sandyk, R.; Snider, S.R. Open label evaluation of cannabidiol in dystonic movement disorders. Int. J. Neurosci. 1986, 30, 277–282. [Google Scholar]
- Sieradzan, K.A.; Fox, S.H.; Hill, M.; Dick, J.P.; Crossman, A.R.; Brotchie, J.M. Cannabinoids reduce levodopa-induced dyskinesia in parkinson's disease: A pilot study. Neurology 2001, 57, 2108–2111. [Google Scholar]
- Carroll, C.B.; Bain, P.G.; Teare, L.; Liu, X.; Joint, C.; Wroath, C.; Parkin, S.G.; Fox, P.; Wright, D.; Hobart, J.; Zajicek, J.P. Cannabis for dyskinesia in parkinson disease: A randomized double-blind crossover study. Neurology 2004, 63, 1245–1250. [Google Scholar]
- Mesnage, V.; Houeto, J.L.; Bonnet, A.M.; Clavier, I.; Arnulf, I.; Cattelin, F.; Le Fur, G.; Damier, P.; Welter, M.L.; Agid, Y. Neurokinin b, neurotensin, and cannabinoid receptor antagonists and parkinson disease. Clin. Neuropharmacol. 2004, 27, 108–110. [Google Scholar]
- Zuardi, A.W.; Crippa, J.A.; Hallak, J.E.; Pinto, J.P.; Chagas, M.H.; Rodrigues, G.G.; Dursun, S.M.; Tumas, V. Cannabidiol for the treatment of psychosis in parkinson's disease. J. Psychopharmacol. 2009, 23, 979–983. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Walther, S.; Halpern, M. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data. Pharmaceuticals 2010, 3, 2689-2708. https://doi.org/10.3390/ph3082689
Walther S, Halpern M. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data. Pharmaceuticals. 2010; 3(8):2689-2708. https://doi.org/10.3390/ph3082689
Chicago/Turabian StyleWalther, Sebastian, and Michael Halpern. 2010. "Cannabinoids and Dementia: A Review of Clinical and Preclinical Data" Pharmaceuticals 3, no. 8: 2689-2708. https://doi.org/10.3390/ph3082689
APA StyleWalther, S., & Halpern, M. (2010). Cannabinoids and Dementia: A Review of Clinical and Preclinical Data. Pharmaceuticals, 3(8), 2689-2708. https://doi.org/10.3390/ph3082689