High-Dose Ibuprofen in Cystic Fibrosis
Abstract
:1. Introduction
2. Inflammation and CF Lung Disease
3. Clinical Use of Ibuprofen in Cystic Fibrosis
4. Ibuprofen and Cystic Fibrosis Lung Disease
5. Conclusions
Acknowledgements
References
- Anselmo, M.; Lands, L. Cystic Fibrosis: Overview. In Pediatric Respiratory Medicine, 2nd; Taussig, L., Landau, L., Eds.; Mosby: Philadelphia, PA, USA, 2008; pp. 845–857. [Google Scholar]
- Claustres, M.; Guittard, C.; Bozon, D.; Chevalier, F.; Verlingue, C.; Ferec, C.; Girodon, E.; Cazeneuve, C.; Bienvenu, T.; Lalau, G.; Dumur, V.; Feldmann, D.; Bieth, E.; Blayau, M.; Clavel, C.; Creveaux, I.; Malinge, M.C.; Monnier, N.; Malzac, P.; Mittre, H.; Chomel, J.C.; Bonnefont, J.P.; Iron, A.; Chery, M.; Georges, M.D. Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France. Hum. Mutat. 2000, 16, 143–156. [Google Scholar]
- Muhlebach, M.S.; Stewart, P.W.; Leigh, M.W.; Noah, T.L. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am. J. Respir. Crit. Care Med. 1999, 160, 186–191. [Google Scholar]
- Farrell, P.M.; Collins, J.; Broderick, L.S.; Rock, M.J.; Li, Z.; Kosorok, M.R.; Laxova, A.; Gershan, W.M.; Brody, A.S. Association between mucoid Pseudomonas infection and bronchiectasis in children with cystic fibrosis. Radiology 2009, 252, 534–543. [Google Scholar]
- Konstan, M.W.; Morgan, W.J.; Butler, S.M.; Pasta, D.J.; Craib, M.L.; Silva, S.J.; Stokes, D.C.; Wohl, M.E.; Wagener, J.S.; Regelmann, W.E.; Johnson, C.A. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J. Pediatr. 2007, 151, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.E.; Leung, A.N.; Chen, X.; Moss, R.B.; Emond, M.J. Cystic fibrosis HRCT scores correlate strongly with Pseudomonas infection. Pediatr. Pulmonol. 2009, 44, 1107–1117. [Google Scholar]
- Eigen, H.; Rosenstein, B.J.; FitzSimmons, S.; Schidlow, D.V. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J. Pediatr. 1995, 126, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.C.; FitzSimmons, S.C.; Allen, D.B.; Kosorok, M.R.; Rosenstein, B.J.; Campbell, P.W.; Farrell, P.M. Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N. Engl. J. Med. 2000, 342, 851–859. [Google Scholar]
- Konstan, M.W.; Vargo, K.M.; Davis, P.B. Ibuprofen attenuates the inflammatory response to Pseudomonas aeruginosa in a rat model of chronic pulmonary infection. Implications for antiinflammatory therapy in cystic fibrosis. Am. Rev. Respir. Dis. 1990, 141, 186–192. [Google Scholar] [PubMed]
- Armstrong, D.S.; Hook, S.M.; Jamsen, K.M.; Nixon, G.M.; Carzino, R.; Carlin, J.B.; Robertson, C.F.; Grimwood, K. Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr. Pulmonol. 2005, 40, 500–510. [Google Scholar]
- Dauletbaev, N.; Viel, K.; Buhl, R.; Wagner, T.O.; Bargon, J. Glutathione and glutathione peroxidase in sputum samples of adult patients with cystic fibrosis. J.Cyst. Fibros. 2004, 3, 119–124. [Google Scholar]
- Khan, T.Z.; Wagener, J.S.; Bost, T.; Martinez, J.; Accurso, F.J.; Riches, D.W. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 1995, 151, 1075–1082. [Google Scholar]
- Sagel, S.D.; Sontag, M.K.; Wagener, J.S.; Kapsner, R.K.; Osberg, I.; Accurso, F.J. Induced sputum inflammatory measures correlate with lung function in children with cystic fibrosis. J. Pediatr. 2002, 141, 811–817. [Google Scholar]
- Smountas, A.A.; Lands, L.C.; Mohammed, S.R.; Grey, V. Induced sputum in cystic fibrosis: within-week reproducibility of inflammatory markers. Clin. Biochem. 2004, 37, 1031–1036. [Google Scholar]
- Elizur, A.; Cannon, C.L.; Ferkol, T.W. Airway inflammation in cystic fibrosis. Chest. 2008, 133, 489–495. [Google Scholar]
- Ratjen, F. What's new in CF airway inflammation: an update. Paediatr. Respir. Rev. 2006, 7 Suppl. 1, S70–S72. [Google Scholar]
- Perez, A.; Issler, A.C.; Cotton, C.U.; Kelley, T.J.; Verkman, A.S.; Davis, P.B. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L383–L395. [Google Scholar]
- Vij, N.; Amoako, M.O.; Mazur, S.; Zeitlin, P.L. CHOP transcription factor mediates IL-8 signaling in cystic fibrosis bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 2008, 38, 176–184. [Google Scholar]
- Xu, Y.; Krause, A.; Hamai, H.; Harvey, B.G.; Worgall, T.S.; Worgall, S. Proinflammatory phenotype and increased caveolin-1 in alveolar macrophages with silenced CFTR mRNA. PLoS One 2010, 5, 11004–11017. [Google Scholar]
- Becker, M.N.; Sauer, M.S.; Muhlebach, M.S.; Hirsh, A.J.; Wu, Q.; Verghese, M.W.; Randell, S.H. Cytokine secretion by cystic fibrosis airway epithelial cells. Am. J. Respir. Crit. Care Med. 2004, 169, 645–653. [Google Scholar]
- Stecenko, A.A.; King, G.; Torii, K.; Breyer, R.M.; Dworski, R.; Blackwell, T.S.; Christman, J.W.; Brigham, K.L. Dysregulated cytokine production in human cystic fibrosis bronchial epithelial cells. Inflammation 2001, 25, 145–155. [Google Scholar]
- Perez, A.; van Heeckeren, A.M.; Nichols, D.; Gupta, S.; Eastman, J.F.; Davis, P.B. Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium. Am. J. Physiol Lung Cell Mol. Physiol. 2008, 295, L303–L313. [Google Scholar]
- Reynders, V.; Loitsch, S.; Steinhauer, C.; Wagner, T.; Steinhilber, D.; Bargon, J. Peroxisome proliferator-activated receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes. Respir. Res. 2006, 7, 104–116. [Google Scholar]
- Ollero, M.; Junaidi, O.; Zaman, M.M.; Tzameli, I.; Ferrando, A.A.; Andersson, C.; Blanco, P.G.; Bialecki, E.; Freedman, S.D. Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice. J. Cell Physiol. 2004, 200, 235–244. [Google Scholar]
- Maiuri, L.; Luciani, A.; Giardino, I.; Raia, V.; Villella, V.R.; D'Apolito, M.; Pettoello-Mantovani, M.; Guido, S.; Ciacci, C.; Cimmino, M.; Cexus, O.N.; Londei, M.; Quaratino, S. Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J. Immunol. 2008, 180, 7697–7705. [Google Scholar]
- Saadane, A.; Soltys, J.; Berger, M. Role of IL-10 deficiency in excessive nuclear factor-kappaB activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. J. Allergy Clin. Immunol. 2005, 115, 405–411. [Google Scholar]
- Dosanjh, A.K.; Elashoff, D.; Robbins, R.C. The bronchoalveolar lavage fluid of cystic fibrosis lung transplant recipients demonstrates increased interleukin-8 and elastase and decreased IL-10. J. Interferon. Cytokine Res. 1998, 18, 851–854. [Google Scholar]
- Moss, R.B.; Bocian, R.C.; Hsu, Y.P.; Dong, Y.J.; Kemna, M.; Wei, T.; Gardner, P. Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clin. Exp. Immunol. 1996, 106, 374–388. [Google Scholar]
- Bonfield, T.L.; Panuska, J.R.; Konstan, M.W.; Hilliard, K.A.; Hilliard, J.B.; Ghnaim, H.; Berger, M. Inflammatory cytokines in cystic fibrosis lungs. Am. J. Respir. Crit. Care Med. 1995, 152, 2111–2118. [Google Scholar]
- Tarran, R.; Grubb, B.R.; Parsons, D.; Picher, M.; Hirsh, A.J.; Davis, C.W.; Boucher, R.C. The CF salt controversy: in vivo observations and therapeutic approaches. Mol. Cell. 2001, 8, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Ratjen, F. Diagnosing and managing infection in CF. Paediatr. Respir. Rev. 2006, 7 Suppl. 1, S151–S153. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y. The role of chemokines in neutrophil biology. Front. Biosci. 2008, 13, 2400–2407. [Google Scholar]
- Mukaida, N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 284, L566–L577. [Google Scholar]
- Mizgerd, J.P. Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin. Immunol. 2002, 14, 123–132. [Google Scholar]
- Strieter, R.M.; Belperio, J.A.; Keane, M.P. Cytokines in innate host defense in the lung. J. Clin. Invest. 2002, 109, 699–705. [Google Scholar]
- Tirouvanziam, R.; de Bentzmann, S.; Hubeau, C.; Hinnrasky, J.; Jacquot, J.; Peault, B.; Puchelle, E. Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell Mol. Biol. 2000, 23, 121–127. [Google Scholar]
- Legssyer, R.; Huaux, F.; Lebacq, J.; Delos, M.; Marbaix, E.; Lebecque, P.; Lison, D.; Scholte, B.J.; Wallemacq, P.; Leal, T. Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir. Res. 2006, 7, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Voynow, J.A.; Fischer, B.M.; Zheng, S. Proteases and cystic fibrosis. Int. J. Biochem. Cell Biol. 2008, 40, 1238–1245. [Google Scholar]
- Birrer, P.; McElvaney, N.G.; Rudeberg, A.; Sommer, C.W.; Liechti-Gallati, S.; Kraemer, R.; Hubbard, R.; Crystal, R.G. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 1994, 150, 207–213. [Google Scholar]
- Buhl, R.; Meyer, A.; Vogelmeier, C. Oxidant-protease interaction in the lung. Prospects for antioxidant therapy. Chest 1996, 110, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Hartl, D.; Latzin, P.; Hordijk, P.; Marcos, V.; Rudolph, C.; Woischnik, M.; Krauss-Etschmann, S.; Koller, B.; Reinhardt, D.; Roscher, A.A.; Roos, D.; Griese, M. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat. Med. 2007, 13, 1423–1430. [Google Scholar]
- Jacquot, J.; Tabary, O.; Clement, A. Hyperinflammation in airways of cystic fibrosis patients: what's new? Expert. Rev. Mol. Diagn. 2008, 8, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Starosta, V.; Rietschel, E.; Paul, K.; Baumann, U.; Griese, M. Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest 2006, 129, 431–437. [Google Scholar]
- Tirouvanziam, R.; Gernez, Y.; Conrad, C.K.; Moss, R.B.; Schrijver, I.; Dunn, C.E.; Davies, Z.A.; Herzenberg, L.A.; Herzenberg, L.A. Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 2008, 105, 4335–4339. [Google Scholar]
- Watt, A.P.; Courtney, J.; Moore, J.; Ennis, M.; Elborn, J.S. Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 2005, 60, 659–664. [Google Scholar]
- Mastronarde, J.G.; Monick, M.M.; Mukaida, N.; Matsushima, K.; Hunninghake, G.W. Activator protein-1 is the preferred transcription factor for cooperative interaction with nuclear factor-kappaB in respiratory syncytial virus-induced interleukin-8 gene expression in airway epithelium. J. Infect. Dis. 1998, 177, 1275–1281. [Google Scholar]
- Li, J.; Kartha, S.; Iasvovskaia, S.; Tan, A.; Bhat, R.K.; Manaligod, J.M.; Page, K.; Brasier, A.R.; Hershenson, M.B. Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 283, L690–L699. [Google Scholar]
- Boncoeur, E.; Criq, V.S.; Bonvin, E.; Roque, T.; Henrion-Caude, A.; Gruenert, D.C.; Clement, A.; Jacquot, J.; Tabary, O. Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: Potential mechanism for excessive IL-8 expression. Int. J. Biochem. Cell Biol. 2008, 40, 432–446. [Google Scholar]
- Li, J.; Johnson, X.D.; Iazvovskaia, S.; Tan, A.; Lin, A.; Hershenson, M.B. Signaling intermediates required for NF-kappa B activation and IL-8 expression in CF bronchial epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 284, L307–L315. [Google Scholar]
- Ratner, A.J.; Bryan, R.; Weber, A.; Nguyen, S.; Barnes, D.; Pitt, A.; Gelber, S.; Cheung, A.; Prince, A. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J. Biol. Chem. 2001, 276, 19267–19275. [Google Scholar]
- Saccani, S.; Pantano, S.; Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat. Immunol. 2002, 3, 69–75. [Google Scholar]
- Rahman, I.; Marwick, J.; Kirkham, P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem. Pharmacol. 2004, 68, 1255–1267. [Google Scholar]
- Hoffmann, E.; Dittrich-Breiholz, O.; Holtmann, H.; Kracht, M. Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 2002, 72, 847–855. [Google Scholar]
- Konstan, M.W. Ibuprofen therapy for cystic fibrosis lung disease: revisited. Curr. Opin. Pulm. Med. 2008, 14, 567–573. [Google Scholar]
- Lands, L.C.; Stanojevic, S. Oral non-steroidal anti-inflammatory drug therapy for cystic fibrosis. Cochrane. Database. Syst. Rev. 2007, CD001505. [Google Scholar]
- Konstan, M.W.; Byard, P.J.; Hoppel, C.L.; Davis, P.B. Effect of high-dose ibuprofen in patients with cystic fibrosis. N. Engl. J. Med. 1995, 332, 848–854. [Google Scholar]
- Konstan, M.W.; Hoppel, C.L.; Chai, B.L.; Davis, P.B. Ibuprofen in children with cystic fibrosis: pharmacokinetics and adverse effects. J. Pediatr. 1991, 118, 956–964. [Google Scholar]
- Konstan, M.W.; Krenicky, J.E.; Finney, M.R.; Kirchner, H.L.; Hilliard, K.A.; Hilliard, J.B.; Davis, P.B.; Hoppel, C.L. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J. Pharmacol. Exp. Ther. 2003, 306, 1086–1091. [Google Scholar]
- Lands, L.C.; Milner, R.; Cantin, A.M.; Manson, D.; Corey, M. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J. Pediatr. 2007, 151, 249–254. [Google Scholar]
- Kovesi, T.A.; Swartz, R.; MacDonald, N. Transient renal failure due to simultaneous ibuprofen and aminoglycoside therapy in children with cystic fibrosis. N. Engl. J. Med. 1998, 338, 65–66. [Google Scholar]
- Smyth, A.; Lewis, S.; Bertenshaw, C.; Choonara, I.; McGaw, J.; Watson, A. Case-control study of acute renal failure in patients with cystic fibrosis in the UK. Thorax. 2008, 63, 532–535. [Google Scholar]
- Konstan, M.W.; Schluchter, M.D.; Xue, W.; Davis, P.B. Clinical use of Ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am. J. Respir. Crit Care Med. 2007, 176, 1084–1089. [Google Scholar]
- Mackey, J.E.; Anbar, R.D. High-dose ibuprofen therapy associated with esophageal ulceration after pneumonectomy in a patient with cystic fibrosis: a case report. BMC Pediatr. 2004, 4, 19. [Google Scholar]
- Fennell, P.B.; Quante, J.; Wilson, K.; Boyle, M.; Strunk, R.; Ferkol, T. Use of high-dose ibuprofen in a pediatric cystic fibrosis center. J. Cyst. Fibros. 2007, 6, 153–158. [Google Scholar]
- Oermann, C.M.; Sockrider, M.M.; Konstan, M.W. The use of anti-inflammatory medications in cystic fibrosis: trends and physician attitudes. Chest 1999, 115, 1053–1058. [Google Scholar]
- Tegeder, I.; Pfeilschifter, J.; Geisslinger, G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001, 15, 2057–2072. [Google Scholar]
- Chmiel, J.; Konstan, M.W.; Lymp, J.; Mayer-Hamblett, N.; Hilliard, K.; Accurso, F.; Ramsey, B. Assessment of induced sputum as a tool to evaluate anti-inflammatory agents in CF. Pediatr. Pulmonol. 2007, 42, 228–229, Abstract No. 81. [Google Scholar]
- Dauletbaev, N.; Lam, J.; Eklove, D.; Iskandar, M.; Lands, L.C. Ibuprofen modulates NF-kB activity but not IL-8 production in cystic fibrosis respiratory epithelial cells. Respiration 2010, 79, 234–242. [Google Scholar]
- Scheuren, N.; Bang, H.; Munster, T.; Brune, K.; Pahl, A. Modulation of transcription factor NF-kappaB by enantiomers of the nonsteroidal drug ibuprofen. Br. J. Pharmacol. 1998, 123, 645–652. [Google Scholar]
- Stuhlmeier, K.M.; Li, H.; Kao, J.J. Ibuprofen: new explanation for an old phenomenon. Biochem. Pharmacol. 1999, 57, 313–320. [Google Scholar]
- Li, J.; Xiang, Y.Y.; Ye, L.; Tsui, L.C.; Macdonald, J.F.; Hu, J.; Lu, W.Y. Nonsteroidal anti-inflammatory drugs upregulate function of wild-type and mutant CFTR. Eur. Respir. J. 2008, 32, 334–343. [Google Scholar]
- Weber, A.J.; Soong, G.; Bryan, R.; Saba, S.; Prince, A. Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Am. J. Physiol. Lung Cell Mol. Physiol. 2001, 281, L71–L78. [Google Scholar]
- Furst, S.M.; Khan, K.N.; Komocsar, W.J.; Fan, L.; Mennear, J. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells. J. Immunotoxicol. 2005, 2, 85–96. [Google Scholar]
- Daynes, R.A.; Jones, D.C. Emerging roles of PPARs in inflammation and immunity. Nat. Rev. Immunol. 2002, 2, 748–759. [Google Scholar]
- Lehmann, J.M.; Lenhard, J.M.; Oliver, B.B.; Ringold, G.M.; Kliewer, S.A. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 1997, 272, 3406–3410. [Google Scholar]
- Becker, J.; Delayre-Orthez, C.; Frossard, N.; Pons, F. Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases? Fundam. Clin. Pharmacol. 2006, 20, 429–447. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lands, L.C.; Dauletbaev, N. High-Dose Ibuprofen in Cystic Fibrosis. Pharmaceuticals 2010, 3, 2213-2224. https://doi.org/10.3390/ph3072213
Lands LC, Dauletbaev N. High-Dose Ibuprofen in Cystic Fibrosis. Pharmaceuticals. 2010; 3(7):2213-2224. https://doi.org/10.3390/ph3072213
Chicago/Turabian StyleLands, Larry C., and Nurlan Dauletbaev. 2010. "High-Dose Ibuprofen in Cystic Fibrosis" Pharmaceuticals 3, no. 7: 2213-2224. https://doi.org/10.3390/ph3072213
APA StyleLands, L. C., & Dauletbaev, N. (2010). High-Dose Ibuprofen in Cystic Fibrosis. Pharmaceuticals, 3(7), 2213-2224. https://doi.org/10.3390/ph3072213