Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Pharmacokinetics of AEDs
4. Genetic Polymorphisms of Drug-Metabolizing Enzymes
4.1. Cytochrome P450 (CYP) superfamily
AED | Oral bioavailability | t1/2 (hour) | Clearance | Active metabolites | Enzymes involved in the metabolism of the compound |
---|---|---|---|---|---|
Carbamazepine | 75–85% | 12–24 | >95% Hepatic | Carbamazepine-10,11-epoxide | CYP3A4/5, CYP2C8, mEH, UGTs |
Clobazam | 87% | 22–30 | >95% Hepatic | N-desmethylclobazam | CYP3A4 and CYP2C19 |
Clonazepam | >80% | 19–60 | >95% Hepatic | — | CYP3A4 |
Ethosuximide | <100% | 36–60 | 65% Hepatic | — | CYP3A4 |
35% Renal | |||||
Felbamate | 90% | 14–23 | 50% Hepatic | — | CYP2C19?, UGTs |
50% Renal | |||||
Gabapentin | 45–70% | 5–7 | 100% Renal | — | None |
Lamotrigine | <100% | 24–36 | 90% Hepatic | — | UGTs |
10% Renal | |||||
Levetiracetam | <100% | 6–8 | 66% Renal | — | Nonhepatic hydrolysis (in blood) |
34% Hepatic | |||||
Oxcarbazepine | > 95% | 1–2 | 45% Hepatic | MHD | UGTs |
65% Renal | |||||
Phenobarbital | 80–100% | 72–96 | 75% Hepatic | — | CYP2C19, CYP2C9 |
25% Renal | |||||
Phenytoin | 95% | 20–50 | >90% Hepatic | — | CYP2C9, CYP2C19 |
Primidone | <100% | 10–20 | 50% Hepatic | Phenobarbital | CYP2C9 (for phenobarbital) |
50% Renal | Phenylethylmalonamide | ||||
Topiramate | 80% | 20–30 | 30–50% Hepatic | — | CYP3A4, UGTs |
50–70% Renal | |||||
Valproic acid | <100% | 8–16 | >95% Hepatic | — | UGTs, CYP2C9, CYP2C19 |
Zonisamide | <100% | 50–70 | >90% Hepatic | — | CYP3A4, CYP2C19, UGTs |
4.2. Microsomal epoxide hydrolase
4.3. Uridine diphospho-glucuronosyltransferase (UGT)
4.4. Glutathione S-transferase (GST)
5. Effect of Genetic Polymorphisms of Drug-Metabolizing Enzymes on AED Therapy
5.1. Carbamazepine
5.1.1. Pharmacokinetics
5.1.2. Pharmacodynamics
5.2. Clobazam
5.2.1. Pharmacokinetics
5.2.2. Pharmacodynamics
5.3. Lamotrigine
5.3.1. Pharmacokinetics
5.3.2. Pharmacodynamics
5.4. Phenytoin
5.4.1. Pharmacokinetics
5.4.2. Pharmacodynamics
5.5. Phenobarbital
5.5.1. Pharmacokinetics
5.5.2. Pharmacodynamics
5.6. Valproic acid
5.6.1. Pharmacokinetics
5.6.2. Pharmacodynamics
5.7. Zonisamide
5.7.1. Pharmacokinetics
5.7.2. Pharmacodynamics
6. Population Pharmacokinetics of AEDs
AED | Final population pharmacokinetic model | Population | Ref. |
---|---|---|---|
Carbamazepine | CL (l/h) = 0.17 × (BW/40)0.11 × Dose0.45 × 1.40PHT × 1.21PB × 1.08CYP3A5*3/*3 × eηCL | Japanese | [12,43] |
Phenobarbital | CL (l/h) = 0.23 × (BW/40)0.21 × 0.52CYP2C9 hetero EM × 0.68VPA × 0.85PHT × 0.85SMID × (1 + ηCL) | Japanese | [12,36] |
CL (l/h) = 0.0596 × BW0.367 × 0.812CYP2C19 PM | Japanese | [37,114] | |
Phenytoin | Vmax (mg/day/kg) = 6.07 × (BW/60)-0.416 × 0.582CYP2C9 hetero EM × (1 + ηVmax) | Japanese | [33] |
Km (μg/mL) = 4.0 × 1.22CYP2C19 hetero EM × 1.54CYP2C19 PM × (1 + ηKm) | |||
Valproic acid | CL (l/h) = 0.0951 × (1 + e0.0267 × (3-G†)) × 0.0071 × age × eηCL | Chinese | [120] |
Zonisamide | CL (l/h) = 1.22 × (BW/44)0.77 × Dose-0.17 × 0.84CYP2C19 hetero EM × 0.70CYP2C19 PM × 1.24CBZ × 1.28PHT × 1.29PB × eηCL | Japanese | [12,38] |
AED | Genetic polymorphisms | Associated pharmacokinetic or pharmacodynamic parameters | References |
---|---|---|---|
Carbamazepine | CYP3A5*3/*3 genotype | Oral clearance | [12,43,44] |
EPHX1 Try113His and His139Arg | Maintenance dose | [84] | |
GSTM1 null genotype | Mild hepatotoxicity | [88] | |
Clobazam | CYP2C19 hetero EMs and PMs | Serum N-desmethylclobazam concentration, responder rate | [35] |
Lamotrigine | UGT2B7 -161C>T | Concentration to daily dose ratio | [97] |
Phenobarbital | CYP2C19 PMs | Oral clearance | [37] |
CYP2C9 hetero EMs | Oral clearance, ethnic differences in tolerability (?) | [12,36] | |
Phenytoin | CYP2C9 hetero EMs/PMs and/or CYP2C19 PMs | Plasma concentration, maintenance dose, CNS toxicity | [12] |
CYP2C9*1B haplotype | Maintenance dose | [104] | |
EPHX1 113Try/139His haplotype | Risk of craniofacial abnormalities | [58] | |
Valproic acid | CYP2C9 hetero EMs and CYP2C19 PMs | Oral clearance | [120] |
GSTM1 and GSTT1 null genotypes | Mild elevation of γ-glutamyltransferase | [125] | |
Zonisamide | CYP2C19 hetero EMs and PMs | Oral clearance, zonisamide-specific adverse reactions | [12,38] |
7. Conclusions and Future Perspectives
Acknowledgements
References
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar]
- Guerrini, R. Epilepsy in children. Lancet 2006, 367, 499–524. [Google Scholar]
- Arain, A.M.; Abou-Khalil, B.W. Management of new-onset epilepsy in the elderly. Nat. Rev. Neurol. 2009, 5, 363–371. [Google Scholar]
- Sillanpaa, M.; Schmidt, D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain 2006, 129, 617–624. [Google Scholar]
- Sisodiya, S.M.; Marini, C. Genetics of antiepileptic drug resistance. Curr. Opin. Neurol. 2009, 22, 150–156. [Google Scholar]
- Kaneko, S.; Yoshida, S.; Kanai, K.; Yasui-Furukori, N.; Iwasa, H. Development of individualized medicine for epilepsy based on genetic information. Expert Rev. Clin. Pharmacol. 2008, 1, 661–681. [Google Scholar]
- Loscher, W.; Klotz, U.; Zimprich, F.; Schmidt, D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009, 50, 1–23. [Google Scholar]
- Franciotta, D.; Kwan, P.; Perucca, E. Genetic basis for idiosyncratic reactions to antiepileptic drugs. Curr. Opin. Neurol. 2009, 22, 144–149. [Google Scholar]
- Kasperaviciute, D.; Sisodiya, S.M. Epilepsy pharmacogenetics. Pharmacogenomics 2009, 10, 817–836. [Google Scholar]
- Tomalik-Scharte, D.; Lazar, A.; Fuhr, U.; Kirchheiner, J. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J. 2008, 8, 4–15. [Google Scholar]
- Anderson, G.D. Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic drugs. Ther. Drug Monit. 2008, 30, 173–180. [Google Scholar]
- Saruwatari, J.; Ishitsu, T.; Seo, T.; Shimomasuda, M.; Okada, Y.; Goto, S.; Nagata, R.; Takashima, A.; Yoshida, S.; Yoshida, S.; Yasui-Furukori, N.; Kaneko, S.; Nakagawa, K. The clinical impact of cytochrome P450 polymorphisms on the anti-epileptic drug therapy. Epilepsy Seizure 2010, 3, 34–50. [Google Scholar]
- Bhathena, A.; Spear, B.B. Pharmacogenetics: improving drug and dose selection. Curr. Opin. Pharmacol. 2008, 8, 639–646. [Google Scholar]
- Katz, D.A.; Murray, B.; Bhathena, A.; Sahelijo, L. Defining drug disposition determinants: a pharmacogenetic-pharmacokinetic strategy. Nat. Rev. Drug Discov. 2008, 7, 293–305. [Google Scholar]
- Flockhart, D.A.; Skaar, T.; Berlin, D.S.; Klein, T.E.; Nguyen, A.T. Clinically available pharmacogenomics tests. Clin. Pharmacol. Ther. 2009, 86, 109–113. [Google Scholar]
- Ashley, E.A.; Butte, A.J.; Wheeler, M.T.; Chen, R.; Klein, T.E.; Dewey, F.E.; Dudley, J.T.; Ormond, K.E.; Pavlovic, A.; Morgan, A.A.; Pushkarev, D.; et al. Clinical assessment incorporating a personal genome. Lancet 2010, 375, 1525–1535. [Google Scholar] [PubMed]
- Szoeke, C.E.; Newton, M.; Wood, J.M.; Goldstein, D.; Berkovic, S.F.; TJ, O.B.; Sheffield, L.J. Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol. 2006, 5, 189–196. [Google Scholar]
- Klotz, U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin. Pharmacokinet. 2007, 46, 271–279. [Google Scholar]
- Anderson, G.D. Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic drugs. Ther. Drug Monit. 2008, 30, 173–180. [Google Scholar]
- Sisodiya, S.M.; Marini, C. Genetics of antiepileptic drug resistance. Curr. Opin. Neurol. 2009, 22, 150–156. [Google Scholar]
- Mann, M.W.; Pons, G. Various pharmacogenetic aspects of antiepileptic drug therapy: a review. CNS Drugs 2007, 21, 143–164. [Google Scholar]
- Klotz, U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin. Pharmacokinet. 2007, 46, 271–279. [Google Scholar]
- Szoeke, C.E.; Newton, M.; Wood, J.M.; Goldstein, D.; Berkovic, S.F.; TJ, O.B.; Sheffield, L.J. Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol. 2006, 5, 189–196. [Google Scholar]
- Johannessen, S.I.; Tomson, T. General principles. Laboratory monitoring of antiepleptic drugs. In Antiepileptic Drugs, 5th; Levy, R.M., Mattson, R.H., Meldrum, B.S., Eds.; Lippincott Williams & Wilkins: Philadelphia (PA), USA, 2002; pp. 103–111. [Google Scholar]
- Johannessen, S.I.; Tomson, T. Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin. Pharmacokinet. 2006, 45, 1061–1075. [Google Scholar]
- Diaz, R.A.; Sancho, J.; Serratosa, J. Antiepileptic drug interactions. Neurologist 2008, 14, 55–65. [Google Scholar]
- Bhathena, A.; Spear, B.B. Pharmacogenetics: improving drug and dose selection. Curr. Opin. Pharmacol. 2008, 8, 639–646. [Google Scholar]
- Katz, D.A.; Murray, B.; Bhathena, A.; Sahelijo, L. Defining drug disposition determinants: a pharmacogenetic-pharmacokinetic strategy. Nat. Rev. Drug Discov. 2008, 7, 293–305. [Google Scholar]
- Flockhart, D.A.; Skaar, T.; Berlin, D.S.; Klein, T.E.; Nguyen, A.T. Clinically available pharmacogenomics tests. Clin. Pharmacol. Ther. 2009, 86, 109–113. [Google Scholar]
- Myrand, S.P.; Sekiguchi, K.; Man, M.Z.; Lin, X.; Tzeng, R.Y.; Teng, C.H.; Hee, B.; Garrett, M.; Kikkawa, H.; Lin, C.Y.; et al. Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin. Pharmacol. Ther. 2008, 84, 347–361. [Google Scholar]
- Makeeva, O.; Stepanov, V.; Puzyrev, V.; Goldstein, D.B.; Grossman, I. Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes. Pharmacogenomics 2008, 9, 847–868. [Google Scholar]
- Yasui-Furukori, N.; Kaneda, A.; Iwashima, K.; Saito, M.; Nakagami, T.; Tsuchimine, S.; Kaneko, S. Association between cytochrome P450 (CYP) 2C19 polymorphisms and harm avoidance in Japanese. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 724–727. [Google Scholar]
- Mamiya, K.; Ieiri, I.; Shimamoto, J.; Yukawa, E.; Imai, J.; Ninomiya, H.; Yamada, H.; Otsubo, K.; Higuchi, S.; Tashiro, N. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998, 39, 1317–1323. [Google Scholar]
- Hung, C.C.; Lin, C.J.; Chen, C.C.; Chang, C.J.; Liou, H.H. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther. Drug Monit. 2004, 26, 534–540. [Google Scholar]
- Seo, T.; Nagata, R.; Ishitsu, T.; Murata, T.; Takaishi, C.; Hori, M.; Nakagawa, K. Impact of CYP2C19 polymorphisms on the efficacy of clobazam therapy. Pharmacogenomics 2008, 9, 527–537. [Google Scholar]
- Goto, S.; Seo, T.; Murata, T.; Nakada, N.; Ueda, N.; Ishitsu, T.; Nakagawa, K. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther. Drug Monit. 2007, 29, 118–121. [Google Scholar]
- Yukawa, E.; Mamiya, K. Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using Non-linear Mixed Effects Model approach. J. Clin. Pharm. Ther. 2006, 31, 275–282. [Google Scholar]
- Okada, Y.; Seo, T.; Ishitsu, T.; Wanibuchi, A.; Hashimoto, N.; Higa, Y.; Nakagawa, K. Population estimation regarding the effects of cytochrome P450 2C19 and 3A5 polymorphisms on zonisamide clearance. Ther. Drug Monit. 2008, 30, 540–543. [Google Scholar]
- Tate, S.K.; Depondt, C.; Sisodiya, S.M.; Cavalleri, G.L.; Schorge, S.; Soranzo, N.; Thom, M.; Sen, A.; Shorvon, S.D.; Sander, J.W.; Wood, N.W.; Goldstein, D.B. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl. Acad. Sci. USA 2005, 102, 5507–5512. [Google Scholar]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar]
- Lin, Y.S.; Dowling, A.L.; Quigley, S.D.; Farin, F.M.; Zhang, J.; Lamba, J.; Schuetz, E.G.; Thummel, K.E. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol. Pharmacol. 2002, 62, 162–172. [Google Scholar]
- Yamaori, S.; Yamazaki, H.; Iwano, S.; Kiyotani, K.; Matsumura, K.; Honda, G.; Nakagawa, K.; Ishizaki, T.; Kamataki, T. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab. Pharmacokinet. 2004, 19, 120–129. [Google Scholar]
- Seo, T.; Nakada, N.; Ueda, N.; Hagiwara, T.; Hashimoto, N.; Nakagawa, K.; Ishitsu, T. Effect of CYP3A5*3 on carbamazepine pharmacokinetics in Japanese patients with epilepsy. Clin. Pharmacol. Ther. 2006, 79, 509–510. [Google Scholar]
- Park, P.W.; Seo, Y.H.; Ahn, J.Y.; Kim, K.A.; Park, J.Y. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J. Clin. Pharm. Ther. 2009, 34, 569–574. [Google Scholar]
- Decker, M.; Arand, M.; Cronin, A. Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch. Toxicol. 2009, 83, 297–318. [Google Scholar]
- Oesch, F.; Glatt, H.; Schmassmann, H. The apparent ubiquity of epoxide hydratase in rat organs. Biochem. Pharmacol. 1977, 26, 603–607. [Google Scholar]
- Seidegard, J.; DePierre, J.W. Microsomal epoxide hydrolase. Properties, regulation and function. Biochim. Biophys. Acta 1983, 695, 251–270. [Google Scholar] [PubMed]
- Omiecinski, C.J.; Aicher, L.; Holubkov, R.; Checkoway, H. Human peripheral lymphocytes as indicators of microsomal epoxide hydrolase activity in liver and lung. Pharmacogenetics 1993, 3, 150–158. [Google Scholar]
- Hassett, C.; Lin, J.; Carty, C.L.; Laurenzana, E.M.; Omiecinski, C.J. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch. Biochem. Biophys. 1997, 337, 275–283. [Google Scholar]
- Hassett, C.; Aicher, L.; Sidhu, J.S.; Omiecinski, C.J. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum. Mol. Genet. 1994, 3, 421–428. [Google Scholar]
- Omiecinski, C.J.; Hassett, C.; Hosagrahara, V. Epoxide hydrolase-polymorphism and role in toxicology. Toxicol. Lett. 2000, 112-113, 365–370. [Google Scholar]
- Saito, S.; Iida, A.; Sekine, A.; Eguchi, C.; Miura, Y.; Nakamura, Y. Seventy genetic variations in human microsomal and soluble epoxide hydrolase genes (EPHX1 and EPHX2) in the Japanese population. J. Hum. Genet. 2001, 46, 325–329. [Google Scholar]
- Hines, R.N.; Koukouritaki, S.B.; Poch, M.T.; Stephens, M.C. Regulatory polymorphisms and their contribution to interindividual differences in the expression of enzymes influencing drug and toxicant disposition. Drug Metab. Rev. 2008, 40, 263–301. [Google Scholar]
- Nakajima, Y.; Saito, Y.; Shiseki, K.; Fukushima–Uesaka, H.; Hasegawa, R.; Ozawa, S.; Sugai, K.; Katoh, M.; Saitoh, O.; Ohnuma, T.; Kawai, M.; Ohtsuki, T.; Suzuki, C.; Minami, N.; Kimura, H.; Goto, Y.; Kamatani, N.; Kaniwa, N.; Sawada, J. Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. Eur. J. Clin. Pharmacol. 2005, 61, 25–34. [Google Scholar]
- Lacko, M.; Roelofs, H.M.; Te Morsche, R.H.; Voogd, A.C.; Oude Ophuis, M.B.; Peters, W.H.; Manni, J.J. Microsomal epoxide hydrolase genotypes and the risk for head and neck cancer. Head Neck 2008, 30, 836–844. [Google Scholar]
- Graziano, C.; Comin, C.E.; Crisci, C.; Novelli, L.; Politi, L.; Messerini, L.; Andreani, M.; Porfirio, B. Functional polymorphisms of the microsomal epoxide hydrolase gene: a reappraisal on a early-onset lung cancer patients series. Lung Cancer 2009, 63, 187–193. [Google Scholar]
- Laurenzana, E.M.; Hassett, C.; Omiecinski, C.J. Post-transcriptional regulation of human microsomal epoxide hydrolase. Pharmacogenetics 1998, 8, 157–167. [Google Scholar]
- Azzato, E.M.; Chen, R.A.; Wacholder, S.; Chanock, S.J.; Klebanoff, M.A.; Caporaso, N.E. Maternal EPHX1 polymorphisms and risk of phenytoin-induced congenital malformations. Pharmacogenet. Genomics 2010, 20, 58–63. [Google Scholar]
- Bellucci, G.; Berti, G.; Chiappe, C.; Lippi, A.; Marioni, F. The metabolism of carbamazepine in humans: steric course of the enzymatic hydrolysis of the 10,11-epoxide. J. Med. Chem. 1987, 30, 768–773. [Google Scholar]
- Dennery, P.A. Effects of oxidative stress on embryonic development. Birth Defects Res. C. Embryol. Today 2007, 81, 155–162. [Google Scholar]
- Van Dyke, D.C.; Berg, M.J.; Olson, C.H. Differences in phenytoin biotransformation and susceptibility to congenital malformations: a review. DICP 1991, 25, 987–992. [Google Scholar]
- Guillemette, C.; Levesque, E.; Harvey, M.; Bellemare, J.; Menard, V. UGT genomic diversity: beyond gene duplication. Drug Metab. Rev. 2010, 42, 22–42. [Google Scholar]
- UGT Nomenclature Commitee. UDP-glucuronosyltransferase alleles nomenclature homepage. Available online: http://www.pharmacogenomics.pha.ulaval.ca/sgc/ugt_alleles/lang/en_CA/ (accessed on 17 May 2010).
- Evans, W.E.; Relling, M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999, 286, 487–491. [Google Scholar]
- Mackenzie, P.I.; Gregory, P.A.; Lewinsky, R.H.; Yasmin, S.N.; Height, T.; McKinnon, R.A.; Gardner-Stephen, D.A. Polymorphic variations in the expression of the chemical detoxifying UDP glucuronosyltransferases. Toxicol. Appl. Pharmacol. 2005, 207, 77–83. [Google Scholar]
- Argikar, U.A.; Iwuchukwu, O.F.; Nagar, S. Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin. Drug Metab. Toxicol. 2008, 4, 879–894. [Google Scholar]
- Chung, J.Y.; Cho, J.Y.; Yu, K.S.; Kim, J.R.; Lim, K.S.; Sohn, D.R.; Shin, S.G.; Jang, I.J. Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin. Pharmacol. Ther. 2008, 83, 595–600. [Google Scholar]
- Staines, A.G.; Coughtrie, M.W.; Burchell, B. N-glucuronidation of carbamazepine in human tissues is mediated by UGT2B7. J. Pharmacol. Exp. Ther. 2004, 311, 1131–1137. [Google Scholar]
- Rowland, A.; Elliot, D.J.; Williams, J.A.; Mackenzie, P.I.; Dickinson, R.G.; Miners, J.O. In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab. Dispos. 2006, 34, 1055–1062. [Google Scholar]
- Bhasker, C.R.; McKinnon, W.; Stone, A.; Lo, A.C.; Kubota, T.; Ishizaki, T.; Miners, J.O. Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 2000, 10, 679–685. [Google Scholar]
- Duguay, Y.; Baar, C.; Skorpen, F.; Guillemette, C. A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin. Pharmacol. Ther. 2004, 75, 223–233. [Google Scholar]
- Holthe, M.; Rakvag, T.N.; Klepstad, P.; Idle, J.R.; Kaasa, S.; Krokan, H.E.; Skorpen, F. Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J. 2003, 3, 17–26. [Google Scholar]
- Saeki, M.; Saito, Y.; Jinno, H.; Tanaka-Kagawa, T.; Ohno, A.; Ozawa, S.; Ueno, K.; Kamakura, S.; Kamatani, N.; Komamura, K.; Kitakaze, M.; Sawada, J. Single nucleotide polymorphisms and haplotype frequencies of UGT2B4 and UGT2B7 in a Japanese population. Drug Metab. Dispos. 2004, 32, 1048–1054. [Google Scholar]
- Innocenti, F.; Liu, W.; Fackenthal, D.; Ramirez, J.; Chen, P.; Ye, X.; Wu, X.; Zhang, W.; Mirkov, S.; Das, S.; Cook, E., Jr.; Ratain, M.J. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet. Genomics 2008, 18, 683–697. [Google Scholar]
- Whalen, R.; Boyer, T.D. Human glutathione S-transferases. Semin. Liver Dis. 1998, 18, 345–358. [Google Scholar]
- Bolt, H.M.; Thier, R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr. Drug Metab. 2006, 7, 613–628. [Google Scholar]
- Reszka, E.; Wasowicz, W.; Gromadzinska, J. Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility. Br. J. Nutr. 2006, 96, 609–619. [Google Scholar]
- Ginsberg, G.; Smolenski, S.; Hattis, D.; Guyton, K.Z.; Johns, D.O.; Sonawane, B. Genetic Polymorphism in Glutathione Transferases (GST): Population distribution of GSTM1, T1, and P1 conjugating activity. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 389–439. [Google Scholar]
- Eichelbaum, M.; Tomson, T.; Tybring, G.; Bertilsson, L. Carbamazepine metabolism in man. Induction and pharmacogenetic aspects. Clin. Pharmacokinet. 1985, 10, 80–90. [Google Scholar]
- Tomson, T.; Tybring, G.; Bertilsson, L. Single-dose kinetics and metabolism of carbamazepine-10,11-epoxide. Clin. Pharmacol. Ther. 1983, 33, 58–65. [Google Scholar]
- Kerr, B.M.; Thummel, K.E.; Wurden, C.J.; Klein, S.M.; Kroetz, D.L.; Gonzalez, F.J.; Levy, R.H. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem. Pharmacol. 1994, 47, 1969–1979. [Google Scholar] [PubMed]
- Kang, P.; Liao, M.; Wester, M.R.; Leeder, J.S.; Pearce, R.E.; Correia, M.A. CYP3A4-Mediated carbamazepine (CBZ) metabolism: formation of a covalent CBZ-CYP3A4 adduct and alteration of the enzyme kinetic profile. Drug Metab. Dispos. 2008, 36, 490–499. [Google Scholar]
- Elger, C.E.; Schmidt, D. Modern management of epilepsy: a practical approach. Epilepsy Behav. 2008, 12, 501–539. [Google Scholar]
- Makmor-Bakry, M.; Sills, G.J.; Hitiris, N.; Butler, E.; Wilson, E.A.; Brodie, M.J. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin. Neuropharmacol. 2009, 32, 205–212. [Google Scholar]
- U.S. Food and Drug Administration. Information for Healthcare Professionals: Dangerous or Even Fatal Skin Reactions - Carbamazepine (marketed as Carbatrol, Equetro, Tegretol, and generics). Available online: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm124718.htm/ (accessed on 03 August 2010).
- Hung, S.I.; Chung, W.H.; Jee, S.H.; Chen, W.C.; Chang, Y.T.; Lee, W.R.; Hu, S.L.; Wu, M.T.; Chen, G.S.; Wong, T.W.; et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics 2006, 16, 297–306. [Google Scholar]
- Zaccara, G.; Franciotta, D.; Perucca, E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia 2007, 48, 1223–1244. [Google Scholar]
- Ueda, K.; Ishitsu, T.; Seo, T.; Ueda, N.; Murata, T.; Hori, M.; Nakagawa, K. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics 2007, 8, 435–442. [Google Scholar]
- Kilpatrick, C.; Bury, R.; Fullinfaw, R.; Moulds, R. Clobazam in the treatment of epilepsy. Clin. Exp. Neurol. 1987, 23, 139–144. [Google Scholar]
- Ng, Y.T.; Collins, S.D. Clobazam. Neurotherapeutics 2007, 4, 138–144. [Google Scholar]
- Giraud, C.; Tran, A.; Rey, E.; Vincent, J.; Treluyer, J.M.; Pons, G. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab. Dispos. 2004, 32, 1279–1286. [Google Scholar]
- Canadian Clobazam Cooperative Group. Clobazam in treatment of refractory epilepsy: the Canadian experience. A retrospective study. Epilepsia 1991, 32, 407–416. [Google Scholar]
- Remy, C. Clobazam in the treatment of epilepsy: a review of the literature. Epilepsia 1994, 35, 88–91. [Google Scholar]
- Shorvon, S.D. The use of clobazam, midazolam, and nitrazepam in epilepsy. Epilepsia 1998, 39, 15–23. [Google Scholar]
- Magdalou, J.; Herber, R.; Bidault, R.; Siest, G. In vitro N-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J. Pharmacol. Exp. Ther. 1992, 260, 1166–1173. [Google Scholar]
- Posner, J.; Cohen, A.F.; Land, G.; Winton, C.; Peck, A.W. The pharmacokinetics of lamotrigine (BW430C) in healthy subjects with unconjugated hyperbilirubinaemia (Gilbert's syndrome). Br. J. Clin. Pharmacol. 1989, 28, 117–120. [Google Scholar]
- Blanca Sanchez, M.; Herranz, J.L.; Leno, C.; Arteaga, R.; Oterino, A.; Valdizan, E.M.; Nicolas, J.M.; Adin, J.; Shushtarian, M.; Armijo, J.A. UGT2B7_-161C>T polymorphism is associated with lamotrigine concentration-to-dose ratio in a multivariate study. Ther. Drug Monit. 2010, 32, 177–184. [Google Scholar]
- Maguire, J.H. Quantitative estimation of catechol/methylcatechol pathways in human phenytoin metabolism. Epilepsia 1988, 29, 753–759. [Google Scholar]
- Bajpai, M.; Roskos, L.K.; Shen, D.D.; Levy, R.H. Roles of cytochrome P450 2C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab. Dispos. 1996, 24, 1401–1403. [Google Scholar]
- Odani, A.; Hashimoto, Y.; Otsuki, Y.; Uwai, Y.; Hattori, H.; Furusho, K.; Inui, K. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin. Pharmacol. Ther. 1997, 62, 287–292. [Google Scholar]
- van der Weide, J.; Steijns, L.S.; van Weelden, M.J.; de Haan, K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001, 11, 287–291. [Google Scholar]
- Aynacioglu, A.S.; Brockmoller, J.; Bauer, S.; Sachse, C.; Guzelbey, P.; Ongen, Z.; Nacak, M.; Roots, I. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br. J. Clin. Pharmacol. 1999, 48, 409–415. [Google Scholar]
- Tate, S.K.; Depondt, C.; Sisodiya, S.M.; Cavalleri, G.L.; Schorge, S.; Soranzo, N.; Thom, M.; Sen, A.; Shorvon, S.D.; Sander, J.W.; Wood, N.W.; Goldstein, D.B. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl. Acad. Sci. USA 2005, 102, 5507–5512. [Google Scholar]
- Chaudhry, A.S.; Urban, T.J.; Lamba, J.K.; Birnbaum, A.K.; Remmel, R.P.; Subramanian, M.; Strom, S.; You, J.H.; Kasperaviciute, D.; Catarino, C.B.; Radtke, R.A.; Sisodiya, S.M.; Goldstein, D.B.; Schuetz, E.G. CYP2C9*1B promoter polymorphisms, in linkage with CYP2C19*2, affect phenytoin autoinduction of clearance and maintenance dose. J. Pharmacol. Exp. Ther. 2010, 332, 599–611. [Google Scholar]
- Ninomiya, H.; Mamiya, K.; Matsuo, S.; Ieiri, I.; Higuchi, S.; Tashiro, N. Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther. Drug Monit. 2000, 22, 230–232. [Google Scholar]
- Brandolese, R.; Scordo, M.G.; Spina, E.; Gusella, M.; Padrini, R. Severe phenytoin intoxication in a subject homozygous for CYP2C9*3. Clin. Pharmacol. Ther. 2001, 70, 391–394. [Google Scholar]
- Kidd, R.S.; Curry, T.B.; Gallagher, S.; Edeki, T.; Blaisdell, J.; Goldstein, J.A. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001, 11, 803–808. [Google Scholar]
- Ramasamy, K.; Narayan, S.K.; Chanolean, S.; Chandrasekaran, A. Severe phenytoin toxicity in a CYP2C9*3*3 homozygous mutant from India. Neurol. India 2007, 55, 408–409. [Google Scholar]
- Lee, A.Y.; Kim, M.J.; Chey, W.Y.; Choi, J.; Kim, B.G. Genetic polymorphism of cytochrome P450 2C9 in diphenylhydantoin-induced cutaneous adverse drug reactions. Eur. J. Clin. Pharmacol. 2004, 60, 155–159. [Google Scholar]
- Soga, Y.; Nishimura, F.; Ohtsuka, Y.; Araki, H.; Iwamoto, Y.; Naruishi, H.; Shiomi, N.; Kobayashi, Y.; Takashiba, S.; Shimizu, K.; Gomita, Y.; Oka, E. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci. 2004, 74, 827–834. [Google Scholar]
- Lin, C.J.; Yen, M.F.; Hu, O.Y.; Lin, M.S.; Hsiong, C.H.; Hung, C.C.; Liou, H.H. Association of galactose single-point test levels and phenytoin metabolic polymorphisms with gingival hyperplasia in patients receiving long-term phenytoin therapy. Pharmacotherapy 2008, 28, 35–41. [Google Scholar]
- Kwan, P.; Brodie, M.J. Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia 2004, 45, 1141–1149. [Google Scholar]
- Anderson, G.D. Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 2004, 63, 3–8. [Google Scholar]
- Mamiya, K.; Hadama, A.; Yukawa, E.; Ieiri, I.; Otsubo, K.; Ninomiya, H.; Tashiro, N.; Higuchi, S. CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur. J. Clin. Pharmacol. 2000, 55, 821–825. [Google Scholar]
- Heller, A.J.; Chesterman, P.; Elwes, R.D.; Crawford, P.; Chadwick, D.; Johnson, A.L.; Reynolds, E.H. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J. Neurol. Neurosurg. Psychiatry 1995, 58, 44–50. [Google Scholar]
- de Silva, M.; MacArdle, B.; McGowan, M.; Hughes, E.; Stewart, J.; Neville, B.G.; Johnson, A.L.; Reynolds, E.H. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy. Lancet 1996, 347, 709–713. [Google Scholar]
- Nimaga, K.; Desplats, D.; Doumbo, O.; Farnarier, G. Treatment with phenobarbital and monitoring of epileptic patients in rural Mali. Bull. World Health Organ. 2002, 80, 532–537. [Google Scholar]
- Wang, W.Z.; Wu, J.Z.; Ma, G.Y.; Dai, X.Y.; Yang, B.; Wang, T.P.; Yuan, C.L.; Hong, Z.; Bell, G.S.; Prilipko, L.; de Boer, H.M.; Sander, J.W. Efficacy assessment of phenobarbital in epilepsy: a large community-based intervention trial in rural China. Lancet Neurol. 2006, 5, 46–52. [Google Scholar]
- Chadwick, D.W. Concentration-effect relationships of valproic acid. Clin. Pharmacokinet. 1985, 10, 155–163. [Google Scholar]
- Jiang, D.; Bai, X.; Zhang, Q.; Lu, W.; Wang, Y.; Li, L.; Muller, M. Effects of CYP2C19 and CYP2C9 genotypes on pharmacokinetic variability of valproic acid in Chinese epileptic patients: nonlinear mixed-effect modeling. Eur. J. Clin. Pharmacol. 2009, 65, 1187–1193. [Google Scholar]
- Jin, C.; Miners, J.O.; Lillywhite, K.J.; Mackenzie, P.I. Complementary deoxyribonucleic acid cloning and expression of a human liver uridine diphosphate-glucuronosyltransferase glucuronidating carboxylic acid-containing drugs. J. Pharmacol. Exp. Ther. 1993, 264, 475–479. [Google Scholar]
- Rettie, A.E.; Rettenmeier, A.W.; Howald, W.N.; Baillie, T.A. Cytochrome P-450-catalyzed formation of delta 4-VPA, a toxic metabolite of valproic acid. Science 1987, 235, 890–893. [Google Scholar]
- Sadeque, A.J.; Fisher, M.B.; Korzekwa, K.R.; Gonzalez, F.J.; Rettie, A.E. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J. Pharmacol. Exp. Ther. 1997, 283, 698–703. [Google Scholar]
- Tong, V.; Teng, X.W.; Chang, T.K.; Abbott, F.S. Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol. Sci. 2005, 86, 427–435. [Google Scholar]
- Fukushima, Y.; Seo, T.; Hashimoto, N.; Higa, Y.; Ishitsu, T.; Nakagawa, K. Glutathione-S-transferase (GST) M1 null genotype and combined GSTM1 and GSTT1 null genotypes are risk factors for increased serum gamma-glutamyltransferase in valproic acid-treated patients. Clin. Chim. Acta 2008, 389, 98–102. [Google Scholar]
- Hachad, H.; Ragueneau-Majlessi, I.; Levy, R.H. New antiepileptic drugs: review on drug interactions. Ther. Drug Monit. 2002, 24, 91–103. [Google Scholar]
- Baulac, M. Introduction to zonisamide. Epilepsy Res. 2006, 68, 3–9. [Google Scholar]
- Nakasa, H.; Nakamura, H.; Ono, S.; Tsutsui, M.; Kiuchi, M.; Ohmori, S.; Kitada, M. Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur. J. Clin. Pharmacol. 1998, 54, 177–183. [Google Scholar]
- Aarons, L. Population pharmacokinetics: theory and practice. Br. J. Clin. Pharmacol. 1991, 32, 669–670. [Google Scholar]
- Kohle, C.; Bock, K.W. Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochem. Pharmacol. 2009, 77, 689–699. [Google Scholar]
- Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther. 2007, 116, 496–526. [Google Scholar]
- Gomez, A.; Ingelman-Sundberg, M. Pharmacoepigenetics: its role in interindividual differences in drug response. Clin. Pharmacol. Ther. 2009, 85, 426–430. [Google Scholar]
- Urdinguio, R.G.; Sanchez-Mut, J.V.; Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 2009, 8, 1056–1072. [Google Scholar]
- Urban, T.J.; Brown, C.; Castro, R.A.; Shah, N.; Mercer, R.; Huang, Y.; Brett, C.M.; Burchard, E.G.; Giacomini, K.M. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin. Pharmacol. Ther. 2008, 83, 416–421. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Saruwatari, J.; Ishitsu, T.; Nakagawa, K. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals 2010, 3, 2709-2732. https://doi.org/10.3390/ph3082709
Saruwatari J, Ishitsu T, Nakagawa K. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals. 2010; 3(8):2709-2732. https://doi.org/10.3390/ph3082709
Chicago/Turabian StyleSaruwatari, Junji, Takateru Ishitsu, and Kazuko Nakagawa. 2010. "Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy" Pharmaceuticals 3, no. 8: 2709-2732. https://doi.org/10.3390/ph3082709
APA StyleSaruwatari, J., Ishitsu, T., & Nakagawa, K. (2010). Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals, 3(8), 2709-2732. https://doi.org/10.3390/ph3082709